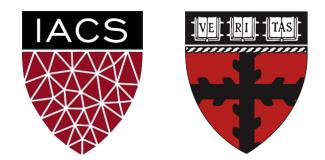
Lecture 20: Deep Generative Models CS 109B, STAT 121B, AC 209B, CSE 109B

Mark Glickman and Pavlos Protopapas



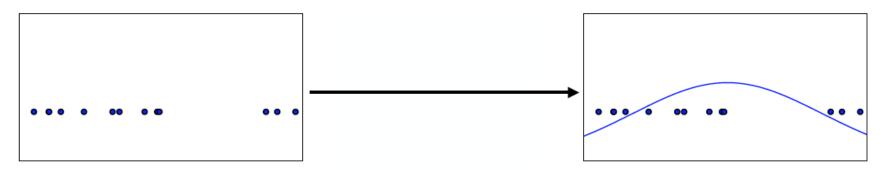
This lecture is based on the following tutorials:

I. Goodfellow, *Generative Adversarial Networks* (GANs), NIPS 2016 Tutorial

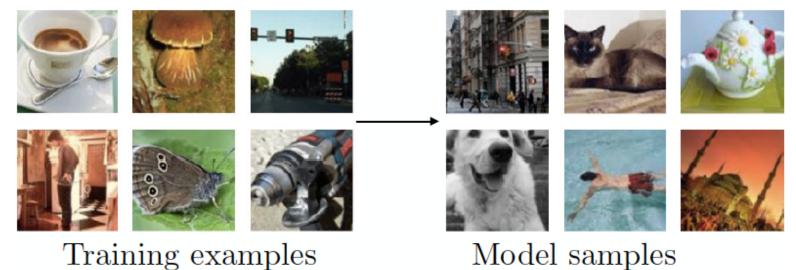
Shenlong Wang, *Deep Generative Models*, http:// www.cs.toronto.edu/~slwang/ generative_model.pdf

Generative Model

Density Estimation



Sample Generation

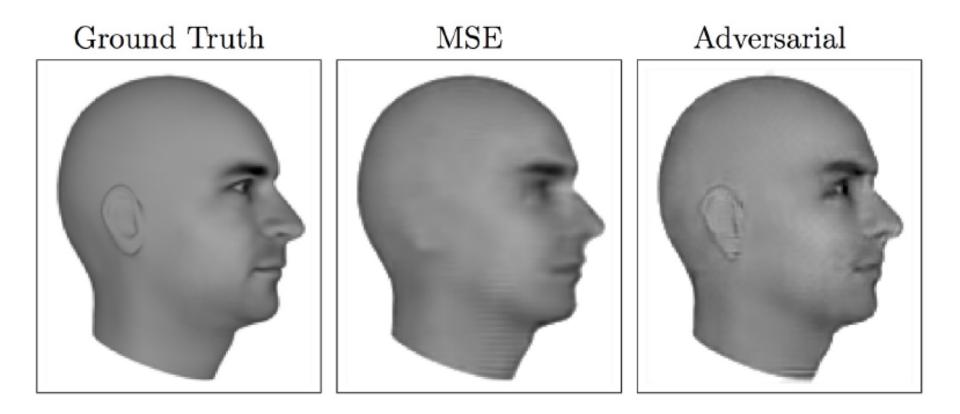


Why generative modeling?

- Modeling high-dim probability distributions
- Denoising damaged samples
- Simulate future events for planning and RL
- Imputing missing data
 - Semi-supervised Learning
- Multi-modal data

Multiple correct answers

Next Video Frame Prediction



Lotter et al., 2016

Single Image Super-resolution

 Synthesize a high-resolution equivalent from a low-resolution image

original

bicubic (21.59dB/0.6423) SRResNet (23.44dB/0.7777)

SRGAN (20.34dB/0.6562)

Interactive Image Generation

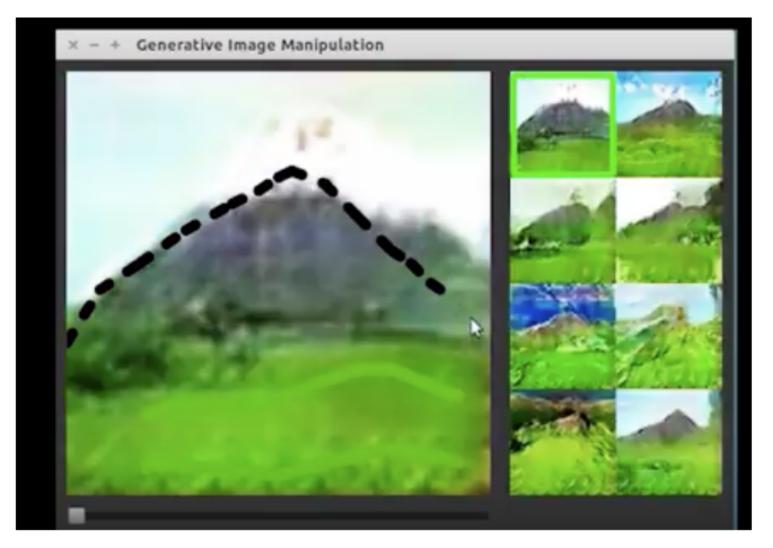
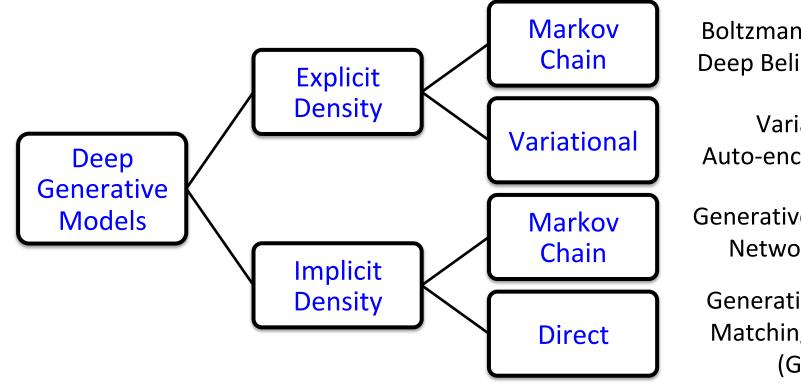


Image-to-Image Translation



Isola et al., 2016

Taxonomy of Deep Generative Models



Boltzmann Machines Deep Belief Networks

Variational Auto-encoders (VAE)

Generative Adversarial Networks (GAN)

Generative Moment Matching Networks (GMM)

Outline

- Explicit Density Models
 - Boltzmann Machines & Deep Belief Networks (DBN)
 - Variational Auto-encoders (VAE)
- Implicit Density Models
 - Generative Adversarial Networks (GAN)

Boltzmann Machines

x: d-dimensional binary vector

$$P(x) = \frac{\exp(-E(x))}{Z}$$
$$Z = \sum_{x} \exp(-E(x))$$

Energy function given by:

$$E(x) = -x^T U x - b^T x$$

Visible and Hidden Units

x: d-dimensional binary vector

$$P(v,h) = \frac{\exp(-E(v,h))}{Z}$$
$$Z = \sum_{v,h} \exp(-E(v,h))$$

Energy function given by:

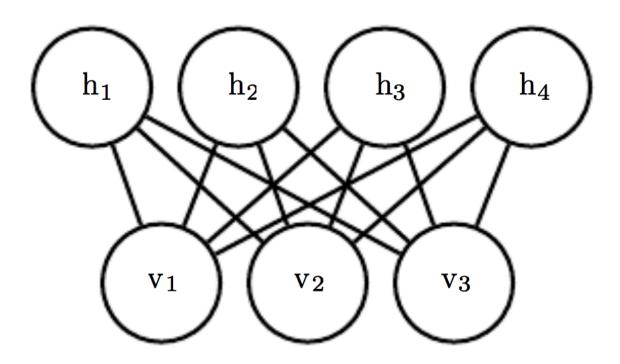
 $E(v,h) = -v^T R v - v^T W h - h^T S h - b^T v - c^T h$

Training Boltzmann Machines

- Maximum-likelihood estimation
- Partition function is intractable
- May be estimated with MCMC methods

Restricted Boltzmann Machines

• No connections among hidden units, and among visible units (bipartite graph)



Restricted Boltzmann Machines

x: d-dimensional binary vector

$$P(v,h) = \frac{\exp(-E(v,h))}{Z}$$
$$Z = \sum_{v,h} \exp(-E(v,h))$$

Energy function given by:

$$E(v,h) = -b^T v - c^T h - v^T W h$$

Training RBMs

Conditional distributions have simple form

$$P(h_{j} = 1 | v) = \sigma(c_{j} + (W^{T}v)_{j})$$
$$P(v_{j} = 1 | h) = \sigma(b_{j} + (Wh)_{j})$$
$$Sigmoid$$

Efficient MCMC: block Gibbs sampling

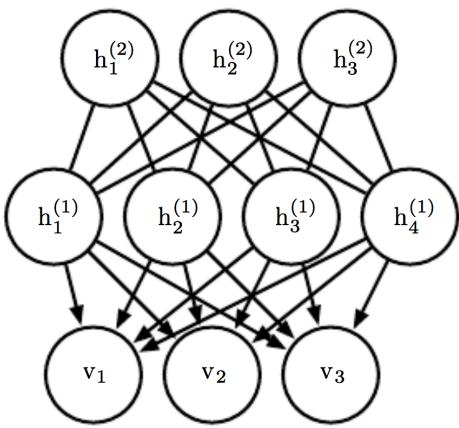
Alternatively sample from P(h|v) and P(v|h)

Deep Belief Networks

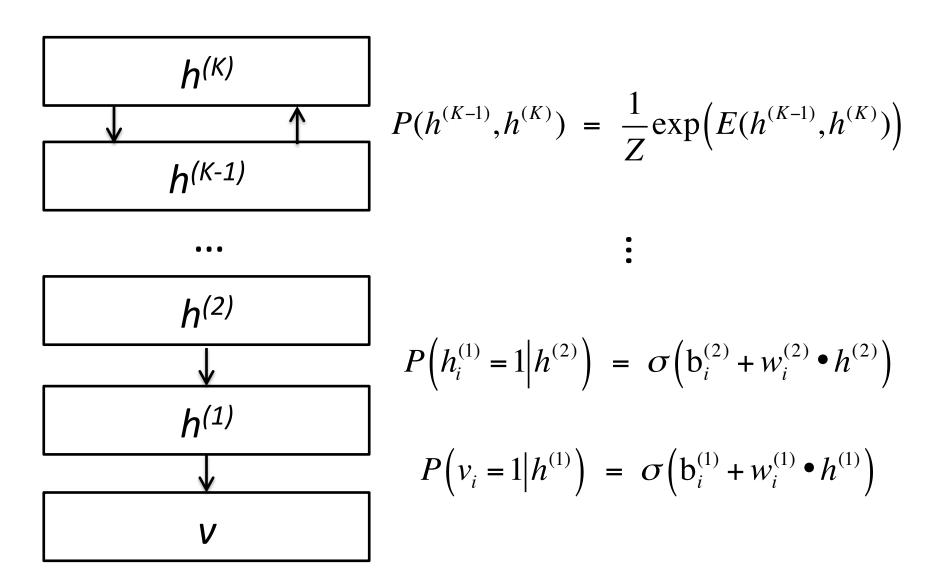
• Multiple hidden layers

Introduction of DBNs in 2006 began the current deep learning renaissance

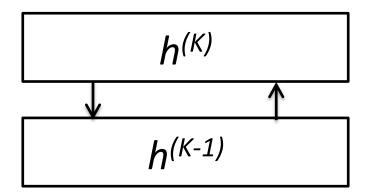
> Undirected connections between last two layers

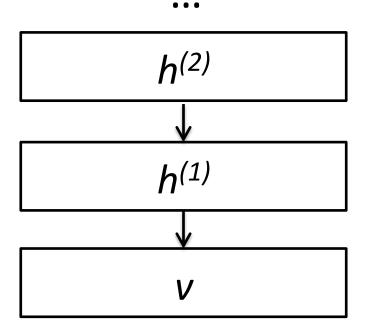


Deep Belief Networks



Layer-wise DBN Training

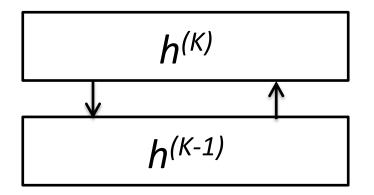


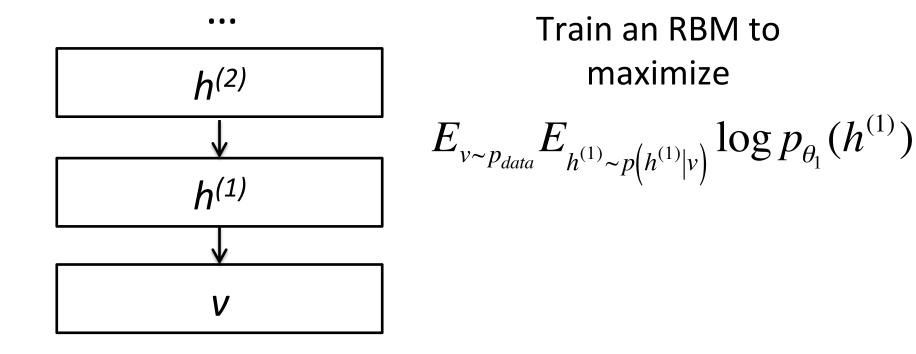


Train an RBM to maximize

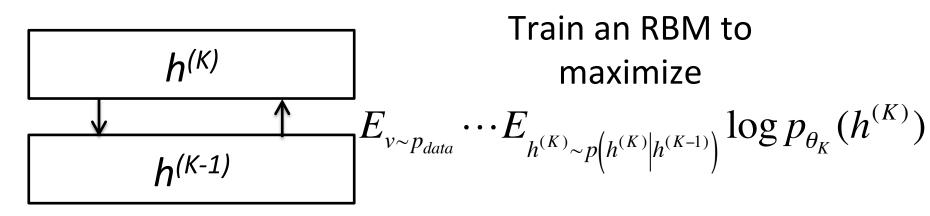
 $E_{v \sim p_{data}} \log p_{\theta}(v)$

Layer-wise DBN Training

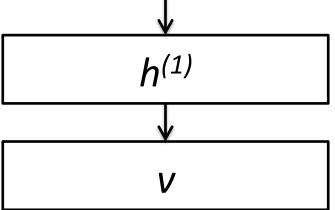




Layer-wise DBN Training



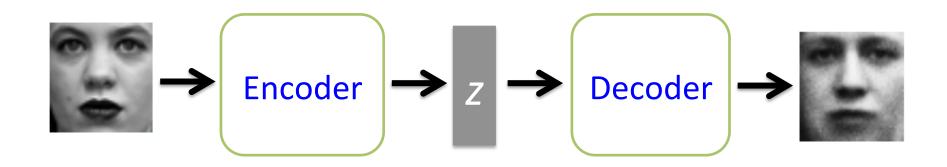
. . .



Outline

- Explicit Density Models
 - Boltzmann Machines & Deep Belief Networks (DBN)
 - Variational Auto-encoders (VAE)
- Implicit Density Models
 - Generative Adversarial Networks (GAN)

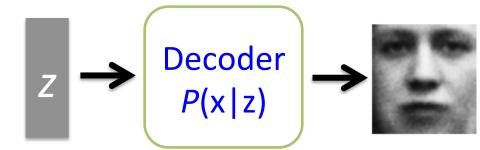
Recap: Autoencoder



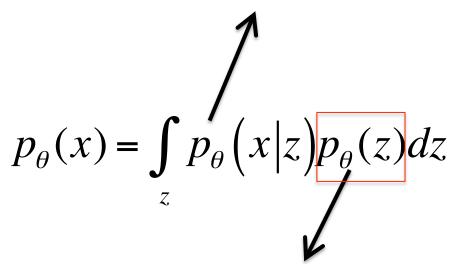
Variational Autoencoder

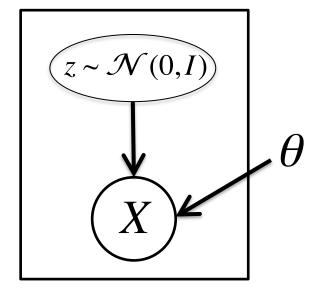
- Easier to train using gradient-based methods
- VAE sampling:

Sample from P(z) Standard Gaussian



VAE Likelihood





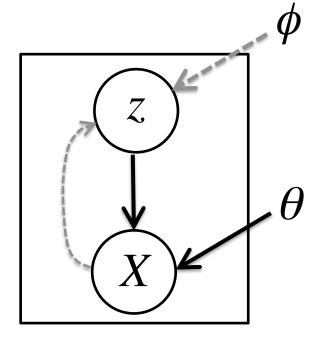
Difficult to approximate in high dim through sampling

For most z values p(x|z) close to 0

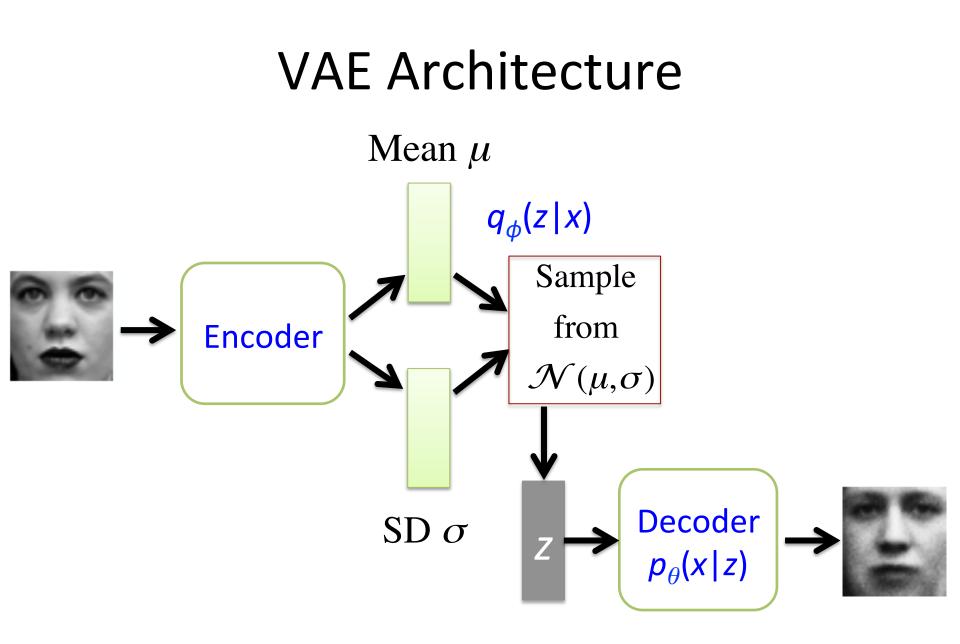
VAE Likelihood

Another neural net

$$p_{\theta}(x) = \int_{z} p_{\theta}(x|z) q_{\phi}(z|x) dz$$



Proposal distribution: Likely to produce values of x for which p(x|z) is non-zero



VAE Loss

Reconstruction Loss $-\mathbf{E}_{z \sim q_{\phi}(z|x)} \log(p_{\theta}(x|z))$

VAE Loss

VAE Loss

$$\begin{array}{ll} & \text{Proposal distribution should} \\ & \text{Reconstruction Loss} \\ -\mathbf{E}_{z \cdot q_{\phi}(z|x)} \log \left(p_{\theta} \left(x | z \right) \right) \\ & + KL \left(\overline{q_{\phi} \left(z | x \right)} \| p_{\theta}(z) \right) \\ & \geq -\log p_{\theta}(x) \end{array}$$

Variational upper bound on loss we care about!

Training VAE

- Apply stochastic gradient descent
- Sampling step not differentiable
- Use a re-parameterization trick
 - Move sampling to input layer, so that the sampling step is independent of the model

Boltzmann Machines vs. VAE

Pros:

- VAE is easier to train
- Does not require MCMC sampling
- Has theoretical backing
- Applicable to wider range of models

Cons:

• Samples from VAE tend to be blurry

G ω о Ð o Ð Б ß D G -s-5 з \$

Outline

- Explicit Density Models
 - Boltzmann Machines & Deep Belief Networks (DBN)
 - Variational Auto-encoders (VAE)
- Implicit Density Models
 - Generative Adversarial Networks (GAN)

Generative Adversarial Networks

- No Markov chains needed
- No variational approximations needed
- Often regarded as producing better examples

Two Player Game

Generator G

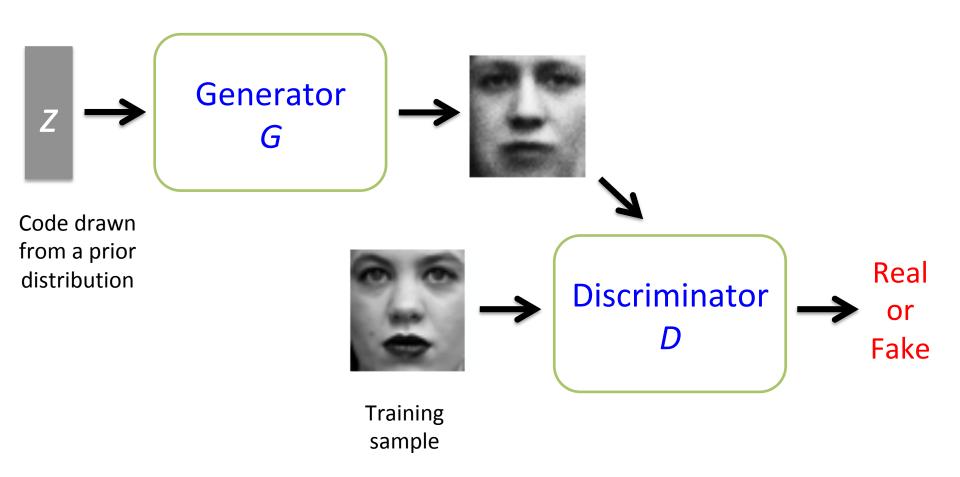
Seeks to create samples from p_{data}

Seeks to trick discriminator into believing that its samples are genuine Discriminator D

Classifies samples as real or fake

Seeks to not get tricked by the generator

GAN Overview



Min-max Cost

Discriminator seeks to predict 1 on training samples Discriminator wants to predict 0 on samples generated by G

$$V(\theta^{D}, \theta^{G}) = \mathbf{E}_{x \sim p_{data}} \log D(x)$$

+
$$\mathbf{E}_{z} \log(1 - D(G(z)))$$

Generator wants *D* to not distinguish between original and generated samples!

$$J^{(G)} = V(\theta^{(D)}, \theta^{(G)}) \qquad \qquad J^{(D)} = -V(\theta^{(D)}, \theta^{(G)})$$

Min-max Cost

 $\min_{\theta^{G}} \max_{\theta^{D}} J(\theta^{G}, \theta^{D})$

- Equilibrium is a saddle-point
- Training is difficult in practice

Training GANs

- Sample mini-batch of training images x, and generator codes z
- Update G using back-prop
- Update *D* using back-prop

Optional: Run *k* steps of one player for every step of the other player

Radford et al., 2015