Chem E-1a
Friday Review Problems
Chapter 5: Gases

1. Gaseous acetylene, $\mathrm{C}_{2} \mathrm{H}_{2}$, will react with hydrogen gas under appropriate conditions to form ethane gas, $\mathrm{C}_{2} \mathrm{H}_{6}$. A 2.00 L reaction vessel is filled with 3.00 atm of hydrogen and 1.00 atm of acetylene at $25^{\circ} \mathrm{C}$ and the reaction is allowed to proceed to completion. After the reaction is complete the temperature in the vessel is returned to $25^{\circ} \mathrm{C}$.
a) Write a complete balanced equation for this reaction. (Note: acetylene and ethane are both gases under these conditions.)

$$
\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})
$$

b) Calculate the mass of ethane that is formed.

Limiting Reagent Problem \Rightarrow Let's use a rice tablé!.
ATM

$$
\begin{array}{ccc}
R: C_{2} 山_{2}(g)+2 H_{2}(g) & \rightarrow & C_{2} H_{6}(g) \\
1: 1.00 & 3.00 & 0 \\
C:-x & -2 x & +x \\
E: 1-x & 3-2 x & x \\
=1-1=0 & -3-2(1) & =1
\end{array}
$$

FIND $M_{D L} C_{2} H_{6}$:

$$
\begin{aligned}
& P V=n R T \\
& n_{C_{2 H} H_{6}}=\frac{P_{C_{2 H}} V}{R T}=\frac{(1 \mathrm{ATM})(2.00 \mathrm{~L})}{\left(0.0821 \frac{\mathrm{~L} \cdot \mathrm{P}_{M}}{\mathrm{Ma} \cdot \mathrm{~K}}\right)(298 \mathrm{~K})} \\
& n_{\mathrm{C}_{2 \mathrm{H}_{6}}}=0.0917 \mathrm{moc} \\
& 0.0817 \mathrm{maC} \mathrm{C}_{2} \mathrm{H}_{6} \times \frac{3 \mathrm{bg}_{g} \mathrm{C}_{2} \mathrm{H}_{6}}{1 \mathrm{man}_{6}}=2.451 \mathrm{gC} \mathrm{C}_{2} \mathrm{H}_{6}
\end{aligned}
$$

CHOOSE UNITS FOR RICE TABLE:

- H of Moles is ALWMS AcCEPTABLE
- Prartir pressures IN ATM IS OK IF:
- it is RN All. TAS-PLPSE REACTON (OR YOU DUNT CARE ABOUT QuAnmines of LIQUIDS un SDLIPt - $V_{\text {ArD }} T$

MUST BE THE STGE IN THE "I" and "E" Rows

1. (cont.)
c) Calculate the total pressure inside the vessel after the reaction is complete.

$$
\begin{aligned}
P_{T} & =P_{\mathrm{C}_{2} \mathrm{H}_{2}}+P_{\mathrm{H}_{2}}+P_{\mathrm{C}_{2} \mathrm{H}_{6}} \\
& =0+1_{\text {ATM }}+1_{\text {ATM }}=2 \mathrm{ATM}=P_{\text {TUNA }}
\end{aligned}
$$

d) Calculate the mole fraction of ethane in the resulting mixture.

$$
\chi_{c_{2 H_{6}}}=\frac{n_{c_{2} H_{6}}}{n_{\text {TOTAL }}}=\frac{P_{C_{2 H_{6}}}}{P_{\text {TOM }}}=\frac{1 \text { ATM }}{2 \mathrm{Am}}=0.5=x_{c_{2 H_{C}}}
$$

e) Inert argon gas is pumped into the vessel until the total pressure is 5.00 atm . Calculate the number of moles of argon gas that were added.
BEFORE ARGON ADDED: Z PAM TOM PRESSURE
AFTER ARON ADDED: 5 mm TOTO PRESSURE

$$
\begin{aligned}
& P_{\text {Rr }}=3 \text { ATM } \\
& n_{A_{r}}=\frac{P_{R_{r}} V}{R_{T}}=\frac{(3 \mathrm{ATM})(2.00 \mathrm{~L})}{\left(0.0321 \frac{\mathrm{~L} \cdot \mathrm{Am}_{\mathrm{m}}}{\mathrm{mark}} \backslash(29 \mathrm{KK})\right.}=0.245 \mathrm{moL} A_{\text {eon }}
\end{aligned}
$$

f) Calculate the rms speed of the ethane molecules at $25^{\circ} \mathrm{C}$.

$$
U_{\text {RMS }}=\sqrt{\frac{3 R T}{M \text { Man an mass }} \text { in }}=\sqrt{\frac{3(8.314 \mathrm{~J} / \text { Rok })(298 \mathrm{k})}{(0.030 \mathrm{~kg} / \text { MOL })}}=498 \mathrm{~m} / \mathrm{s}
$$

IN kg
g) Calculate the average kinetic energy per mole and per molecule of the ethane molecules at $25^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& K E=\frac{3}{2} R T=\frac{3}{2}(8.314 \mathrm{~J} / \mathrm{MNU} \cdot \mathrm{~K})(298 \mathrm{~K})=3716 \mathrm{~J} / \mathrm{MOL} \\
& \frac{3716 \mathrm{~J}}{\text { MOL }} \times \frac{1 \text { MOL }}{6.02 \times 10^{23} \text { MOLECULES }}=6.17+10^{-21} \mathrm{~J} / \text { MOLECULE }
\end{aligned}
$$

2. Solid calcium chlorate, $\mathrm{Ca}\left(\mathrm{ClO}_{3}\right)_{2}$, will decompose upon heating, releasing oxygen gas and leaving behind solid CaCl_{2}. 2.00 grams of calcium chlorate are completely decomposed, and the oxygen gas is collected over water at a temperature of $25^{\circ} \mathrm{C}$ and a pressure of 756 torr. (Note: The vapor pressure of water at $25^{\circ} \mathrm{C}$ is 23.8 torr.)
a) Write a complete balanced equation for the decomposition of $\mathrm{Ca}\left(\mathrm{ClO}_{3}\right)_{2}$. TOTAL PRE55VRE

$$
\mathrm{Ca}_{\mathrm{a}}\left(\mathrm{COO}_{3}\right)_{2}(\mathrm{~s}) \longrightarrow 3 \mathrm{O}_{2}(\mathrm{~g})+\mathrm{CaCl}_{2}(\mathrm{~s})
$$

b) Calculate the volume of oxygen that was collected.

Collecting ole over water:

Find hO_{2}

$$
\begin{aligned}
& 2.00 \mathrm{~g} \mathrm{Ca}\left(\mathrm{CeO}_{3}\right)_{2} \times \frac{1 \mathrm{MOL} \mathrm{Ca}\left(\mathrm{ClO}_{3}\right)_{2}}{207 \mathrm{~g} \mathrm{Ca}\left(\mathrm{COO}_{3}\right)_{2}} \times \frac{3 \mathrm{MOLO}_{2}}{1 \mathrm{MOLCa}^{2}\left(\mathrm{COO}_{3}\right)_{2}}=0.0290 \\
& V=\frac{\mathrm{nOL}_{2} R T}{\mathrm{PO}_{2}}=\frac{(0.0290 \mathrm{moL})(0.0821)(298 \mathrm{~K})}{(732.2 \mathrm{TORR}}=0.737 \mathrm{LIM}
\end{aligned}
$$

c) What mass of water vapor is mixed with the oxygen gas? $\times \overline{760 \text { TOR }}$

$$
\begin{aligned}
& n_{L_{1 O}(g)}=\frac{P_{H_{1 D}(g)} V}{B T}=\frac{\left(23.870 R e+\frac{1 \text { Rom }}{760 \text { TOR }}\right)(0.737 \mathrm{~L})}{(0.0821)(298 \mathrm{k})} \\
& \left.n_{H_{20}(g)}=9.43 \times 1 D^{-4} \text { mol } \Longrightarrow 0.0170 \mathrm{gHz}^{2} \mathrm{~g}\right)
\end{aligned}
$$

3. Sulfur dioxide gas can react with oxygen gas under appropriate conditions to form sulfur trioxide gas. A 1.00 L reaction vessel is charged with 2.00 atm of sulfur dioxide and 2.00 atm of oxygen at a temperature of 1000 K . Sulfur trioxide is formed, but the reaction does not go to completion. The final total pressure in the vessel is 3.32 atm .
a) Write a complete balanced equation for this gas-phase reaction.

$$
\mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{3}(\mathrm{~g})
$$

b) Calculate the partial pressure of each gas in the resulting mixture.

ATM

$$
\begin{array}{ccc}
\mathrm{R}: \mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) & \rightarrow & \mathrm{SO}_{3}(\mathrm{~g}) \\
1 & 2.00 & 2.00 \\
C & -x & -\frac{1}{2} x
\end{array}
$$

firm

$$
\begin{aligned}
& P_{\text {TOTE }}= 3.32 \mathrm{AMM}= \\
& 3.32= P_{\mathrm{SO}_{2}}+P_{\mathrm{O}_{2}}+P_{\mathrm{SO}_{3}} \\
& 3.32=4-\frac{1}{2} x \\
& x=1.36+\left(2-\frac{1}{2} x\right)+(x) \\
& P_{\mathrm{SO}_{2}}=2-x=2-1.36=0.64 \mathrm{Am} \\
& P_{\mathrm{O}_{2}}=2-\frac{1}{2} x=2-\frac{1}{2}(1.36)=1.32 \mathrm{ATM} \\
& P_{\mathrm{SO}_{3}}=x=1.36 \mathrm{ATM}
\end{aligned}
$$

