# Chem E-1a <br> Friday Review Notes <br> Chapter 7: The Electronic Structure of Atoms 

## Energy, Particles, and Waves:

-Electromagnetic Radiation: (e.g. light, microwaves, x -rays, infrared radiation, etc.)

$$
\begin{aligned}
& \mathbf{c}=\lambda \boldsymbol{\nu} \\
& \mathbf{E}=\mathbf{h} \boldsymbol{\nu}=\frac{\mathbf{h c}}{\lambda} \\
& \mathrm{c}=\text { speed of light }=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
& \lambda=\text { "lambda" }=\text { wavelength of radiation in meters } \\
& v=\text { "nu" }=\text { frequency of radiation in sec }{ }^{-1} \text { or Hertz }(\mathrm{Hz}) \\
& \mathrm{E}=\text { E Energy of one photon of radiation in Joules } \\
& \mathrm{h}=\text { Planck's constant }=6.63 \times 10^{-34} \mathrm{~J} \bullet \mathrm{~s}
\end{aligned}
$$

-Particles: (anything that has mass, such as electrons, neutrons, baseballs, etc.)

$$
\begin{aligned}
& \mathrm{KE}=\frac{1}{2} m u^{2} \\
& \lambda=\frac{h}{\mathrm{mu}}
\end{aligned}
$$

$\mathrm{KE}=$ kinetic energy of particle in Joules
$\mathrm{m}=$ mass of particle in kg
$\mathrm{u}=$ velocity of particle in $\mathrm{m} / \mathrm{s}$
$\lambda=$ "lambda" = DeBroglie Wavelength of particle in meters $\mathrm{h}=$ Planck's Constant $=6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$

## -Photoelectric Effect:

$$
\mathbf{E}_{\text {photon }}=\text { B.E. }+\mathrm{KE}_{\text {electron }}
$$

$\mathrm{E}_{\text {photon }}=$ Energy of one photon of incoming light or radiation in Joules $=\mathrm{h} \nu=(\mathrm{hc}) / \lambda$
B.E. $=$ Binding Energy of metal $=$ work function of metal $=\mathrm{h} \nu_{0}$
$=$ the minimum amount of energy required to eject a single electron from a single atom (Note: $v_{0}=$ threshold frequency for photoelectric effect)
$\mathrm{KE}_{\text {electron }}=$ Kinetic Energy of emitted electron $=\frac{1}{2} \mathrm{mu}^{2}$
This equation can also be written as: $\quad \mathrm{h} v=\mathrm{h} v_{0}+\frac{1}{2} \mathrm{mu}^{2}$

## -Energy of an Electron in a Hydrogen Atom:

$$
\begin{aligned}
& \mathbf{E}_{n}=-\mathbf{R}_{H}\left(\frac{1}{n^{2}}\right) \\
& \Delta \mathrm{E}=\mathbf{R}_{H}\left(\frac{1}{n_{i}^{2}}-\frac{1}{n_{f}^{2}}\right)
\end{aligned}
$$

$\mathrm{E}_{n}=$ Energy of an electron in a hydrogen atom with principal quantum number $n$
$\Delta \mathrm{E}=$ Energy change when an electron in a hydrogen atom undergoes a transition from one principal energy level to another. This energy change will correspond to the energy of the photon that is absorbed or emitted during this process.
$\mathrm{R}_{H}=$ Rydberg's Constant $=2.18 \times 10^{-18} \mathrm{~J}$
$n_{i}=$ initial principal quantum number of the electron in a hydrogen atom
$n_{f}=$ final principal quantum number of the electron in a hydrogen atom

Note: These formulas can be adapted to apply to any ion with only one electron, such as the $\mathrm{He}^{+}$ion or the $\mathrm{Li}^{2+}$ ion, as follows:

$$
\begin{aligned}
& \mathrm{E}_{n}=-\mathrm{R}_{H}\left(\frac{\mathrm{Z}^{2}}{\mathrm{n}^{2}}\right) \\
& \Delta \mathrm{E}=\mathrm{R}_{H}\left(\frac{\mathrm{Z}^{2}}{\mathrm{n}_{i}^{2}}-\frac{\mathrm{Z}^{2}}{\mathrm{n}_{f}^{2}}\right)
\end{aligned}
$$

where $\mathrm{Z}=$ charge of the nucleus = atomic number
For the hydrogen atom, $\mathrm{Z}=1$, and these formulas simplify to the formulas above.

Note: In all of this material, DO NOT confuse frequency ( $v$ ) of a light wave and velocity or speed $(\mathrm{u})$ of an electron. Make sure there is a distinction in how you write these symbols.
Similarly, don't confuse wavelength ( $\lambda$ ) with Planck's constant (h). Again, make sure you write these symbols in a distinct fashion.

Units: $\mathrm{J}=\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{2} \quad\left(\right.$ so in Planck's constant: $\left.\mathrm{J} \bullet \mathrm{s}=\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}\right)$
$\mathrm{Hz}=\mathrm{sec}^{-1}$
$\mathrm{nm}=$ nanometers $=10^{-9} \mathrm{~m}$
Angstrom $=10^{-10} \mathrm{~m}$

## Quantum Numbers:

$n=$ Principal Quantum Number $=1,2,3, \ldots$
$n$ indicates the general size of an orbital. It corresponds to the principal energy level of an orbital. For example, a $4 s$ orbital has $n=4$.
$\boldsymbol{l}=$ Angular Momentum Quantum Number = 0, 1, 2, $\ldots \boldsymbol{n - 1}$
$l$ indicates the shape of an orbital. It is indicated by the letter designation of an orbital:
$l=0$ for an $s$ orbital
$l=1$ for a $p$ orbital
$l=2$ for a $d$ orbital
$l=3$ for an $f$ orbital
etc..
$m_{l}=$ Magnetic Quantum Number $=$ integer values: $-l, \ldots, 0, \ldots, l$
$m_{l}$ indicates the orientation of an orbital.
$\boldsymbol{m}_{S}=$ Spin Quantum Number $=+\frac{\mathbf{1}}{\mathbf{2}}$ or $-\frac{\mathbf{1}}{\mathbf{2}}$
$m_{s}$ indicates the "spin" of the electron in an orbital.

## Drawing Orbitals and Counting Nodes:

Total Number of Nodes $=\boldsymbol{n} \boldsymbol{- 1}$
Number of Angular Nodes $=l$
Number of Radial Nodes $=\boldsymbol{n} \boldsymbol{- l} \boldsymbol{l} \mathbf{- 1}$

## -Drawing the orbitals:

Know the shapes and orientations of all $s, p$, and $d$ orbitals. See the textbook pp. 229-230.
You should be able to draw these orbitals with any number of radial nodes.

## Electron Configurations of Neutral Atoms:

-If you are using the noble gas abbreviations, find the previous noble gas. (As a general rule you should always use the noble gas abbreviations unless you are explicitly told not to.)

- After the previous noble gas, simply count electrons across the final period.
-Make sure you know each "block" of the periodic table:
-The " $s$-block", where $s$ orbitals are filled
-The " $p$-block", where $p$ orbitals are filled
-The " $d$-block", where $d$ orbitals are filled
-The " $f$-block", where $f$ orbitals are filled
-Know what principal energy level begins each "block" on the periodic table:
$1 s \quad 2 p \quad 3 d \quad 4 f$
- You should know 2 exceptions to the standard filling order. These exist because extra stability is gained by having a subshell completely filled (all orbitals with $2 e^{-}$) or exactly half-filled (all orbitals with $1 e^{-}$). In each of these cases, an "s" electron has been promoted into a d-orbital so that all subshells are either half-filled or completely filled:

Chromium (Cr): $[\mathrm{Ar}] 4 \mathrm{~s}^{1} 3 \mathrm{~d}^{5}$
Copper ( Cu ): $[\mathrm{Ar}] 4 \mathrm{~s}^{1} 3 \mathrm{~d}^{10}$
There are other atoms that have "abnormal" electron configurations, but you are not required to know them.

