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Bayesian statistics:

• Foundations and philosophy of Bayesian statistics

• Recipe to performing a Bayesian analysis

• Advantages and disadvantages to the Bayesian paradigm

• Modern approach to Bayesian statistics

• Example analyses

Are you a Bayesian?

In the following situations, what would you conclude about the (future) probability of success?

1. A music expert claims he can identify whether a piece of music was written by Mozart versus
Haydn.

In 10 trials, the expert identifies the composer correctly 10 times.

2. A drunken friend claims he can predict the result of coin flips.

In 10 trials, he answers correctly 10 times.

3. A coffee connoisseur claims to be able to tell the difference between whether cream is poured
in coffee first, or vice versa.
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In 10 trials, the person answers correctly 10 times.

If you drew different conclusions in all three situations, then you are likely already Bayesian.

• One key feature of Bayesian statistics is that it is a “learning paradigm.” You cannot (and
should not) ignore knowledge you currently have in summarizing conclusions based on
data.

• In the three example situations, we may have had strong prior beliefs that influenced our
conclusions about the data. In classical settings, it is not straightforward to incorporate such
beliefs.

• Bayesian statistics provides a formal way to incorporate prior information into an analysis.

Question:

What is the underlying difference between classical and Bayesian statistics?

Answer:

The definition of probability.

Example: Flip a fair coin; the probability the coin lands heads is 1
2 .

What does “the probability is 1
2” mean?

Classical interpretation:

On repeated flips of the coin, the coin lands heads 1
2 of the time in the long run.

Frequency definition of probability: Probability of an event is its long-run frequency of occur-
rence.

This definition is useful for describing the likelihood of potentially observable data.

Bayesian interpretation:

There is an equal probability of heads and tails due to the symmetry of the coin, so that 1
2 is an

assessment of my belief that the coin will land heads.

Subjective definition of probability: Probability of an event is one’s degree of belief that the event
will occur (1 means that it is certain to occur, and 0 means that it is certain not to occur).

This definition is useful for quantifying beliefs about non-data events (but also data events).

Classical statistics, which is founded on the frequency definition of probability, is usually called
Frequentist statistics. Much of the theory developed by Jerzy Neyman in early 1900s.

Implications to a theory of statistical inference:
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• Statistics founded on the Frequentist definition of probability can only assign probabilities
to future data or potentially observable quantities.

• Statistics founded on the subjective definition of probability can consider probabilities of
values of unknown parameters (as well as values of potentially observable quantities).

Variation of coin flipping:

Suppose yesterday, at 5:00pm, standing at home, I flipped a fair coin and recorded whether it
landed heads.

What is the probability it landed heads?

Answer:

If you are a Bayesian, the answer is unequivocally 1
2 .

If you are a Frequentist, you are in a bit of a bind because I am not asking about a long-run
frequency – I am asking about what happened specifically at 5:00pm yesterday.

A Frequentist would need to say either

• that the probability is either 0 or 1, but would not know which is correct, or

• need to resort to frequencies of events across different universes within a multiverse!

Because the goal of statistical inference is to infer unknown quantities from data, Frequentists
often find themselves in awkward philosophical quandaries.

Example: Confidence intervals

Suppose y1, . . . , yn are a random sample of n values from N(µ, σ2).

Formula for a 95% confidence interval is

(ȳ − t∗n−1

s√
n
, ȳ + t∗n−1

s√
n
).

where ȳ is the sample mean, s is the sample standard deviation, and t∗n−1 is a critical value from
the t-distribution on n− 1 degrees of freedom.

Before observing data, 95% of the time these endpoints will contain µ, the value we are trying to
infer.

• Notice that the Frequentist definition applies to characterizing the procedure. That is, if we
apply the procedure for determining 95% confidence intervals according to the formula, we
will be correct 95% of the time.

• Once data are observed, the coverage probability is either 0 or 1.
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Here is a dialog I once heard between a Frequentist and his employer where the Frequentist tried
to explain confidence intervals.

A Conversation between a Frequentist Consultant and his insightful Employer

Employer: So, do you have the results of the drug trial analyses?

Frequentist: Yes, I do.

Employer: Let’s hear it.

Frequentist: Okay. I computed a 95% confidence interval for the average decrease in diastolic
blood pressure from taking the medication, and I got (10.18, 14.92) mm Hg.

Employer: Great! What does that mean?

Frequentist: It means we should be 95% “confident” that the true mean decrease is between 10.18
and 14.92.

Employer: Oh, you mean that there is a 95% probability that the mean decrease is between 10.18
and 14.92 mm Hg. Got it!

Frequentist: Well, not exactly.

Employer: Huh?

Frequentist: It means that if we were to compute “95% confidence intervals” from many data
samples, about 95% of them would contain the true mean decrease in blood pressure.

Employer: Um... But what about this data set?

Frequentist: I don’t know.

Employer: What do you mean you don’t know?

Frequentist: All I know is that in 95% of the analyses I perform, my 95% confidence intervals
contain the parameter I’m estimating.

Employer: But I’ve hired you to draw conclusions from this data set!

Frequentist: Well, you can hope that your data set is “typical.”

Employer: What are you talking about? What does that have to do with 95%?

Frequentist: If your data set was one of the 95% “typical” data sets you would observe, then the
confidence interval would contain the mean decrease in blood pressure.

Employer: But what does that tell me about the confidence interval you reported to me?

Frequentist: Nothing.
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Employer: Nothing?

Frequentist: Can I get my consulting fee? I have to go.

Employer: No way! You’re FIRED!!!

Bayesians compute and report intervals as well, but they have different meaning because they are
based on subjective probability.

• For example, a Bayesian can compute an interval in which there is 95% probability (as a
degree of belief) that µ is in the interval.

• Note that in this case the endpoints of the interval are values computed from data.

Here’s a conversation between the same employer, but with a Bayesian.

A Conversation between a Bayesian Consultant and his insightful Employer

Employer: So, do you have the results of the drug trial analyses?

Bayesian: Yes, I do.

Employer: Let’s hear it.

Bayesian: Okay. I computed a 95% central posterior interval for the average decrease in diastolic
blood pressure from taking the medication, and I got (10.04, 14.83) mm Hg.

Employer: Great! What does that mean?

Bayesian: It means we should be 95% certain that the true mean decrease is between 10.04 and
14.83 mm Hg.

Employer: Oh, you mean that there is a 95% probability that the mean decrease is between 10.04
and 14.83. Got it!

Bayesian: Exactly!

THE END!
A p-value example: (Lindley and Philips, 1976)

A coin has a probability θ of landing heads. Want to test whether the coin is fair (versus the
alternative that the coin lands heads with greater probability), that is, whether θ = 1

2 .

Ho : θ = 1
2

Ha : θ > 1
2
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Will test at the α = 0.05 significance level.

The coin is flipped 12 times independently, and we observe 9 heads and 3 tails.

H, T, H, H, H, H, H, H, T, H, H, T

Want to compute a p-value and compare to 0.05.

• If p ≤ 0.05, then we reject Ho in favor of Ha.

• If p > 0.05, then we do not have enough evidence to reject Ho.

Out of 12 independent coin tosses, let X be the number times the coin lands heads. So X follows
a Binomial distribution.

p-value = P
(
X ≥ 9

∣∣∣∣ θ =
1

2

)
=

12∑
x=9

(
12

x

)(
1

2

)x(
1− 1

2

)12−x

= 0.075 .

Because p-value > 0.05, we cannot reject Ho at the 0.05 significance level.

But there is something I didn’t tell you...

The way in which I obtained 9 heads and 3 tails was that I flipped the coins until the third tail
appeared.

H, T, H, H, H, H, H, H, T, H, H, T

Let Y be the number of times I flip the coin until the third tail appears. Then Y has a negative-
binomial distribution with

P(Y = y | θ) =
(
y − 1

2

)
θy−3(1− θ)3.

The p-value assuming θ = 1
2 under Ho is

p-value = P
(
Y ≥ 12

∣∣∣∣ θ =
1

2

)
=

∞∑
y=12

(
y − 1

2

)(
1

2

)y−3(
1− 1

2

)3

= 0.0325 .

With this p-value, we can reject Ho.

What just happened?

• In each case, even though the data and coin flip model were identical, we obtained different
conclusions.
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• The difference came about in what was considered “as or more extreme” than the observed
data.

• Thus, in the classical approach, because the conclusions of a hypothesis test depend on data
that we do not observe, strange results can occasionally occur.

This does not happen in Bayesian statistical inference.

Simple but practical example: Back to the coffee connoisseur

• Suppose p is the probability the coffee connoisseur correctly guesses whether cream is poured
in coffee first, or vice versa.

• We observed 10 correct guesses out of 10 tries.

• The classical point estimate of p is the sample proportion, that is p̂ = 10/10 = 1 (with a
standard error of 0).

This means that our best guess is that the coffee connoisseur is 100% accurate.

How can that be?

Bayes theorem (or Bayes Rule):

Before introducing the Bayesian approach to statistics, it is worthwhile reviewing Bayes theorem
for discrete events.

Suppose A and B are two events where A temporally or causally comes before B.

Example: A is the event that you attend this lecture or watch the video, and B is the event that
you obtain a perfect score on your Bayesian homework.

The use of Bayes Rule is to determine the probability of a “past” or “cause” event, given a current
event has happened.

More formally, we use Bayes Rule to obtain P(A|B). This is a “detection” probability – given what
we now know (B), what is the probability of a suspected event in the past (A)?

This is given by Bayes Rule:

Pr(A|B) =
Pr(A) Pr(B|A)

Pr(A) Pr(B|A) + Pr(Ac) Pr(B|Ac)

Usually Pr(A), Pr(B|A) and Pr(B|Ac) can be determined easily.

Example: Two coins, one fair and one double-headed, are placed in a box. One coin is chosen at
random, and flipped. If it lands heads, what is the probability it is the double-headed coin?

Answer: Let

A = The double-headed coin is selected

B = The coin selected lands heads
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Can write down

Pr(A) = 1/2

Pr(B|A) = 1

Pr(B|Ac) = 1/2

So, by Bayes Rule,

Pr(A|B) =
Pr(A) Pr(B|A)

Pr(A) Pr(B|A) + Pr(Ac) Pr(B|Ac)

=
(1/2)(1)

(1/2)(1) + (1/2)(1/2)
=

2

3

The probability that the double-headed coin was selected (the past event) given that the coin
landed heads (the current event) is 2

3 .

Application of Bayes Rule: Naive Bayes Spam Filter

Goal: Want to develop a way to assess the probability a new incoming e-mail is spam.

Assumptions:

• You have a large collection of e-mails to develop your method. From these e-mails, you can
easily characterize as “spam” versus “not spam.”

• You have a program that can search for occurrences of words in your e-mails.

Suppose we identify 10 word phrases common in spam. For example,

• earn money, click to remove, visit our website, stay in shape, act now, free membership

Let Wj be the event that the j-th phrase appears in the e-mail. Let W c
j (complement of Wj) denote

the event that the j-th phrase is not in the e-mail.

Assume that an e-mail contains the 1st and 10th words, but none of the others. Want to compute
or estimate

Pr(spam | W1,W
c
2 , . . . ,W

c
9 ,W10).

By Bayes Rule,

Pr(spam | W1,W
c
2 , . . . ,W

c
9 ,W10) =

Pr(W1,W
c
2 , . . . ,W

c
9 ,W10 | spam) Pr(spam)

Pr(W1,W c
2 , . . . ,W

c
9 ,W10 | spam) Pr(spam) + Pr(W1,W c

2 , . . . ,W
c
9 ,W10 | spamc) Pr(spamc)

.
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We can empirically estimate Pr(spam) from the sample proportion of spam you receive.

Also, Pr(spamc) = 1− Pr(spam) .

Estimating
Pr(W1,W

c
2 , . . . ,W

c
9 ,W10 | spam)

and
Pr(W1,W

c
2 , . . . ,W

c
9 ,W10 | spamc)

can also in principle be accomplished empirically by finding the sample proportion of e-mails in
your development sample with the 1st and 10th phrase in the note, but none of the others.

Problem: May be very few e-mails with exactly the 1st and 10th phrase in the note.

This problem is even worse if we considered, say, 100 spam phrases.

Possible solution: Naive Bayes

Use the following approximation:

Pr(W1,W
c
2 , . . . ,W

c
9 ,W10 | spam) ≈

Pr(W1|spam) Pr(W c
2 |spam) · · ·Pr(W c

9 |spam) Pr(W10|spam)

Pr(W1,W
c
2 , . . . ,W

c
9 ,W10 | spamc) ≈

Pr(W1|spamc) Pr(W c
2 |spamc) · · ·Pr(W c

9 |spamc) Pr(W10|spamc)

This approximation assumes that the 10 phrase occurrences are conditionally independent given the
spam status of each e-mail.

This is a huge simplification because it ignores the possibility that some spam phrases tend to
travel together.

But this approach has the following advantages:

• Estimates of Pr(Wj |spam) and Pr(Wj |spamc) are likely to be accurate.

• Easy to compute.

• If the occurrences of pairs, triples, etc., of spam phrases are not very highly dependent,
assuming conditional independence can give accurate estimates of combinations of phrases
that are not observed in the development sample of e-mails.

See http://homes.cs.washington.edu/˜pedrod/papers/cacm12.pdf to see how Naive
Bayes can outperform state-of-the-art learner.

Can implement Naive Bayes using the naiveBayes function in the e1071 R library.

Naive Bayes for classification via bag-of-words:
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Suppose N text documents can be classified into K (known) categories, e.g., by author.

For document i, suppose we count the number of occurrences of d pre-specified words. Often for
text analysis, these words are chosen to be “filler” words.

Let Ci, i = 1, . . . , N be the document category taking on values 1, . . . ,K, and let wi be the vector
of counts of the pre-specified words in document i, with

wi = (wi1, wi2, . . . , wid).

We want to model Pr(Ci = k|w = wi), that is, the probability of classifying document i as having
author k given observed word frequencies w.

Naive Bayes approach: (assumes Pr(w|Ci = k) is multinomial)

Pr(Ci = k|w = wi) =
Pr(Ci = k) Pr(w = wi|Ci = k)∑K
k=1 Pr(Ci = k) Pr(w = wi|Ci = k)

≈
Pr(Ci = k)

∏d
j=1 Pr(wj = wij |Ci = k)∑K

k=1 Pr(Ci = k)
∏d

j=1 Pr(wj = wij |Ci = k)

=
Pr(Ci = k)

(
ni
wi

)∏d
j=1 θ

wij

jk∑K
k=1 Pr(Ci = k)

(
ni
wi

)∏d
j=1 θ

wij

jk

∝ Pr(Ci = k)

d∏
j=1

θ
wij

jk

Estimating each component:

• Pr(Ci = k) for each k can be estimated as the raw proportion of the sample in category k.

• The θjk, the relative probability of word j in documents of category k, can be estimated as
the raw frequency of occurrence of word j among all documents of type k.

There are “smoother” ways to estimate these quantities as well, which acknowledge low frequen-
cies and large dictionaries of words.

Application to musical authorship:

Who wrote this song?

If you said The Beatles, you are right.

But which Beatle?

• As members of the Beatles, John Lennon and Paul McCartney agreed to credit songs written
by each as “Lennon/McCartney.”

• In most cases, the actual composer of the song is known, but for a small sample of their
songs the authorship is in dispute.
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• In My Life is one song that is in dispute.

Naive Bayes analysis of Beatles authorship:

Data:

• All Lennon/McCartney songs during 1962-1966 (from Please Please Me to Revolver). Total of
70 songs with known authorship, and several with unknown authorship.

• For each song, decompose the melodic line into a sequence of bi-grams (i.e., melodic note
transition couplets). Did some collapsing of categories according to whether notes were part
of the diatonic scale or not.

• Each “word” in the “dictionary” is a melodic note bi-gram.

From a naive Bayes analysis, we get the following estimated probabilities for songs with unclear
authorship

Song Pr(Lennon song)
Misery 0.999

Ask Me Why 0.001
Do You Want to Know a Secret 0.001

Wait 0.999
In My Life 0.999

According to the naive Bayes analysis, “In My Life” is a John Lennon song!

From Bayes Rule to Bayesian statistics:

When we set up probability models for data, we specify

• Unknown model parameters

• How data are generated based on the model parameters

Can think of the model parameters coming first, and data coming second (based on the values of
the model parameters).

Bayes theorem provides the tool to compute the probability of model parameter values based on
the observed data.

In Bayesian statistics, all quantities (data, unknown parameters) have probability distributions to
describe uncertainty.

Parameters: Uncertainty in model parameters are described through probability distributions
p(θ). For instance, we may believe a priori that the mean adult male weight is uniformly
distributed from 160 lbs to 200 lbs.

11



Data: Observations obtained from a data-generating mechanism are assumed to follow a prob-
ability distribution p(y|θ). For example, we may assume adult male weights are normally
distributed around an unknown mean.

Note that assuming a probability distribution on a parameter does not mean that the parameter is
“random.” It is actually a fixed value, but our uncertainty about it is represented in the form of a
probability distribution.

Summary of the Bayesian approach:

A typical Bayesian analysis can be outlined in the following steps.

1. Formulate a probability model for the data.

2. Decide on a prior distribution for the unknown model parameters.

3. Observe the data, and construct the likelihood function based on the data.

4. Determine the posterior distribution.

5. Summarize important features of the posterior distribution, or calculate quantities of interest
based on the posterior distribution.

Keeping your eye on the ball:

The main goal of Bayesian inference is to obtain the posterior distribution of the unknown pa-
rameters. This is the probability distribution that describes the state of knowledge about the pa-
rameters once the data have been observed.

After the posterior distribution has been determined, just about any inferential question can be
answered.

Simple example to illustrate steps in Bayesian analysis:

Suppose we are examining patterns of 30-day mortality of heart attack patients at a local hospital.

• Among 5 randomly selected heart attack patients, 1 died and 4 survived beyond 30 days.

• Let θ be the probability a patient dies within 30 days after admission for a heart attack.

• We want to make inferences about θ from the data.

First step: Formulate the probability model

For i = 1, . . . , 5, let

Yi =

{
0 if the i-th patient survives 30 days
1 if the i-th patient dies within 30 days

Probability model for the Yi:

Pr(Yi = y | θ) =
{

θ for y = 1
1− θ for y = 0
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More compactly,
P(Yi = y | θ) = p(y|θ) = θy(1− θ)1−y,

for y = 0, 1. This is a Bernoulli model for the data.

Second step: Choosing a prior distribution

The prior distribution of the unknown parameter(s) represents the state of knowledge prior to
observing the data.

For this setting, let us assume that all values of θ between 0 and 1 are equally believable.

Formally, this translates to
p(θ) = 1

for 0 ≤ θ ≤ 1.

0.0 0.2 0.4 0.6 0.8 1.0

0
.6

0
.8

1
.0

1
.2

1
.4

Uniform prior distribution for q

q

p
(q
)

Third step: Construct the likelihood function

The likelihood function is the probability of the data (probability density, for continuous out-
comes) conditional on the parameter(s), viewed as a function of the parameter(s).

p(y1, y2, y3, y4, y5 | θ) =
5∏

i=1

θyi(1− θ)1−yi = θ(1− θ)4.
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Thus, the likelihood function is
L(θ|y) = θ(1− θ)4,

where y = (y1, y2, . . . , y5) are the five binary outcomes.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8

Likelihood function for 1 death, 4 survivals

q

L
(q

|y
1
, y

2
, 
y

3
, y

4
, y

5
)

Fourth step: Determine the posterior distribution

The posterior distribution is the probability distribution of the unknown parameter(s) conditional
on the observed data.

This is determined by Bayes rule:

p(θ | y) =
p(θ)p(y | θ)∫
p(θ)p(y | θ) dθ

=
p(θ)p(y | θ)

p(y)

∝ p(θ)p(y | θ) ∝ p(θ)L(θ | y)

where “∝” means “is proportional to.”

The key tool in Bayesian statistics:

p(θ | y) ∝ p(θ)L(θ | y)
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Posterior ∝ Prior × Likelihood

Applying the key tool in our setting:

We have

p(θ) = 1

L(θ | y) = θ(1− θ)4

This means
p(θ | y) ∝ p(θ)L(θ | y) = (1)θ(1− θ)4 = θ(1− θ)4

This in turn means that
p(θ | y) = cθ(1− θ)4

for some constant c (that does not depend on θ).

It turns out

• p(θ) = 30 θ(1− θ)4 integrates to 1, so that c = 30 in this case.

• This is the density for a Beta distribution with parameters 2 and 5 (one more than the expo-
nents of θ and (1− θ), respectively), abbreviated

θ ∼ Be(2, 5).

This is a probability distribution used frequently by Bayesians.

For general Beta distributions, write Be(α, β).

Some properties of the Beta distribution:

E(θ|α, β) =
α

α+ β

Var(θ|α, β) =
αβ

(α+ β)2(α+ β + 1)

Mode(θ|α, β) =
α− 1

α+ β − 2
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Fifth step: Summarizing the posterior distribution

• Posterior mean, E(θ|y).

• Posterior mode (value of θ that maximizes p(θ | y)).

• Central posterior interval for θ.

• Highest posterior density (HPD) region for θ – shortest interval with specified probability.
Usually more difficult to compute than central intervals.

Posterior summaries for our setting:

Based on properties of the Beta distribution

• E(θ|y) = 2
2+5 ≈ 0.286

• mode(θ|y) = 2−1
2+5−2 = 0.2

• 95% central posterior interval: Can compute the 2.5%-ile and 97.5%-ile numerically in R.

(0.0433, 0.641)
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Compare to the Frequentist 95% confidence interval (0.011, 0.701).
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Posterior distribution, with 95% intervals

q

p
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|y
)

95% central posterior interval

95% confidence interval

Comments:

• The Bayesian approach recognizes the asymmetry in inferences about θ, whereas the stan-
dard Frequentist approach does not.

• The same approach outlined above applies identically to multi-parameter models.

• Frequentist approach can be improved, but need to use fancier machinery, e.g., the bootstrap,
but even that is not often reliable with small samples.

Bayesian inference as a learning model:

The Bayesian approach facilitates the idea that one learns about the state of the world as data are
accumulated.

Sequential nature of Bayesian analysis:

“Yesterday’s posterior is today’s prior”

Instead of performing a single analysis with the 5 observations, I could have performed (up to) 5
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analyses in sequence:

Suppose y1 = 0, y2 = 0, y3 = 1, y4 = 0, and y5 = 0.

Start with p(θ).

Observe y1 = 0, and determine p(θ | y1 = 0).

Now use p(θ | y1) as the prior distribution for the second observation.

Observe y2 = 0, and determine p(θ | y1 = 0, y2 = 0).

And so on! You will obtain the same posterior distribution as analyzing the data simultaneously.
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Modern Bayesian approach to data analyses:

The previous discussion laid out the foundations of the Bayesian approach, but more complex
modeling situations can present great challenges.

• The posterior density for most real-life models can be time-consuming to determine.

• Even if one can write down the posterior density, it is almost always the case that it is difficult
to summarize using standard analytic tools.
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The modern approach: Summarizing posterior distributions through Monte Carlo simulation

Monte Carlo simulation:

The posterior distribution is a probability distribution, and the goal of a Bayesian analysis is to
study the posterior distribution, or derive summaries from the posterior distribution.

Summarizing computer-simulated values from the posterior distribution is a legitimate alternative
to analytic summaries.

Monte Carlo summaries of probability distributions:

• Rather than go through laborious calculations to obtain the mean, median, variance, per-
centiles, etc., of a probability distribution, one can calculate the sample-version of the distri-
bution from the simulated sample.

• Usually need to simulate a very large sample in order to precisely approximate the generat-
ing distribution.

Example: Summarizing Be(2, 5) distribution

Rather than report the analytically-determined summaries of the Beta posterior distribution for
the 30-day mortality example, do the following:

1. Simulate 10,000 values from Be(2, 5).

2. Report sample summaries from the distribution of 10,000 simulated values.

> theta = rbeta(10000, 2, 5)
> head(theta) # first six simulated values
[1] 0.2244411 0.4130596 0.2961517 0.2133488 0.1883770 0.6113721
> mean(theta) # sample mean
[1] 0.2868297
> quantile(theta,probs=c(0.025,0.975)) # sample quantiles

2.5% 97.5%
0.04411736 0.64922037

Recall that E(θ|α = 2, β = 5) = 0.286 and the 95% central posterior interval was (0.0433, 0.641).

Predictive inference:

One of the real strengths of the Bayesian setting is the ability to produce model-based predictions
that accounts for the uncertainty in parameter inferences.

Goal: Want to determine p(ỹ | y), that is, the probability distribution for a new value ỹ given the
data we already analyzed. This distribution is called the posterior predictive distribution.

Notice that θ is no longer in the expression – the posterior predictive distribution “averages out”
the uncertainty about θ.
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Can show analytically using tools of calculus that

p(ỹ | y) =

 5/7 if ỹ = 0

2/7 if ỹ = 1

Thus we can conclude that there is a 2/7 chance that a new (randomly selected) patient entering
the hospital with a heart attack would die within 30 days.

Computing p(ỹ | y) via simulation:

This method highlights the power of simulation-based inference.

1. Generate (say) 10,000 simulated parameter values from the posterior distribution. Call these
θ(1), . . . , θ(10000).

2. For each j = 1, . . . , 10000 separately, generate a value of ỹ(j) from the probability model with
parameter value θ(j).

3. Summarize features of the 10,000 values ỹ(1), . . . , ỹ(10000) for predictions.

Example with 30-day mortality:

The posterior distribution is θ ∼ Be(2, 5). Also, Pr(ỹ = 1|θ) = θ.

> theta = rbeta(10000, 2, 5) # 10,000 values from Be(2,5)
> head(theta)
[1] 0.1979491 0.4944512 0.3124196 0.4441554 0.3895090 0.2404773
> y = rbinom(10000, 1, theta) # generate 10,000 binary values
> # with different probabilities
> head(y)
[1] 0 0 0 1 0 1
> table(y)/10000
y

0 1
0.7114 0.2886

Deeper discussion on prior distributions:

A main difference operationally between Frequentist methods and Bayesian methods is the incor-
poration of a prior distribution.

What are the guidelines for choosing a prior distribution?

Two types of prior distributions: Informative versus non-informative

Informative prior distributions: The statistician uses his/her knowledge about the substantive
problem, along with elicited expert opinion if possible, to construct a prior distribution that prop-
erly reflects prior beliefs about the unknown parameters.
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Non-informative prior distributions: The statistician chooses a distribution in an attempt to be
objective, acting as though no prior knowledge about the parameters exists before observing the
data.

When one can construct a defensible informative prior distribution, this is the best and most sci-
entific approach.

Criticisms of assuming an informative prior distribution:

1. Two different Bayesians could end up using two different informative prior distributions,
and would therefore obtain two different posterior distributions.

2. Some argue informative prior distributions are not “objective” or “scientific.”

Noninformative prior distributions:

Also termed “vague,” “diffuse,” and “objective.”

It is often desirable to have prior distributions that

• formally express ignorance, and

• can be viewed as default choices when no prior knowledge is available.

Main desired property of choosing an objective prior distribution:

• Assigns “equal probability” (or at least approximately equal) to all values of the parameters.

That is, the prior density should be fairly flat, and that the likelihood should overwhelm the prior
density with even small amounts of data.

Problems with objective prior distributions:

1. For most problems, there is no unique non-informative prior distribution.

2. Any method for constructing a non-informative prior distribution should be invariant to the
scale of the parameter. This is a difficult property to satisfy in practice.

3. Common methods for constructing non-informative prior distributions result in “improper”
probability distributions.

So being Bayesian is not necessarily the perfect solution.

Back to Monte Carlo simulation:

• When posterior densities become more complex, they become very difficult to summarize.
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• If the posterior density is non-standard, then straight Monte Carlo simulation can be difficult
as well.

In the late 1980s, a few statisticians (Alan Gelfand, Adrian Smith, and others) stumbled on an idea
that revolutionized Bayesian statistics.

Main innovation:

Rather than directly simulate from p(θ|y), simulate a random walk in the space of θ which con-
verges to p(θ|y).

Markov chain Monte Carlo (MCMC) simulation:

• The key idea is to create a Markov chain whose stationary distribution is p(θ|y). Values are
then computer-simulated from the Markov chain.

• Once the Markov chain is run long enough, simulated values can be treated as coming from
the posterior distribution.

There are actually many ways to set up such a Markov chain. The most straightforward way is to
implement a Gibbs sampler.

Implementing an MCMC sampler to obtain simulated parameter values:

1. Run several parallel Gibbs samplers with different starting values (preferably widely-dispersed)

2. Simulate values from the Markov chains for a “burn-in” period (before the Markov chains
have converged to the stationary distribution), and discard the burn-in simulations

3. Save simulated values after burn-in period. These will be the simulated values on which to
perform inferential summaries.

If I were you, I would be left with a big headache because a lot of work still seems necessary to
implement a Gibbs sampler.

• Still need to determine analytically the probability distributions for each step in a Gibbs
sampler

• Still need to simulate from the probability distributions

• Still need to write code the performs the Markov chain simulation, checks for convergence,
etc.

Fortunately, many packages now exist that do the hard work for you.

The two most well-known packages for implementing Bayesian analyses using MCMC are
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• WinBUGS, OpenBUGS, and its variants (BUGS = Bayesian inference Using Gibbs Sampling).

• Stan, which is a lot like WinBUGS, but uses (by default) a different type of Markov chain
sampler.

We will explore the use of Stan called from within R.

These programs actually figure out the conditional posterior distributions and automatically sam-
ple from them!

That’s right – they automatically determine and implement the Markov chain!

All you need to do typically is

• specify the probability model for data and the prior distribution

• specify logistical issues concerning MCMC simulation (starting values, burn-in period, how
many iterations to run after burn-in)

Example: The Beetles!

Bayesian logistic regression

A dose-response study was performed that counted the number of beetles killed after 5-hour
exposure to carbon disulphide. The data are shown below

Concentration of Number of Number
carbon disulphide (xi) beetles exposed (ni) killed (yi)

1.6907 59 6
1.7242 60 13
1.7552 62 18
1.7842 56 28
1.8113 63 52
1.8369 59 52
1.8610 62 61
1.8839 60 60

Model for probability of beetle death:

For i = 1, . . . , N , where N = 8 observations,

yi ∼ Bin(ni, pi)

logit pi = α+ βxi

Not necessary, but slightly better computationally to center the xi:

logit pi = α∗ + β(xi − x̄)
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where

x̄ =
1

N

N∑
i=1

xi

α∗ = α+ βx̄

Prior distribution:

Assume non-informative but proper prior distribution that has independent components

α∗ ∼ N(0, 10000)

β ∼ N(0, 10000)

By Bayes rule, the posterior density for α∗ and β can be written as

p(α∗, β|y) = c · N(α∗|0, 10000)N(β|0, 10000)
8∏

i=1

pyii (1− pi)
ni−yi

where c is a normalizing constant, and the N(·|·, ·) are normal densities with the given mean and
variance.

Setting up Stan code called from R:

Two main files:
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• Stan code to specify Bayesian model

• R code to set up data, and run MCMC sampler

Six components to a Stan program:

1. “data” block

2. “transformed data” block (optional, but usually used)

3. “parameters” block

4. “transformed parameters” block (optional, but usually used)

5. “model” block

6. “generated quantities” block (optional)

Stan code:

data {
int<lower=0> N; // Number of binomial samples
int<lower=0> n[N]; // Number of trials per sample
int<lower=0> y[N]; // Number of deaths
vector[N] x; // Concentration

}

transformed data {
vector[N] centered_x;
real mean_x;
mean_x = mean(x);
centered_x = x - mean_x;

}

parameters {
real alpha_star;
real beta;

}

transformed parameters {
vector[N] linpred;
linpred = alpha_star + beta * centered_x;

}

model {
alpha_star ˜ normal(0.0, 1.0E4); // prior for alpha_star
beta ˜ normal(0.0, 1.0E4); // prior for beta
y ˜ binomial_logit(n, linpred); // model for y
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}

generated quantities { // these are optional - just of interest
real alpha;
real p[N];
real yhat[N];
for (i in 1:N) {
p[i] = inv_logit(linpred[i]);
yhat[i] = p[i]*n[i]; // fitted values

}
alpha = alpha_star - beta*mean_x; // original alpha

}

R code calling Stan code:

library("rstan")
rstan_options(auto_write = TRUE)
options(mc.cores = parallel::detectCores())

beetles.dat = list(
x = c(1.6907, 1.7242, 1.7552, 1.7842, 1.8113, 1.8369, 1.8610, 1.8839),
n = c(59, 60, 62, 56, 63, 59, 62, 60),
y = c(6, 13, 18, 28, 52, 53, 61, 60),
N = 8)

beetles.fit = stan(file="beetles.stan", data=beetles.dat,
iter = 3000, warmup = 500, chains = 4)
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alpha_star beta

0 1000 2000 3000 0 1000 2000 3000

0

20

40

0.0

0.5

1.0

chain 1 2 3 4

Portion of Stan output:

> beetles.fit
Inference for Stan model: beetles.
4 chains, each with iter=5000; warmup=2500; thin=1;
post-warmup draws per chain=2500, total post-warmup draws=10000.

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
alpha_star 0.75 0.00 0.14 0.48 0.66 0.75 0.84 1.03 5816 1
beta 34.67 0.04 2.95 29.12 32.62 34.62 36.59 40.73 5836 1
alpha -61.43 0.07 5.25 -72.16 -64.83 -61.32 -57.78 -51.54 5914 1
...

Samples were drawn using NUTS(diag_e) at Mon Jan 01 15:00:06 2018.
For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).

Hierarchical linear models:

A class of models that is particularly well-served by the Bayesian framework is hierarchical mod-
els.
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Typical setup: Observe response data and predictor variables as in the usual regression setting.

Suppose now that the samples are clustered by a grouping variable.

Examples:

• Obtain a sample of patients seeing their doctor for chest pain. Want to measure the number
of days until pain goes away as a function of patient characteristics and treatment given.

The data may be clustered by clinic, and we might expect that the effects of the patient
characteristics differ by clinic.

• Obtain a sample of children taking a standardized achievement test. Want to measure the
relationship between test score and background variables about each child.

The data may be clustered by school, and we might expect that the relationship between
child characteristics and test score might depend on the school.

Example to implement: Reaction times and sleep deprivation

A study published in a 2003 issue of the Journal of Sleep Research measured the reaction time per
day for 18 subjects in a sleep deprivation study.

On day 0, each subject had a normal amount of sleep. Starting that night, each subject was re-
stricted to 3 hours of sleep.

The response represents the average reaction time on a series of tests given to each subject across
10 days.

Consider the following two extremes:

• For each subject, fit a separate least-squares regression.

– Good: Acknowledges that the relationship between x and y may differ within each
group.

– Bad: Very little data on which to estimate effects.

• Pool all the data together and fit a single least-squares regression.

– Good: Makes full use of the entire data.

– Bad: Does not recognize differences in effects within groups.
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Sleep deprivation − reaction times with least−squares fits
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Sleep deprivation − pooling data across all subjects

Days of sleep deprivation
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Hierarchical modeling: A compromise between separate regressions and one overall regression

Suppose for group g = 1, . . . , G,

yig = x′
igβg + εig = β0g + β1gxi1g + · · ·+ βJgxiJg + εig

with εig ∼ N(0, σ2).

Notice that the above model assumes a different βg for each group g.

Now introduce the model component

βg ∼ N(µβ,Σβ).

We will also assume a prior distribution on µβ and Σβ .

This normal “random effects” distribution N(µβ,Σβ) has an important role:

• The βg are assumed distinct, but come from the same “family” (i.e., N(µβ,Σβ)).

• The data across all groups inform the values of µβ and Σβ , which in turn means that the
βg are informed from other groups besides the data in group g. Sometimes called “partial
pooling” of data across groups.
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• Can think of the normal distribution acting like a rubber band around the βg. They can vary,
but the random effects distribution keeps them from being too far apart.

• The random effects distribution “shrinks” the βg to a common population mean.

• Shrinkage tends to be particularly noticeable when some groups have small numbers of
observations relative to others.

• Assuming a population distribution on the the βg with unknown covariance Σβ can be
viewed as a form of regularization.

Stan code:

data {
int<lower=0> N; // number of obs
int<lower=0> N_ID; // number of subjects
real y[N]; // reaction times
real x[N]; // days
int id[N]; // subject IDs

}

transformed data {
vector[N] centered_x;
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real mean_x;
mean_x = mean(x);
for (i in 1:N){
centered_x[i] = x[i] - mean_x;

}
}

parameters {
real alpha_star[N_ID];
real beta[N_ID];
real<lower=0> sig2;
real<lower=0> tau2_alpha;
real<lower=0> tau2_beta;

}

transformed parameters {
vector[N] linpred;
for (i in 1:N){
linpred[i] = alpha_star[id[i]] + beta[id[i]]*centered_x[i];

}
}

model {
sig2 ˜ inv_gamma(0.001, 0.001);
tau2_alpha ˜ inv_gamma(0.001, 0.001);
tau2_beta ˜ inv_gamma(0.001, 0.001);
for (j in 1:N_ID){

alpha_star[j] ˜ normal(300, tau2_alpha);
beta[j] ˜ normal(10, tau2_beta);

}
for (i in 1:N){
y[i] ˜ normal(linpred[i], sig2);
}

}

generated quantities {
real alpha[N_ID];
for (j in 1:N_ID) {

alpha[j] = alpha_star[j] - beta[j]*mean_x;
}

}

R code:

library(lme4) # to get sleepstudy data
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library(rstan)
options(mc.cores = parallel::detectCores())
rstan_options(auto_write = TRUE)

mysleep = sleepstudy # local copy
# trick to create IDs from 1 to 18 based on Subject variable
mysleep$ID = as.numeric(factor(mysleep$Subject))
sleep.dat = list(

N = nrow(mysleep),
N_ID = max(mysleep$ID),
y = mysleep$Reaction,
x = mysleep$Days,
id = mysleep$ID
)

sleep.fit = stan(file="sleep.stan", data=sleep.dat,
iter = 5000, warmup=2000, chains = 3)
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Sleep deprivation − hierarchical model fit
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Probabilistic topic models:

• Want to find themes (or topics) in documents. Useful for searching or browsing.

• We are not interested in supervised topic classification, and do not want to fix topics in
advance.

• Want an approach that carries out topic discovery.

• Essentially we want to perform probabilistic/fuzzy clustering of words. As a side-effect, we
may be able to cluster documents.

Latent Dirichlet Allocation (LDA):

• Documents exhibit multiple topics (but typically not many)

• LDA is a probabilistic model with a corresponding generative process (each document is
generated by this process)

• A topic is a distribution over a fixed vocabulary (topics are assumed to be generated first,
before the documents)

• Only the number of topics is specified in advance
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Intuition for LDA:

Intuition for LDA:

• Each topic is a distribution over words, and topics can share words (usually with different
probabilities of occurrence)

• Each document is a mixture of corpus-wide topics

• Each word is drawn from one of those topics

Ultimately we want to infer the hidden variables.

Inference for LDA:
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Example application: Harry Potter

Obtained text of all seven Harry Potter novels from
https://github.com/bradleyboehmke/harrypotter.

Treat chapters across the seven books as documents.

Want to discover clusters of words that “hang together” as topics, and understand how different
topics are present across different chapters.

Sample text by chapter:

1 Goblet Fire_17 " Harry sat there, aware that every head in the Great ˜
2 Deathly Hallows_4 "Harry ran back upstairs to his bedroom, arriving at the˜
3 Deathly Hallows_2 "Harry was bleeding. Clutching his right hand in his lef˜
4 Prisoner Azkaban_8 " FLIGHT OF THE FAT FADY In no time at all, Defense Ag˜
5 Order Phoenix_38 "The Second War BeginsHE WHO MUST NOT BE NAMED RETURNS’I˜
6 Deathly Hallows_8 "Three o’clock on the following afternoon found Harry, R˜
7 Goblet Fire_35 " Harry felt himself slam flat into the ground; his fa˜
8 Order Phoenix_12 "Professor UmbridgeSeamus dressed at top speed next morn˜
9 Prisoner Azkaban_4 " THE LEAKY CAULDRON It took Harry several days to get˜

10 Deathly Hallows_17 "Harry, stop.\"\"What’s wrong?\"They had only just reach˜

LDA - the generative process:

Fix the number of topics in advance (like K-means clustering).

To generate a document:
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1. For each topic, generate/simulate probabilities of word occurrences.

2. Generate/simulate probabilities of topics within the document.

(a) Draw a topic at random from these probabilities.

(b) Draw a word at random from the distribution of word occurrences for that topic.

LDA - more technical description of generative process:

Assume V words in the vocabulary, D documents, and K topics

1. Generate vector βk for each topic k = 1, . . . ,K of length V from a Dirichlet(η, η, . . . , η) dis-
tribution. These are the probabilities over words in the dictionary for topic k.

2. For document d = 1, . . . , D

(a) Generate θd of length K (topic probabilities) from a Dirichlet(α1, . . . , αK) distribution.

(b) Generate zid ∈ {1, . . . ,K} according to probabilities θd (topic of word i in document d).

(c) Generate word wid ∈ {1, . . . , V } according to probabilities in βzid
.

LDA generative model as a diagram:

Dirichlet distribution:

If p1, p2, . . . , pM are M probabilities that sum to 1, then the Dirichlet distribution is a common
choice of a prior distribution describing beliefs about the locations of the pm.

Dirichlet distribution:

p(p1, . . . , pM |α1, . . . , αM ) =
Γ(

∑M
m=1 αm)∏M

m=1 Γ(αm)

M∏
m=1

pαm−1
m

for pm ≥ 0 all m, and
∑M

m=1 pm = 1.
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Statistical inference:

The posterior distribution can be summarized via MCMC simulation (see Blei et al., 2003 for de-
tails).

Most interested in finding the summaries for

βk = (βk1, . . . , βkV ) topic probabilities of individual terms

θd = (θd1, . . . , θdK) topic proportions in a document

zid topic assignment distribution of a word i in document d

Straightforward to generate samples from the posterior distribution for these quantities, and then
calculate sample means as Monte Carlo estimates of the true posterior means.

But what about choosing the number of topics, K?

Blei and Lafferty (2009) mention cross-validation strategies, and choosing the number based on
information outside the data. Other approaches involve treating K as an unknown parameter
and inferring it during model fitting (e.g., Teh et al., JASA, 2007).

Chen et al. (2015) recommend choosing K based on the harmonic mean of the estimated log-
likelihood of each model. See mention within.
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We will use this last approach in our data analysis.

Performing LDA in R:

The process requires three steps

• Converting text data to “DocumentTermMatrix” form.

• Deciding (or determining) the number of topics, K.

• Fitting the model on the text data.

Various summaries can then be obtained from the result of the fit.

Working with text data:

There are endless ways to manipulate text data (in R, python, and other languages).

Two possibilities in R:

• Functions from the tm library. See
https://cran.r-project.org/web/packages/topicmodels/vignettes/topicmodels.pdf

for an example.

• Functions in the tidytext library (working in conjunction with the library tidyverse).
See https://rpubs.com/wsevier/LDA for an example.

My example below follows more the latter.

DocumentTermMatrix:

This is basically a format that efficiently stores text data in a matrix where the

• rows are individual documents

• columns are individual words

• matrix entries are the counts of words in documents

Portion of Harry Potter document-term matrix:

> inspect(chapters_dtm)
<<DocumentTermMatrix (documents: 200, terms: 23792)>>
Non-/sparse entries: 214878/4543522
Sparsity : 95%
Maximal term length: 24
Weighting : term frequency (tf)
Sample :
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Terms
Docs dumbledore eyes hagrid looked professor snape time voice
Chamber Secrets_19 51 22 8 12 21 0 14 14
Deathly Hallows_23 1 22 0 11 0 1 4 24
Deathly Hallows_33 53 20 0 24 5 113 15 16
Goblet Fire_26 8 11 12 27 10 14 20 8
Order Phoenix_12 6 6 2 17 74 19 13 17
Order Phoenix_22 58 9 0 20 22 0 8 17
Order Phoenix_28 9 10 1 17 16 59 8 7
Order Phoenix_30 3 7 115 20 1 1 6 14
Order Phoenix_31 5 10 28 21 38 5 16 12
Order Phoenix_35 7 14 0 8 0 0 13 13
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LDA model fitting for Harry Potter novels:

• Optimization analysis suggests K = 22 topics

• Ran MCMC for 1000 iterations, with a burn-in of 500 (keeping the latter 500 samples)

Most frequent terms for each topic by β:

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
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[1,] "lockhart" "wand" "slughorn" "uncle" "forest"
[2,] "riddle" "death" "malfoy" "vernon" "trees"
[3,] "ginny" "light" "ginny" "dudley" "firenze"
[4,] "chamber" "eyes" "potion" "aunt" "umbridge"
[5,] "myrtle" "hand" "book" "petunia" "centaurs"
[6,] "diary" "voice" "1" "dursleys" "grawp"
[7,] "malfoy" "harry’s" "mclaggen" "letter" "clearing"
[8,] "secrets" "ground" "potions" "dursley" "centaur"
[9,] "bathroom" "voldemort" "lavender" "owl" "path"
[10,] "slytherin" "feet" "prince" "drive" "bane"

Top words with respective β for top topics:

Selecting by beta
# A tibble: 10 x 3

topic term beta
<int> <chr> <dbl>

1 20 hagrid 0.131
2 11 snape 0.0384
3 9 dumbledore 0.0794
4 11 professor 0.0528
5 12 dobby 0.0510
6 13 weasley 0.0724
7 21 sirius 0.0639
8 4 uncle 0.0431
9 4 vernon 0.0361
10 15 lupin 0.0561
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Highest θ by document (chapter): LDA function in R refers to θ as “gamma”

Selecting by gamma
# A tibble: 10 x 4

title chapter topic gamma
<chr> <int> <int> <dbl>

1 Order Phoenix 35 2 0.561
2 Goblet Fire 34 2 0.703
3 Deathly Hallows 32 2 0.532
4 Goblet Fire 32 2 0.609
5 Prisoner Azkaban 2 4 0.506
6 Prisoner Azkaban 14 7 0.503
7 Philosophers Stone 12 7 0.508
8 Order Phoenix 4 7 0.511
9 Philosophers Stone 16 7 0.535
10 Order Phoenix 20 20 0.526
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Prisoner Azkaban
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Other tasks:

• Visualizing documents - color words with topic having the highest posterior probability

• Identifying similar documents - can compute Hellinger distance between documents as a
dissimilarity measure:

Dd,f =

K∑
k=1

(√
θ̂d,k −

√
θ̂f,k

)
.

LDA extensions:

• Dynamic topic models (LDA where topic probabilities evolve over time)

• Correlated topic models (LDA topic structures may be related across topics)

• Supervised LDA (have a response variable for each document and “train” the LDA to fit to
the response)

• Plenty of new work in this area!

Some references:
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Final thoughts about Bayesian statistics:

• Precise modeling leads to statistical inferences through a leak-proof route

• Given a probability model, Bayesian analysis makes full use of all the data

• Statistical inferences that are unacceptable must come from inappropriate modeling assump-
tions, not a problem in the underlying inferential mechanism

• Less attention need to be given to mathematical convenience of models, and more attention
on scientific merit

• Awkward problems that Frequentists face (e.g., choice of estimators, adjustments for certain
types of data) do not arise for Bayesians

• Modern computational methods (MCMC sampling from the posterior distribution) enables
fitting even complex data models.
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