
Lectures 1, 2 and 3:
Splines, Smoothers, and generalized additive models

Data Science 2
CS 109b, Stat 121b, AC 209b, E-109b

Mark Glickman Pavlos Protopapas

Reading: James et al., chapter 7.

Outline:

• Polynomial regression and basis functions

• Regression splines

• Smoothers

• Additive and Generalized Additive Models

From linear to non-linear effects:

You have seen in CS 109a models in which the contribution of a predictor is included linearly.

For a quantitative response Y and quantitative predictor x, we can assume

Y = β0 + β1x+ ε

with ε ∼ N(0, σ2).

We have a number of options for including non-linear effects of x if we believe the relationship is
not linear.

Some methods you have already seen in CS 109a (e.g., random forests, SVM).

Review – polynomial models in one variable:

(there will be an ultimate point to this review – be patient!)

Create new variables x2, x3, . . . , xd for some specified d. Then assume

Y = β0 + β1x+ β2x
2 + · · ·+ βdx

d + ε.

Modeling a polynomial function of a predictor is useful

• when the researcher knows based on scientific theory that the true mean function is curvi-
linear with respect to the predictor.
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• as an approximation to a possibly complex non-linear mean function of the predictor.

Comments on polynomial functions of predictors:

• The model
Y = β0 + β1x+ β2x

2 + · · ·+ βdx
d + ε

is actually a linear regression model. This is because the model is linear in the unknown
parameters βj .

• Can use the same polynomial approach for logistic regression:

logit Pr(Y = 1) = log

(
Pr(Y = 1)

Pr(Y = 0)

)
= β0 + β1x+ β2x

2 + · · ·+ βdx
d.

• Can use standard model fitting methods (least-squares, maximum likelihood) for polyno-
mial models because of the linearity of the βj .

Why polynomial models make sense: Taylor’s theorem

Suppose f(x) is the true mean function of x, so that

E(Y |x) = f(x).

Taylor’s theorem says (in essence) that we can approximate f(x) to any degree of accuracy we like
with a polynomial approximation, with better accuracy for higher order polynomials.

f(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 + · · ·+ f (d)(0)

d!
xd + · · ·

= β0 + β1x+ β2x
2 + · · ·+ βdx

d + · · ·

Simple motivating example: Diabetes in children

A study from 1987 investigated factors affecting diabetes in children as measured through serum
C-peptide levels.

• Response: Y = Log of serum C-peptide level (pmol/ml) in a child

• Predictor: x = Age the child was diagnosed with diabetes

Want to examine the relationship between these two variables on the 43 children in the study.
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First try: Least squares regression line

Yi = β0 + β1xi + εi
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Second try: Least squares regression cubic polynomial

Yi = β0 + β1xi + β2x
2
i + β3x

3
i + εi
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Can fit logistic regression models as well. Define

Y ∗
i =

{
1 if log C-Peptide concentration > 4.0
0 if log C-Peptide concentration ≤ 4.0

Linear age:
logit Pr(Y ∗

i = 1) = β0 + β1xi.

Cubic age:
logit Pr(Y ∗

i = 1) = β0 + β1xi + β2x
2
i + β3x

3
i .
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Statistical significance of polynomial predictor: Likelihood ratio test

Typical setup for least-squares models

Ho: Yi = β0 + β1xi + εi

Ha: Yi = β0 + β1xi + · · ·+ βdx
d
i + εi

Typical setup for logistic regression models

Ho: logit Pr(Yi = 1) = β0 + β1xi

Ha: logit Pr(Yi = 1) = β0 + β1xi + · · ·+ βdx
d
i

Application to diabetes data:

Least squares:

Analysis of Variance Table

Model 1: y ˜ age
Model 2: y ˜ poly(age, 3, raw = T)

Res.Df RSS Df Sum of Sq F Pr(>F)
1 41 17.116
2 39 13.852 2 3.263 4.5932 0.01617 *
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Significant non-linearity.

Logistic regression:

Analysis of Deviance Table

Model 1: ybin ˜ age
Model 2: ybin ˜ poly(age, 3, raw = T)

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 41 30.443
2 39 16.684 2 13.759 0.001029 **
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Very significant non-linearity!

Comments:

7



• Can include polynomial terms for multiple variables simultaneously in multiple least-squares
or logistic regression.

• Choice of d (order of polynomial) - either by scientific considerations, or by cross-validation.

• Actually rare to model unknown curvature using polynomial functions

– Usually low-order polynomials provide a poor fit

– Larger order polynomials do not capture local behavior well unless d is very large.

– Large d can be difficult to interpret.

Deeper look into nonlinear regression:

Goal: : Model E(Y |x) as a function of a predictor, x, based on a flexible set of choices of functions.

The true model may be
E(Y |x) = f(x)

where f(x) is a highly nonlinear function of predictor variable x.

We may be willing to consider as best approximations:

E(Y |x) = β0 + β1x

or
E(Y |x) = β0 + β1x+ β2x

2 + · · ·+ βdx
d.

In each case, we are considering linear combinations of component functions.

For linear regression, we have two functions of x:

f1(x) = 1

f2(x) = x

such that an approximation to f(x) must be a linear combination of these two functions:

E(Y |x) = c1f1(x) + c2f2(x).

Similarly, for polynomial regression, we have

f1(x) = 1

f2(x) = x

...
...

fd+1(x) = xd

so that f(x) is approximated by the linear combination

E(Y |x) = c1f1(x) + · · ·+ cdfd(x).
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The set of component functions that are part of the approximating linear combination are called a
basis, and the functions themselves are the corresponding basis functions.

The span of a basis is the set of all possible functions that can be formed from the linear combina-
tion of basis functions.

Examples:

The set S = {1, x} is a basis for all linear functions of x.

The set S = {1, x, x2, . . . , xd} is a basis for all d-th order polynomials of x.

The point of the discussion of polynomial regression:

• Polynomial regression is arguably the simplest example of creating a basis to approximate a
non-linear function.

• Takes advantage of a linear combination representation

E(Y |x) = c1f1(x) + · · ·+ cdfd(x).

where each of the fj(x) are individual basis functions, namely fj(x) = xj−1.

Slightly more interesting examples:

The (infinite) set S = {1, x, x2, x3, . . .} is a basis for all differentiable functions of x. (by Taylor’s
theorem)

The (infinite) set

S = {1, sin(2πx), sin(4πx), sin(6πx), . . . , cos(2πx), cos(4πx), cos(6πx), . . .}

is a basis for all square-integrable functions of x, for 0 < x < 1.

Orthogonal polynomial basis:

We have already seen the use of a polynomial basis {1, x, x2, . . . , xd}.

One issue that can arise in a linear models setting is that terms like x and x2 can be highly corre-
lated for observed predictor data.

Example: Suppose we have a data set of n = 5 values, and for predictor x we observe

x = (0.98, 0.99, 1.0, 1.01, 1.02).

Then the values of x2 are

x2 = (0.9604, 0.9801, 1.0, 1.0201, 1.0404).

The correlation between the vectors x and x2 is 0.9999825.

Problem: Having highly correlated predictors can
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• result in numerical instability in fitting the model

• produce meaningless (highly inflated) coefficient estimates

A solution: Instead of using {1, x, x2} as the basis, use a basis of polynomials that are uncorrelated
on the data.

For the 5-observation example, let

S = {1, (x− 1)/0.03152, −0.5345 + 2672.61(x− 1)2}

This basis is an example of an orthogonal polynomial basis.

Notice

• This basis is comprised of a constant, a linear function of x, and a quadratic function of x. It
forms a basis for all quadratic functions just like {1, x, x2}.

• The linear and quadratic basis functions for the five observations evaluates to

(x− 1)/0.03152 = (−0.632,−0.316, 0.000, 0.316, 0.632)

and
−0.5345 + 2672.61(x− 1)2 = (0.535,−0.267,−0.535,−0.267, 0.535)

The correlation between these two variables is 0. Also, the correlation between each and a column
of 1s is also 0.

The values are normalized so that the sum of the squared elements is 1.

Back to polynomial regression:

Polynomial regression is actually rarely used in practice unless a scientific theory dictates the use
of polynomials.

• Low-order polynomials are an inferior solution to other existing ways to acknowledge non-
linearity.

• Increasing the order of the polynomial usually does not help particularly because of odd
behavior near the extremes of the data.

A more flexible approach is to use piecewise polynomials.

In particular, use connected piecewise polynomials, also known as splines.

Example: Piecewise linear spline

Define the function

(x− ξ)+ =

{
x− ξ if x > ξ

0 otherwise.
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This function is flat to the left of ξ, and linear (with slope 1) to the right. The value ξ is called a
“knot” of the function.

The function (x− ξ)+, a truncated linear function, will be a building block for constructing splines.

0 2 4 6 8 10

0
2

4
6

Truncated linear basis function with knot at x=4

X

(x
-

4
) +

Strategy for a piecewise linear spline construction:

Choose knots ξ1 < ξ2, · · · < ξK

Now let

E(Y |x) = (α0 + α1x) + {β1(x− ξ1)+ + β2(x− ξ2)+ + · · ·+ βK(x− ξK)+} .

Can think of this construction as

• Start with a linear function (α0 + α1x) to the left of ξ1.

• At each knot ξk, change the slope of the line by an additive amount βk.
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Spline basis functions:

Given knots ξ1, . . . , ξK , any linear spline can be composed from the following basis functions:

S = {1, x, (x− ξ1)+, (x− ξ2)+, . . . , (x− ξK)+}

That is, S forms a basis for linear splines.

Increasing the number of knots

• increases the number of basis function components, and

• increases the scope of functions representable by a linear spline
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Increasing the number of knots results in a

more polynomial−like fit

Cubic splines:

Linear splines are okay, but

• they are not smooth

• they do not perform well detecting highly curved relationships (unless using a lot of knots)

Much more common in practice to use cubic splines.

The basis function that will help to develop cubic splines is

(x− ξ)3+ =

{
(x− ξ)3 if x > ξ

0 otherwise.

This is called a truncated cubic function.
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A cubic spline with K knots ξ1, . . . , ξK to express the mean function of Y is given by

fcs(x) = α0 + α1x+ α2x
2 + α3x

3+

{β1(x− ξ1)
3
+ + β2(x− ξ2)

3
+ + · · ·+ βK(x− ξK)3+}

Cubic spline basis: S = {1, x, x2, x3, (x− ξ1)
3
+, . . . , (x− ξK)3+}

For quantitative outcomes, can perform least-squares regression on

yi = fcs(xi) + εi
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Important features of cubic spline:

• In between knots ξk and ξk+1 the spline as a function of x is a cubic polynomial. This is
because the spline value is a sum of cubic polynomials (the “base” polynomial plus the
truncated cubic terms to the left of ξk).

• At each knot, the spline is continuous, has a continuous first derivative, and has a continuous
second derivative. This means that the spline is smooth (to the eye).

• A cubic spline, without any extra constraints, has K+4 parameters that need to be estimated.

Related comments to cubic splines:

• Instead of using the truncated cubic basis functions, it is more common in software packages
to use a “B-spline” basis.

This basis spans the same as the truncated cubic basis (and has K +4 basis functions), but is
more efficient in estimation because at most five basis functions are involved in contributing
towards any function value. The basis functions are defined recursively given the knots -
difficult to write out.
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• Because the behavior of cubic splines near boundaries can behave strangely, a variant is
“natural” cubic splines. This basis enforces that the function is linear outside the extreme
knots.

This linearity requirement creates 4 constraints (changing a cubic polynomial to linear at
each extreme), so with K knots the total number of basis functions is K.

B-spline basis:

Example:

Data were collected on the concentration of a chemical GAG in the urine of 314 children aged 0 to
17 years old.

> summary(GAGurine)
Age GAG

Min. : 0.0000 Min. : 1.800
1st Qu.: 0.9625 1st Qu.: 6.625
Median : 4.1000 Median :10.600
Mean : 5.2815 Mean :13.173
3rd Qu.: 8.2700 3rd Qu.:17.625
Max. :17.6700 Max. :56.300
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Choosing the number and position of knots:

• Can place knots at quantiles of the predictor variable, or at regularly spaced intervals

• Choosing the number of knots seems to be more crucial in obtaining a good non-linear fit

• Good idea to place more knots in parts of the predictor data where one might expect the
mean function to change rapidly.

Regression splines and multiple predictors:

Because a single predictor transformed as a polynomial term or a spline involves a linear combina-
tion of basis functions, it is actually straightforward to extend this approach to multiple predictors.

• Transform each predictor individually to a linear combination of basis functions

• Include all terms simultaneously into the model

– Fit least-squares multiple regression (if outcome is quantitative)

– Fit multiple logistic regression (if outcome is binary)

Smoothers and additive models:

So far, we have explored incorporating non-linear functions of predictors through polynomial
terms or splines.

Notation:

Let ηi denote the simultaneous contribution of the J predictors xi1, xi2, . . . , xiJ to the model.

For least-squares regression, we have ηi = E(Yi|x), and for logistic regression we have ηi =
logitPr(Yi = 1).

Example simultaneous contribution of predictors:

ηi = β0 + β1xi1 + · · ·+ βJxiJ

for models where each predictor enters linearly.

Another example:
ηi = β0 + f1(xi1) + · · ·+ fJ(xiJ)

where fj(xij) might be a cubic spline for variable xj .

A model that includes the additive contribution of nonlinearly transformed predictors is called an
additive model.

Actually, to be more precise, if the outcome variable is assumed to be normally distributed, then
the above is an additive model. If the outcome variable is not normally distributed (e.g., binary),
then the above model is called a generalized additive model.
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Beyond polynomials and splines: Smoothers

Our approach thus far of identifying a non-linear function of a predictor has relied on

• Polynomial functions of the predictor

• Splines, i.e., piecewise polynomials that are connected at knots

Is there a more general way to view non-linear functions of a predictor?

Smoothers:

A smoother S(x) is a function that is used to estimate some feature of a response as a function of
one or more predictors x that is typically less variable than the response.

By convention, we’ll denote s(x) to be an estimate of S(x), called a “smooth,” based on observed
data.

A “scatterplot smoother” is a smoother of just one predictor variable.

The basic intuition is that given a particular values of x, what principles can we apply to estimate
the mean of Y ?

Usually two decisions to make when choosing/estimating a smoother:

• The type of local averaging of y-values in the neighborhood of x to obtain S(x).

• The size of the neighborhood of values involved in the local average.

We will look at these two issues one at a time.

A few types of smoothers: Different types of local averages

Running-mean (moving average) and running-line smoothers:

• Choose a window length.

• Then for each x, compute the mean of the yi within the window around x (running-mean),
or compute the least-squares estimate at x based on data within the window (running-line).

Kernel smoothers:

Rather than compute averages of yi within windows around a given x, computed a weighted
average of yi values depending on how far each xi is from x.

• Specify a “kernel” function, K(xi, x). This function is non-negative values. For any x, this
gives the weight that should be used for point (xi, yi) when computing the weighted average
of the yi.
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• A kernel function is chosen so that

– K(xi, x) is a maximum when x = xi

– K(xi, x) goes to 0 as |x− xi| increases

Typical choice of K is a normal density (Gaussian) function.

• Compute the weighted average of all yi using the kernel weights.

Lowess (or loess):

Abbreviation for “locally-weighted scatterplot smoother.”

Combines the ideas for running-line smoothers and kernel smoothers.

• Specify a kernel function.

• At each x, perform a weighted least-squares regression of all points with kernel weights
defined by K(xi, x).

• The smooth is determined as the fitted value of weighted least-squares regression at each
location x.

The role of the neighborhood size: Smoothness

Can see the differences in the effects of neighborhood sizes in different lowess smooths on the
diabetes data.

• The larger the neighborhood over which averages of yi are taken, the smoother the estimated
function; the smaller the neighborhood, the more jagged the estimated function.

• How should we choose the neighborhood size/smoothness of a smoother? More on this
shortly.
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Fundamental issue with choosing smoothness: Bias-Variance Tradeoff

If µ̂ is an estimator of E(Y ), µ, using a particular smoother, then

• Bias: E(µ̂)− µ

• Variance: Var(µ̂)

If we use a smoother that is too smooth, there is a risk of large bias for particular x values.

If we use a smoother that is too rough, there is a risk of large variance of the smooth (very sensitive
to the data used).
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Our main smoother:

Choice of a smoother as an optimization problem:

Among all functions f that are twice-differentiable, find the one that minimizes the penalized sum
of squares

PSS(f | y,x) =
n∑

i=1

(yi − f(xi))
2 + λ

∫ b

a
(f ′′(t))2dt

for a given value of λ ≥ 0, where

a ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ b.

Why is this a reasonable criterion for f :

• The first term measures the lack of fit having chosen f .

• The second term is a penalty for the wiggliness of f .

• The value λ is a “tuning parameter” that balances the trade-off between lack of fit and wig-
gliness.

– Small values of λ result in a “connect-the-dots” fit.
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– Large values of λ result in a fit closer to a line.
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Solution to optimization problem:

For a given λ, the unique f that minimizes the penalized sum of squares turns out to be a cubic
spline with knots at each xi. As a reminder:

• A (different) cubic polynomial is fit between each xi and xi+1 (not necessarily connecting to
(xi, yi) or (xi+1, yi+1)).

• The smoothing spline is continuous at each xi.

• Not only do the cubic polynomials connect at each xi, but the first and second derivatives of
the cubic polynomials connecting at each xi are equal. This is equivalent to saying that the
smoothing spline is twice differentiable (even at the xi).

• Conventionally we use assume a natural cubic spline: The smoothing spline is linear to the
left of x1 and to the right of xn.

Actually, this is a special type of cubic spline called a “cubic smoothing spline.”

• Without further discussion, the cubic spline is over-parameterized. If the knots are at every
xi, there is no information to choose from among different cubic polynomials between xi
and xi+1.
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• The parameter λ is what makes the connecting cubic polynomial choices unique.

Once λ is specified, determining the smooth is just fitting a cubic spline.

Choosing the smoothing parameter/neighborhood size: Cross-validation (CV)

As you saw in CS109a, this is a very important concept in machine learning, and non-model based
estimation.

Review: Choose a smoothing parameter that produces the best predictions on data not analyzed.

For our setup when we observed pairs (xi, yi), a reasonable CV criterion is

CV(λ) =
1

n

n∑
i=1

(yi − s
(i)
λ (xi))

2

where s
(i)
λ is the smooth estimated from all the data not including observation i. Choose λ to

minimize this expression.

Why this idea is appealing:

• The procedure automates the choice of λ (or of the neighborhood size).

• CV essentially prevents “overfitting” or “oversmoothing.”

• The mean of CV(λ) is expected to be close to the true average predictive squared error.

Worth pointing out that other CV strategies exist that leave out more than one observation at a
time, such as K-fold CV and Monte Carlo CV.

A fortunate result:

For leave-one-out CV, it appears that we need to refit the smooth n times (once per left-out obser-
vation). And that’s for each candidate choice of λ!

Fortunately, CV(λ) can be mathematically shown to be a function of terms that involve the fit of
the full sample of data (see page 279 in the textbook).

Thus for each λ, we only need to fit the cubic smoothing spline once to compute a cross-validation
measure of lack of fit.
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Extending smoothers to multiple predictors:

• Additive models: yi = β0 + S1(xi1) + · · ·+ SJ(xiJ) + εi

• Generalized additive models (GAMs): Assume the Yi have a distribution such as binomial,
with µi = E(Yi|x), with the additive predictor

logitPr(Yi = 1) = ηi = β0 + S1(xi1) + · · ·+ SJ(xiJ)

Additive models are a special case of GAMs. Also, logistic regression is a special case of GAMs.

Worth noting that GAMs can include linear terms like xjβj in addition to the smoother terms (xjβj
is a particular type of smoother).

Fitting a GAM:

Start by picking arbitrary β̂0, s1(x1), . . . , sJ(xJ). From this information, we can compute the η̂i, µ̂i,
etc.

• Define the i-th working response

zi =

{
η̂i + (yi − µ̂i)(µ̂i(1− µ̂i)) for logistic regression binary response models

yi for least-squares regression models
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• For fixed z = (z1, . . . , zn), run “backfitting algorithm.” That is, smooth

z − β̂0 − s1(x1)− · · · − sj−1(xj−1)− sj+1(xj+1)− · · · − sJ(xJ)

on xj to get new estimated sj(xj). Iterate 3-4 times to get improved estimates of the sj(xj)
for all j.

Repeat the above two steps until convergence.

One difference between additive models and GAM for binary responses: Cross-validation criterion
for smoothing parameter

Instead of choosing λ to minimize

CV(λ) =
1

n

n∑
i=1

(yi − s
(i)
λ (xi))

2,

minimize the sum

CV(λ) = −
n∑

i=1

(
yi log p

(i)
λ + (1− yi) log(1− p

(i)
λ )

)
.

Interesting to note that because of the similarities to linear models, some properties are inherited.

• Can compute a log-likelihood statistic.

• Likelihood ratio tests are (approximately) valid.

• “Non-parametric” degrees of freedom. Is calculated by summing the diagonal elements of
the smoother equivalent of the “hat” matrix.

• So-called “score tests” for the significance of individual smoothers can be performed as chi-
squared tests.

Example: Kyphosis data

Data set consists of 81 children who have had corrective spinal surgery.

The variables:

Kyphosis: a binary factor indicating if a kyphosis (type of deformation) was present after the
operation

Age: age in months

Number: the number of vertebrae involved

Start: the number of the topmost vertebra operated on

Data summaries:
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Kyphosis Age Number Start
absent :64 Min. : 1.00 Min. : 2.000 Min. : 1.00
present:17 1st Qu.: 26.00 1st Qu.: 3.000 1st Qu.: 9.00

Median : 87.00 Median : 4.000 Median :13.00
Mean : 83.65 Mean : 4.049 Mean :11.49
3rd Qu.:130.00 3rd Qu.: 5.000 3rd Qu.:16.00
Max. :206.00 Max. :10.000 Max. :18.00

GAM in action:

> kyph1.gam = gam(Kyphosis ˜ s(Age) + s(Number) + s(Start),
family=binomial, data=kyphosis)

> summary(kyph1.gam)

(Dispersion Parameter for binomial family taken to be 1)

Null Deviance: 83.2345 on 80 degrees of freedom
Residual Deviance: 40.526 on 67.9997 degrees of freedom
AIC: 66.5266

Number of Local Scoring Iterations: 11

DF for Terms and Chi-squares for Nonparametric Effects

Df Npar Df Npar Chisq P(Chi)
(Intercept) 1
s(Age) 1 3 5.7937 0.1221
s(Number) 1 3 5.6880 0.1278
s(Start) 1 3 5.8876 0.1172
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Is incorporating the three variables better than nothing?

Fit a model with only an intercept, and perform a likelihood ratio test against the model with all
three terms.

Analysis of Deviance Table

Model 1: Kyphosis ˜ 1
Model 2: Kyphosis ˜ s(Age) + s(Number) + s(Start)

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 80 83.234
2 68 40.526 12 42.709 2.53e-05 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Very significant! However, the individual effects are not significant in the presence of others.

Try removing Number (the predictor with the highest p-value).

> kyph2.gam = gam(Kyphosis ˜ s(Age) + s(Start),
family=binomial, data=kyphosis)
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> summary(kyph2.gam)

Null Deviance: 83.2345 on 80 degrees of freedom
Residual Deviance: 48.2989 on 71.9998 degrees of freedom
AIC: 66.2992

Number of Local Scoring Iterations: 10

DF for Terms and Chi-squares for Nonparametric Effects

Df Npar Df Npar Chisq P(Chi)
(Intercept) 1
s(Age) 1 3 6.0863 0.1075
s(Start) 1 3 7.7062 0.0525 .

Now Start is more significant, though not at the α = 0.05 level.

Can plot individual smooths with pointwise standard errors.
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Is the GAM with Age and Start better than the GLM with the same terms entered linearly?

> kyph2.glm = glm(Kyphosis ˜ Age + Start,
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family=binomial, data=kyphosis)
> anova(kyph2.glm,kyph2.gam,test="Chi")

Analysis of Deviance Table

Model 1: Kyphosis ˜ Age + Start
Model 2: Kyphosis ˜ s(Age) + s(Start)

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 78 65.299
2 72 48.299 6.0002 17 0.009284 **

Yes! The GAM fit is better (at the 0.05 significance level).

Linear predictors in GAMs:

• If you thought that in the above example x1 and x2 should be incorporated linearly, then
you would run

mygam.fit = gam(y ˜ x1 + x2 + w1 + w2, family=binomial, data=mydata)

To see the coefficients from this model, need to run summary.glm(mygam.fit).

• The above command would result in the same fit as the GLM equivalent:

myglm.fit = glm(y ˜ x1 + x2 + w1 + w2, family=binomial, data=mydata)

Predictions and mean estimation:

Syntax for prediction:

> kyph.new = data.frame(Age = c(84,85,86), Start=c(7,8,9))
> predict(kyph2.gam,kyph.new,type="response")

1 2 3
0.8528310 0.7985583 0.7018166

Standard errors of means are not directly obtainable in the gam library.

May have better luck with the mgcv R library.

Another use of GAMs: Transforming predictors for use in linear models.

Based on the plots of the estimated smooths, including quadratic terms in Age and Start appears
sensible.

R code for new model:
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> kyphosis$Age.sq = (kyphosis$Age - mean(kyphosis$Age))ˆ2
> kyphosis$Start.sq = (kyphosis$Start - mean(kyphosis$Start))ˆ2
> kyph3.glm = glm(Kyphosis ˜ Age + Start + Age.sq + Start.sq,

family=binomial, data=kyphosis)
> summary(kyph3.glm)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.0457770 2.1067753 2.395 0.01662 *
Age 0.0131293 0.0083513 1.572 0.11592
Start -0.5460689 0.1691165 -3.229 0.00124 **
Age.sq -0.0004092 0.0001955 -2.093 0.03634 *
Start.sq -0.0481986 0.0201136 -2.396 0.01656 *
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 83.234 on 80 degrees of freedom
Residual deviance: 51.298 on 76 degrees of freedom

Improvement in model with quadratic terms?

> anova(kyph2.glm,kyph3.glm,test="Chi")

Model 1: Kyphosis ˜ Age + Start
Model 2: Kyphosis ˜ Age + Start + Age.sq + Start.sq

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 78 65.299
2 76 51.298 2 14.002 0.0009112 ***

Huge improvement!

31


