
Lectures 4, 5, and 6:
Unsupervised learning, cluster analysis

Data Science 2
CS 109b, Stat 121b, AC 209b, E-109b

Mark Glickman Pavlos Protopapas

Reading: James et al., chapter 10.

Basics of unsupervised learning:

• Want to discover subgroups among variables or observations, but not in how they relate to
a response variable.

• Usually no precise goal of analysis. Often can be used as a descriptive tool.

• Often easier to obtain data without a response variable.

We will focus on principal components analysis (which you have seen in CS109a) and cluster
analysis.

Example applications:

• Collect breast cancer patients; want to find subgroups according to similar gene expressions.

• Obtain browser usage and purchasing history of online shoppers; want to find subgroups
that relate to their browsing and purchasing patterns.

• Want to group movies according to ratings assigned by movie viewers.

Difference in attitude between PCA and clustering:

Both are multivariate techniques, but with slightly different goals.

• PCA attempts to find a low-dimensional representation of the observations that explains
a large fraction of the variation. Often used for variable reduction (as you have seen in
CS109a), but can also be helpful for visualization in seeing groupings of data.

• Clustering instead seeks homogeneous subgroups among the observations.

Review of details of PCA:

Assume n observations are measured on p variables or features. Let Xij , for i = 1, . . . , n and
j = 1, . . . , p, be the value of feature j on observation i.
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Want to find uncorrelated vectors ϕ1,ϕ2, . . . ,ϕp with

ϕj = (ϕj1, ϕj2, . . . , ϕjp)

where
∥∥ϕj

∥∥2 =∑p
k=1 ϕ

2
jk = 1, and where

zi1 = ϕ11Xi1 + ϕ21Xi2 + · · ·+ ϕp1Xip

for i = 1, . . . , n has the largest possible sample variance, the

zi2 = ϕ12Xi1 + ϕ22Xi2 + · · ·+ ϕp2Xip

has the second largest possible sample variance, and so on.

This problem can be solved via a singular-value decomposition of X .

Some terminology:

The vector Z1 = (z11, . . . , zn1) is the first principal component, Z2 = (z12, . . . , zn2) is the second
principal component, and so on.

The j-th “loading vector” (ϕ1j , ϕ2j , . . . , ϕpj) defines a direction (i.e., a new coordinate axis) in
feature space along which the data contain the j-th most variation.

With this procedure, the principal components themselves are uncorrelated.

In the preceding figure, the population size and ad spending for 100 different cities are shown as
purple circles.

The green solid line indicates the first principal component direction, and the blue dashed line
indicates the second principal component direction.
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Usual goal of PCA in unsupervised learning: Produce a scatter plot of first two principal compo-
nents (PCs).

If most of the data variation is contained in first two PCs, then the scatter plot permits visualization
of potential data groupings.

Scaling of variables:

Consider a data set that looks like the following:

X1 X2 X3 X4
435201 0.04 0.21 0.35
839940 0.01 0.33 0.21
582048 0.23 0.19 0.25
390392 0.18 0.30 0.19
... ... ... ...
298989 0.15 0.23 0.27

Because basically all of the data variability is in the first feature, PCA will not reorient the data in
a meaningful way.

Usually want to ensure each variable has equal contribution to PCA.

Solution: Standardize the variables prior to computing distances.

Standardizing usually just involves transforming each Xij by

Xij − center(xj)

scale(xj)

where center(xj) can be the sample mean or median of the j-th variable, and scale(xj) can be the
sample standard deviation or mean absolute deviation of the j-th variable.

Main example: Violent crime rates by State

This data set reports arrests per 100,000 residents for assault, murder, and rape in each of the 50
US states in 1973. Also given is the percent of the population living in urban areas.

Summary:

> summary(USArrests)
Murder Assault UrbanPop Rape

Min. : 0.800 Min. : 45.0 Min. :32.00 Min. : 7.30
1st Qu.: 4.075 1st Qu.:109.0 1st Qu.:54.50 1st Qu.:15.07
Median : 7.250 Median :159.0 Median :66.00 Median :20.10
Mean : 7.788 Mean :170.8 Mean :65.54 Mean :21.23
3rd Qu.:11.250 3rd Qu.:249.0 3rd Qu.:77.75 3rd Qu.:26.18
Max. :17.400 Max. :337.0 Max. :91.00 Max. :46.00
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PCA biplot for scaled USArrests data
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Figure contains a scatter plot of the first two principal components.

• Each state is plotted according to its first two principal components.

• The red arrows indicate the first two PC loading vectors (axes on the top and right). For
example, the loading for Rape on the first PC is 0.543, and 0.167 on the second PC [the word
Rape is centered at (0.543, 0.167)].

• This figure is known as a “biplot” as it displays both the PC scores and the PC loadings.

PCA loadings:

PC1 PC2 PC3 PC4
Murder 0.5358995 -0.4181809 0.3412327 -0.64922780
Assault 0.5831836 -0.1879856 0.2681484 0.74340748
UrbanPop 0.2781909 0.8728062 0.3780158 -0.13387773
Rape 0.5434321 0.1673186 -0.8177779 -0.08902432

Are two principal components enough?

Idea: Plot the cumulative “proportion variance explained” (PVE) as a function of the number of
principal components.
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Assuming the columns of X have been centered and scaled, The PVE of the m-th principal com-
ponent is

PVEm =
1

p

n∑
i=1

z2im.
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USArrests − proportion variance explained

Proportion variance explained:

• About 86.8% of the variance is explained by the first two PCs.

• No principled method (such as cross-validation) to determine the number of PCs to retain.
Nothing to validate against.

• Sometimes it has been suggested to look for an “elbow” on the plot of proportion of vari-
ances (on the left) as the number of PCs to retain. But not relevant for visualization.

Cluster analysis outline:

• Inter-observation distances

• Partition-based clustering

• Hierarchical clustering
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• Soft clustering

• Diagnostics, and optimizing the number of clusters

• Plots, plots, plots and more plots

Clustering:

• Cluster analysis consist of techniques for finding subgroups or clusters in a multivariate data
set.

• Want to partition the data into distinct groups so that observations within each group are
similar to each other.

• Need to define concretely what it means for observations to be similar or different. This is
usually domain-specific.

A good portion of these notes are based on material appearing on www.sthda.com.

Simple example: Eruptions of Old Faithful

Data were collected on time between eruptions and the duration of eruptions for the Old Faithful
geyser at Yellowstone National Park.

> data("faithful")
> summary(faithful)

eruptions waiting
Min. :1.600 Min. :43.0
1st Qu.:2.163 1st Qu.:58.0
Median :4.000 Median :76.0
Mean :3.488 Mean :70.9
3rd Qu.:4.454 3rd Qu.:82.0
Max. :5.100 Max. :96.0
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Three types of approaches to clustering:

• Partitioning clustering - specify the number of clusters in advance, and then invoke an algo-
rithm to partition the data

• Hierarchical clustering - iteratively merge (or divide) the data typically one observation at a
time, and then decide on partitions afterward

• Soft clustering - assume each observation can simultaneously be a member of every cluster,
with different probabilities computed for cluster membership

Distances between observations: The building block of clustering

• The choice of distance measures is a critical step in clustering. The pairwise distance calcu-
lation can influence the shape of the clusters.

• Observations to be clustered can be non-standard (e.g., pictures, audio signals), so the pro-
cess of computing distances first followed by clustering can be an effective approach.

Assume n observations are measured on p variables or features. Let Xij , for i = 1, . . . , n and
j = 1, . . . , p, be the value of feature j on observation i.

Two common distance measures: For observations xi and xk (of length p)

dEuc(xi,xk) =
√∑p

j=1(Xij −Xkj)2 Euclidean distance (L2)

dMan(xi,xk) =
∑p

j=1 |Xij −Xkj | Manhattan distance (L1)

Other distance measures: Correlation-based measures

dCor(xi,xk) = 1−
∑p

j=1(Xij − x̄i)(Xkj − x̄k)√∑p
j=1(Xij − x̄i)2

∑p
j=1(Xkj − x̄k)2

Pearson correlation distance

dSpear(xi,xk) = 1−
∑p

j=1(Wij − w̄i)(Wkj − w̄k)√∑p
j=1(Wij − w̄i)2

∑p
j=1(Wkj − w̄k)2

Spearman correlation distance

where Wij are the ranks of Xij for feature j, and w̄i is the average of the ranks for observation i.

Correlation distances are often used for micro-array analyses.

Spearman correlation is used when outliers might be a concern in the data.

Gower distance:
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Some multivariate data consist of a mix of quantitative, ordinal and nominal data types.

The Gower distance between two multivariate observations with a mix of different types is com-
puted in the following way.

• Quantitative: Use (standardized) Manhattan distance

• Ordinal: Convert to ranks, then use (standardized) Manhattan distance

• Nominal: Record 0 if the category matches, and 1 if the categories do not match.

Sum the contribution of each variable to obtain a distance.

Distance and scaling: Same issue as with PCA

Reconsider the data set that looks like the following:

X1 X2 X3 X4
435201 0.04 0.21 0.35
839940 0.01 0.33 0.21
582048 0.23 0.19 0.25
390392 0.18 0.30 0.19
... ... ... ...
298989 0.15 0.23 0.27

The distance between any two observations is basically determined by feature 1. This is an unde-
sired consequence of variables having different scales.

Usually want to ensure each variable has equal contribution to the clustering algorithm, and there-
fore the distance computation.

Solution: Standardize the variables prior to computing distances.

Same procedure as with PCA.

Distances and clustering in R: Meet the lovely ladies

The R package cluster contains a number of helpful functions for computing distances and for
clustering.

The first is DAISY, which computes pairwise distances (or “dissimilarities”). By default, DAISY
standardizes variables if the data is all of numerical type.

We will see other cluster functions shortly.

Distances and violent crimes:

First few randomly chosen observations
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Murder Assault UrbanPop Rape
Iowa 2.2 56 57 11.3
Rhode Island 3.4 174 87 8.3
Maryland 11.3 300 67 27.8
Tennessee 13.2 188 59 26.9
Utah 3.2 120 80 22.9
Arizona 8.1 294 80 31.0

Now rescale the observations (subtract mean, divide by std dev):

> arrests.scaled = scale(arrests) # data in object ’arrests’

Murder Assault UrbanPop Rape
Iowa -0.95 -1.21 -0.62 -0.83
Rhode Island -0.72 0.06 1.58 -1.18
Maryland 0.82 1.42 0.12 1.08
Tennessee 1.19 0.21 -0.47 0.98
Utah -0.75 -0.52 1.07 0.51
Arizona 0.20 1.35 1.07 1.45

Euclidean distances on scaled observations:

> dist.eucl = daisy(arrests.scaled, metric = "euclidean")
> round(as.matrix(dist.eucl)[1:6, 1:6], 1)

Iowa Rhode Island Maryland Tennessee Utah Arizona
Iowa 0.0 2.6 3.8 3.1 2.3 4.0
Rhode Island 2.6 0.0 3.4 3.5 1.9 3.1
Maryland 3.8 3.4 0.0 1.4 2.7 1.2
Tennessee 3.1 3.5 1.4 0.0 2.6 2.2
Utah 2.3 1.9 2.7 2.6 0.0 2.3
Arizona 4.0 3.1 1.2 2.2 2.3 0.0
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Clustering via partitioning methods:

Basic idea - specify the number of clusters into which the data will be partitioned, and then per-
form computation to group data so that

1. observations within clusters are similar (low distances/dissimilarities), and

2. observations in different clusters are dissimilar (high distances/dissimilarities)

Separately can address the optimal number of clusters.

We will examine two partitioning algorithms:

• K-means clustering, where each cluster is represented by the centroid (mean of the data
points) in each cluster

• K-medioids clustering, where each cluster is represented by the medioid (one particular
observation in the “middle”) of each cluster.

K-means clustering:

Let C1, . . . , CK denote sets containing the indices of observations within the K clusters such that

1. C1 ∪ C2 ∪ · · · ∪ CK = {1, 2, . . . , n}, and

2. Ck ∩ Cℓ = ∅ for k ̸= ℓ.

Let

W (Ck) =
1

|Ck|
∑

i,i′∈Ck

p∑
j=1

(Xij −Xi′j)
2

be the within-cluster variation.

An interesting mathematical fact that we will use shortly is that

W (Ck) = 2
∑
i∈Ck

p∑
j=1

(Xij − x̄jk)
2

where x̄jk is the sample mean of the Xij for i ∈ Ck.

Goal of K-means clustering:

Determine C1, . . . , CK such that the expression

K∑
k=1

W (Ck)

is minimized.

K-means clustering algorithm:
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1. Randomly assign each observation to one of K clusters at random.

2. Repeat the following two steps until clusters do not change:

(a) For each cluster k, compute the cluster centroid x̄k (the variable-wise average of the
observations in cluster k).

(b) Given the k centroids, reassign all observations to clusters based on their closeness to
the centroids.

This procedure is implemented in the kmeans function within R.

❉�✁� ❙✁✂✄ ☎ ■✁✂✆�✁✝✞✟ ☎✠ ❙✁✂✄ ✡�

■✁✂✆�✁✝✞✟ ☎✠ ❙✁✂✄ ✡☛ ■✁✂✆�✁✝✞✟ ✡✠ ❙✁✂✄ ✡� ❋✝✟�☞ ✌✂✍✎☞✁✍

The bad and the good:

• Requires analyst to select K in advance.

13



• The algorithm is locally optimal, not globally optimal. As a consequence this means you can
get different clusterings depending on the starting cluster assignment.

Potential solutions:

• Can try various values of K and compare results. We will dig deeper into this approach
shortly.

• Can try different initial cluster assignments in parallel, and then choose the solution with
the best within-cluster sum of squared deviations.

✸�✁✂✄ �✸✷✂☎ �✸✷✂☎

�✸✷✂☎ �✸✷✂☎ ✸✆✁✂✄

Application to violent crimes data:

Choose 4 clusters – we will see later why 4 is reasonable.
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> arrests.km = kmeans(scale(USArrests), 4, nstart = 25)
# nstart is number of random starting assignments

> print(arrests.km)

K-means clustering with 4 clusters of sizes 13, 16, 13, 8

Cluster means:
Murder Assault UrbanPop Rape

1 -0.9615407 -1.1066010 -0.9301069 -0.96676331
2 -0.4894375 -0.3826001 0.5758298 -0.26165379
3 0.6950701 1.0394414 0.7226370 1.27693964
4 1.4118898 0.8743346 -0.8145211 0.01927104

Clustering vector:
Alabama Alaska Arizona Arkansas California

4 3 3 4 3
Colorado Connecticut Delaware Florida Georgia

3 2 2 3 4
Hawaii Idaho Illinois Indiana Iowa

2 1 3 2 1
Kansas Kentucky Louisiana Maine Maryland

2 1 4 1 3
Massachusetts Michigan Minnesota Mississippi Missouri

2 3 1 4 3
Montana Nebraska Nevada New Hampshire New Jersey

1 1 3 1 2
New Mexico New York North Carolina North Dakota Ohio

3 3 4 1 2
Oklahoma Oregon Pennsylvania Rhode Island South Carolina

2 2 2 2 4
South Dakota Tennessee Texas Utah Vermont

1 4 3 2 1
Virginia Washington West Virginia Wisconsin Wyoming

2 2 1 1 2

Within cluster sum of squares by cluster:
[1] 11.952463 16.212213 19.922437 8.316061
(between_SS / total_SS = 71.2 %)

Can compute the (unscaled) mean of each variable within cluster:

> aggregate(USArrests, by=list(cluster=arrests.km$cluster), mean)

cluster Murder Assault UrbanPop Rape
1 1 3.60000 78.53846 52.07692 12.17692
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2 2 5.65625 138.87500 73.87500 18.78125
3 3 10.81538 257.38462 76.00000 33.19231
4 4 13.93750 243.62500 53.75000 21.41250
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K−means clustering of violent crime data

Alternative to K-means: Partitioning around medioids

Also known as PAM.

Goal of PAM: Search for K representative observations that are to be the medioids of clusters.

• These K observations are chosen to minimize the sum of the dissimilarities/distances of
observations to their closest representative observation.

• The sum of the dissimilarities is usually calculated using Manhattan (L1) distances.

As with K-means, can perform the clustering based on the scaled data, or based on the pairwise
distances (though PAM assumes L1 distances)

Unlike K-means, PAM is robust to outliers.

The algorithm for PAM is computationally intensive. For large data sets, PAM may require too
much memory of computation time. Instead, use CLARA (“clustering large applications”).
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Reference for clustering algorithm: Chapter 2 of Rousseeuw, P. J., & Kaufman, L. (1990). Finding
Groups in Data. Wiley Online Library.

Application to violent crimes data:

> arrests.pam = pam(scale(USArrests), k=4)
> arrests.pam
Medoids:

ID Murder Assault UrbanPop Rape
Alabama 1 1.2425641 0.7828393 -0.5209066 -0.003416473
Michigan 22 0.9900104 1.0108275 0.5844655 1.480613993
Oklahoma 36 -0.2727580 -0.2371077 0.1699510 -0.131534211
New Hampshire 29 -1.3059321 -1.3650491 -0.6590781 -1.252564419

Clustering vector:
Alabama Alaska Arizona Arkansas California

1 2 2 1 2
Colorado Connecticut Delaware Florida Georgia

2 3 3 2 1
...
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PAM clustering of violent crime data

Silhouette plot: A diagnostic for PAM (and other) clustering
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Once a clustering has been determined, let

ai = average dissimilarity between observation i and the other points in the cluster to which i
belongs

bi = average dissimilarity between observation i and the other points in the next closest cluster
to observation i

Let
si =

bi − ai
max(ai, bi)

be the silhouette for observation i.

Interpretation:

• Observations with si ≈ 1 are well-clustered

• Observations with si ≈ 0 lie between two clusters

• Observations with si < 0 are probably in the wrong cluster.
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Silhouette plot for PAM clustering

A few observations may be in the wrong cluster!
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> # Compute silhouette
> sil = silhouette(arrests.pam)[, 1:3]
> # Objects with negative silhouette
> neg_sil_index = which(sil[, ’sil_width’] < 0)
> print(sil[neg_sil_index, , drop = FALSE])

cluster neighbor sil_width
Nebraska 3 4 -0.04034739
Montana 3 4 -0.18266793

Check cluster plot to confirm.

Hierarchical clustering:

• K-means clustering requires pre-specifying the number of clusters K.

(though we will come back to address this point)

• Hierarchical clustering does not require committing to a particular number of clusters, K.

• Two types of hierarchical clustering:

– Agglomerative clustering (bottom-up approach).

– Divisive clustering (top-down approach).

Can summarize hierarchical clustering in a dendrogram

a,b,c,d,e

a,b

a

b

c

d

e

c,d,e

d,e

0.10 0.05 0.03 0.02 0.00 Diameter

Agglomerative clustering:
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The basic algorithm:

• Each observation starts as its own cluster.

• At each step of the algorithm, two clusters that are most “similar (to be described shortly)
are combined into a new larger cluster.

• This process of combining clusters is repeated until all observations are members of one
single large cluster.

The procedure in the cluster R library is called AGNES (agglomerative nesting).

Particularly well-suited at identifying small clusters.

Agglomerative clustering: How do we measure the dissimilarity between two clusters?

A few common approaches:

Complete (or maximum) linkage clustering: For two clusters, determine the maximum dissimi-
larity between any observation in the first cluster and any observation in the second cluster.

Single linkage clustering: For two cluster, determine the minimum dissimilarity between any
observation in the first cluster and any observation in the second cluster.

Average linkage clustering: Compute all pairwise dissimilarities between observations in the
first and second cluster, and calculate the average.

Another popular approach is Ward’s method.

• Instead of joining two clusters based on their distances, use information about the variance
of observations within clusters.

• Specifically, at each step, join two clusters whose merged cluster has the smallest within-
cluster sum of squared distances.

Other aggregation approaches are possible.

Divisive clustering:

The basic algorithm:

• Each observation starts as a member of one large cluster.

• At each step of the algorithm, the cluster with the greatest heterogeneity is divided into two
clusters.

• This process of dividing clusters is repeated until all observations are members of their own
cluster.
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The procedure in the cluster R library is called DIANA (divisive analysis).

Particularly good at identifying large clusters, but less commonly used than agglomerative clus-
tering.

Steps for divisive clustering in DIANA:

• Identify the cluster with the largest diameter, i.e., largest dissimilarity between two mem-
bers.

• Find the observation within this cluster that has the largest average dissimilarity with the
other cluster members; this observation starts the formation of a “splinter” group.

• Iteratively reassign observations from the original cluster to the splinter cluster if they are
closer to the splinter group.
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Some additional graphical summaries:

If we identify the optimal number of clusters to be 4 (which we will investigate shortly), we can

• modify a dendrogram to highlight the clusters

• produce a principal components plot of points with the clusters drawn
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Choosing the optimal number of clusters:

No single compelling way to choose clusters, but we will explore two types of methods.

• Direct methods that involve optimizing a particular criterion (elbow and silhouette meth-
ods)

• Testing methods that evaluate evidence against a null hypothesis (gap statistic)

Elbow method: A little squishy, but useful

As previously, let W (Ck) be the within-cluster sum of squared distances between all pairs for
cluster k for a particular clustering, and let

TK =

K∑
k=1

W (Ck)

be the total within-cluster variation for the clustering with K clusters.

The method:

1. For the particular clustering method, let K vary over a range of values (say 1 to 10).

2. Compute TK for each K.

3. Plot TK against K, and look for a clear bend (“knee”) in the graph.

The value of K where the bend occurs is considered the appropriate number of clusters.
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Average silhouette method: Similar construction to the elbow method

1. Compute clustering algorithm for different numbers of clusters K, varying K from (say) 1
to 10.

2. For each K, calculate the average silhouette

SK =
1

n

n∑
i=1

si

across all observations.

3. Plot SK against K.

The value of K where SK is maximized is considered the appropriate number of clusters.
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Comments:

• Elbow method suggests four clusters for both K-means and PAM; average silhouette method
suggests two clusters

• Computation for each method are different enough that inconsistent results are not uncom-
mon

• Both approaches measure global clustering characteristics only, and are informal (and some-
what ad hoc) approaches

Gap statistic:

Due to Tibshirani et al., (JRSS-B, 2001).

Idea: For a particular choice of K clusters, compare the total within cluster variation to the
expected within-cluster variation under the assumption that the data have no obvious clustering
(i.e., randomly distributed).

The gap statistic in essence detects whether the data clustered into K groups is significantly better
than if they were generated at random.

Algorithm for computing Gap statistic:

1. Cluster the data at varying number of total clusters K, say from 1 to 10. Let TK be the total
within-cluster sum of squared distances.

2. Generate B reference data sets of size n, with the simulated values of variable j uniformly
generated over the range of the observed variable xj . Typically B = 500.

3. For each generated data set b = 1, . . . , B, perform the clustering for each K (from 1 to 10, say).
Compute the total within-cluster sum of squared distances T (b)

k .

4. Compute the Gap statistic

Gap(K) =

(
1

B

B∑
b=1

log(T
(b)
K )

)
− log(TK).

5. Let w̄ = 1
B

∑B
b=1 log(T

(b)
K ). Compute the standard deviation

sd(K) =

√√√√ 1

B

B∑
b=1

(
log(T

(b)
K )− w̄

)2
.

Define sK = sd(K)
√

1 + 1/B.

6. Finally, choose the number of clusters as the smallest K such that

Gap(K) ≥ Gap(K + 1)− sK+1.
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R computation for Gap statistic (K-means): Use d.power=2 in clusGap.

> gapstat = clusGap(scale(USArrests),FUN=kmeans,nstart=25,
d.power=2,K.max=10,B=500)

> print(gapstat, method="Tibs2001SEmax")
Clustering Gap statistic ["clusGap"] from call:
clusGap(x = scale(USArrests), FUNcluster = kmeans, K.max = 10,
B = 500, d.power = 2, nstart = 25)
B=500 simulated reference sets, k = 1..10; spaceH0="scaledPCA"
--> Number of clusters (method ’Tibs2001SEmax’, SE.factor=1): 2

logW E.logW gap SE.sim
[1,] 4.584967 4.907504 0.3225366 0.07874126
[2,] 3.940245 4.365505 0.4252604 0.06991504
[3,] 3.667698 4.115800 0.4481020 0.07074145
[4,] 3.339378 3.906337 0.5669584 0.07121078
[5,] 3.197534 3.730479 0.5329454 0.07410821
[6,] 3.064162 3.577725 0.5135632 0.07414276
[7,] 2.951196 3.441636 0.4904401 0.07556430
[8,] 2.836404 3.317880 0.4814760 0.07750226
[9,] 2.703637 3.204488 0.5008511 0.07809635
[10,] 2.574965 3.099201 0.5242364 0.07998386
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R computation for Gap statistic (PAM):

> gapstat = clusGap(scale(USArrests),FUN=pam,d.power=2,K.max=10,B=500)
> print(gapstat, method="Tibs2001SEmax")
Clustering Gap statistic ["clusGap"] from call:
clusGap(x = scale(USArrests), FUNcluster = pam, K.max = 10, B = 500,

d.power = 2)
B=500 simulated reference sets, k = 1..10; spaceH0="scaledPCA"
--> Number of clusters (method ’Tibs2001SEmax’, SE.factor=1): 2

logW E.logW gap SE.sim
[1,] 4.584967 4.905601 0.3206337 0.08009264
[2,] 3.940245 4.392629 0.4523840 0.08510875
[3,] 3.680220 4.166071 0.4858506 0.07873542
[4,] 3.364196 3.963686 0.5994908 0.08230313
[5,] 3.210919 3.797018 0.5860995 0.08428397
[6,] 3.116075 3.641724 0.5256496 0.08785362
[7,] 3.046182 3.510214 0.4640323 0.08936437
[8,] 2.942032 3.388051 0.4460185 0.09095425
[9,] 2.814149 3.274152 0.4600037 0.09152990
[10,] 2.699437 3.172174 0.4727366 0.09351808
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Comments:

• Both K-means and PAM clustering are optimized for K = 2 based on the Gap statistic.

• This is a more principled approach to choosing cluster sizes, though clearly different conclu-
sions can be reached based on different clustering approaches.

• Lots of measures beyond the ones presented for determining the best number of clusters.
How can we choose which measure to use?

Why bother choosing: Can summarize the distribution of cluster sizes across measures!

The NbClust function in the NbClust R library offers 30 different commonly used measures.

Can plot histogram of the optimal number of clusters across the different measures.

For the violent crimes data,

• Seems that K = 2 is the majority choice

• K = 4 is a strong second place finisher
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Introduction to soft clustering:

Basic idea: Rather than assigning each observation to a distinct cluster, determine probabilities or
weights for each observation being a member of a cluster.

We will take a quick look at

• Fuzzy clustering

• Model-based clustering

Fuzzy clustering: FANNY (in the cluster R library)

FANNY = Fuzzy Analysis Clustering

1. Specify the number of clusters K

2. Determine the membership weights uik for observation i belonging to cluster k = 1, . . . ,K

(where
∑K

k=1 uik = 1) that minimize

TF (K) =
K∑
k=1

(∑
i,i′ u

r
iku

r
i′kdii′

2
∑n

i=1 u
r
ik

)
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where dii′ is the dissimilarity between observations i and i′, and the given exponent r (a
recommended choice is r = 2) is the “fuzzifier.”

FANNY analysis:

> arrests.fanny = fanny(scale(USArrests),k=4)
> head(round(arrests.fanny$membership,3),15)

[,1] [,2] [,3] [,4]
Alabama 0.335 0.196 0.134 0.335
Alaska 0.307 0.215 0.172 0.307
Arizona 0.342 0.192 0.124 0.342
Arkansas 0.253 0.274 0.221 0.253
California 0.322 0.208 0.147 0.322
Colorado 0.322 0.215 0.140 0.322
Connecticut 0.171 0.333 0.326 0.171
Delaware 0.256 0.297 0.192 0.256
Florida 0.341 0.185 0.133 0.341
Georgia 0.329 0.197 0.144 0.329
Hawaii 0.203 0.332 0.263 0.203
Idaho 0.128 0.245 0.498 0.128
Illinois 0.344 0.195 0.116 0.344
Indiana 0.180 0.402 0.237 0.180
Iowa 0.117 0.218 0.548 0.117
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Model-based clustering: Mixture models

• This approach to clustering relies on probability modeling

• Assume the number of clusters (mixture components) is known to be K.

• A common approach is to assume the data come from a mixture of K multivariate normal
distributions with mean vector µk and covariance matrix Σk for mixture component k, with
mixture weights wk.

• The probability density for an observation is given by

f(x) = w1φ(x|µ1,Σ1) + · · ·+ wKφ(x|µK ,ΣK).

Computational issues:

• The model parameters (wk, µk, Σk) can be estimated using the EM algorithm, which is an
iterative optimization algorithm developed by faculty in the Harvard Statistics department.

• Can initialize mixture component assignments using a partitioning or hierarchical clustering
algorithm.

• Need to specify assumptions about the covariance matrices: volume, shape and orientation.

• Can select optimum K through the BIC statistic (or other information-based measures).
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Example: Old Faithful geyser eruptions (duration, time between eruptions)

> library(mclust)
> faithful.mc = Mclust(faithful)
> summary(faithful.mc)
----------------------------------------------------
Gaussian finite mixture model fitted by EM algorithm
----------------------------------------------------

Mclust EEE (ellipsoidal, equal volume, shape and orientation)
model with 3 components:

log.likelihood n df BIC ICL
-1126.361 272 11 -2314.386 -2360.865

Clustering table:
1 2 3

130 97 45

> # optimal number of clusters
> faithful.mc$G
[1] 3

> # estimated probability for an observation to be
in each cluster

> print(head(round(faithful.mc$z,3)))
[,1] [,2] [,3]

1 0.022 0.000 0.978
2 0.000 1.000 0.000
3 0.003 0.000 0.997
4 0.000 1.000 0.000
5 0.984 0.000 0.016
6 0.000 0.998 0.002
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One final clustering algorithm:

Imagine trying to cluster the following set of observations.
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DBSCAN: Density-based clustering algorithm (Ester et al., 1996, KDD-96)

Unlike previous clustering algorithms, DBSCAN

• can find any shape of clusters

• identifies observations that do not belong to clusters as outliers

• does not require specifying the number of clusters (like hierarchical clustering)

• can be used for predicting cluster membership for new data

DBSCAN algorithm: Identify dense regions of observations

Need to specify two parameters of the algorithm

1. ϵ: the radius of a neighborhood around an observation

2. MinPts: the minimum number of points within an ϵ radius of an observation to be consid-
ered a “core” point

Example of core observation with MinPts= 6.

x e

Three types of points:
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• Core points - observations with MinPts total observations within an ϵ radius

• Border points - observations that are not core points, but are within ϵ of a core point

• Noise points - everything else

In the following, x is a core point, y is a border point, and z is a noise point.

x

y

z

Two terms:

• Density-reachable: Point A is density-reachable from point B if there is a set of core points
leading from B to A.

• Density-connected: Two points A and B are density-connected if there is a core point C such
that both A and B are density-reachable from C.

A density-based cluster is defined as a group of density-connected points.

Choosing ϵ:

• Compute the k-th nearest neighbor distance for each point.

• Plot the distances in sorted order.
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• Look for a bend (the “knee”) in the plot, and use the distance at the knee as the choice of ϵ.

Refer to Ester et al. for the algorithm details, as well as the optimizing the choice of ϵ.
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Application to violent crime data:

• Chose ϵ = 1.4 on standardized data based on knee plot, and MinPts= 4.

• Resulted in 1 density-based cluster, and 1 outlier.
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Now for something really different: Chernoff faces

An unusual graphical method to cluster data:

• Each observation is a face

• Each variable is a facial feature

• Invented mostly as a joke!

Car data: Data on model year 1993 cars

> summary(car.mat)
Weight MPG.city MPG.highway Horsepower EngineSize

Min. :1695 Min. :15.00 Min. :20.00 Min. : 55.0 Min. :1.000
1st Qu.:2620 1st Qu.:18.00 1st Qu.:26.00 1st Qu.:103.0 1st Qu.:1.800
Median :3040 Median :21.00 Median :28.00 Median :140.0 Median :2.400
Mean :3073 Mean :22.37 Mean :29.09 Mean :143.8 Mean :2.668
3rd Qu.:3525 3rd Qu.:25.00 3rd Qu.:31.00 3rd Qu.:170.0 3rd Qu.:3.300
Max. :4105 Max. :46.00 Max. :50.00 Max. :300.0 Max. :5.700

Min.Price Price Max.Price RPM Rev.per.mile
Min. : 6.70 Min. : 7.40 Min. : 7.9 Min. :3800 Min. :1320
1st Qu.:10.80 1st Qu.:12.20 1st Qu.:14.7 1st Qu.:4800 1st Qu.:1985
Median :14.70 Median :17.70 Median :19.6 Median :5200 Median :2340
Mean :17.13 Mean :19.51 Mean :21.9 Mean :5281 Mean :2332
3rd Qu.:20.30 3rd Qu.:23.30 3rd Qu.:25.3 3rd Qu.:5750 3rd Qu.:2565
Max. :45.40 Max. :61.90 Max. :80.0 Max. :6500 Max. :3755
Fuel.tank.capacity Passengers Length Wheelbase
Min. : 9.20 Min. :2.000 Min. :141.0 Min. : 90.0
1st Qu.:14.50 1st Qu.:4.000 1st Qu.:174.0 1st Qu.: 98.0
Median :16.40 Median :5.000 Median :183.0 Median :103.0
Mean :16.66 Mean :5.086 Mean :183.2 Mean :103.9
3rd Qu.:18.80 3rd Qu.:6.000 3rd Qu.:192.0 3rd Qu.:110.0
Max. :27.00 Max. :8.000 Max. :219.0 Max. :119.0

Example Chernoff faces: Car data

• Width of face – vehicle weight

• Height of face split – City MPG

• Length of face – Highway MPG

• Width of top half of face – Horsepower

• Width of bottom half of face – Engine size

Other facial features: Length of nose, curvature of mouth, size of eyes, angle of eyebrows, etc.
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Acura Integra Acura Legend Audi 90 Audi 100 BMW 535i Buick Century Buick LeSabre Buick Roadmaster Buick Riviera Cadillac DeVille

Cadillac Seville Chevrolet Cavalier Chevrolet Corsica Chevrolet Camaro Chevrolet Lumina Chevrolet Lumina_APV Chevrolet Astro Chevrolet Caprice Chevrolet Corvette Chrylser Concorde

Chrysler LeBaron Chrysler Imperial Dodge Colt Dodge Shadow Dodge Spirit Dodge Caravan Dodge Dynasty Dodge Stealth Eagle Summit Eagle Vision

Ford Festiva Ford Escort Ford Tempo Ford Mustang Ford Probe Ford Aerostar Ford Taurus Ford Crown_Victoria Geo Metro Geo Storm
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