
Chapter 10

Molecular Geometry and Hybridization of Atomic Orbitals

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Courtesy Aneel Aggarwal, Ph.D., and Stephen C. Harrison, Department of Biochemistry and Molecular Biology, Harvard University, from A.K. Aggarwal., et al., November 1988. Recognition of a DNA operator by the repressor of phage 434: A view at high resolution. *Science* 242, p. 899–907. ©1988 American Association for the Advancement of Science

Molecules and Magnetic Properties

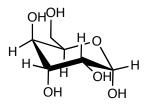
• Draw Lewis structures for N_2 and O_2 . Are there any unpaired electrons?

$$N \geq N$$

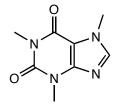
• For a substance to be attracted to a magnet it must posses unpaired electrons.

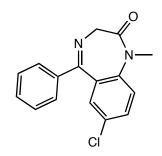
When Liquid N_2 or O_2 is poured between the poles of a magnet which of these will be attracted to the poles of the magnet.

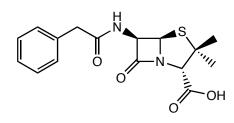
Molecules

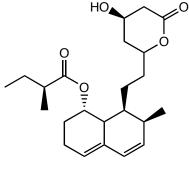

= in plane with the page= out of the page

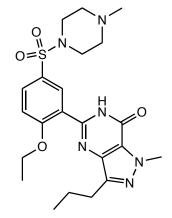
 \dots^{m} = into the page




Cisplatin


Glucose




Caffeine

Diazepam (ValiumTM)

Penicillin

Lovastatin (MevacorTM)

Sildenafil (ViagaraTM)

Molecular Geometry:

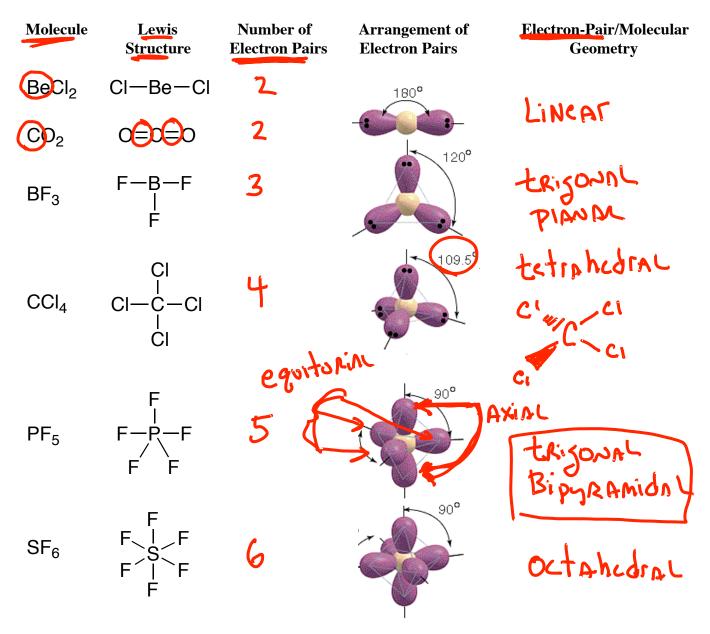
Using Valence-Shell Electron Pair Repulsion (VSEPR) model to determine the shape of a molecule

• Lets write the lewis structure of SiH₄

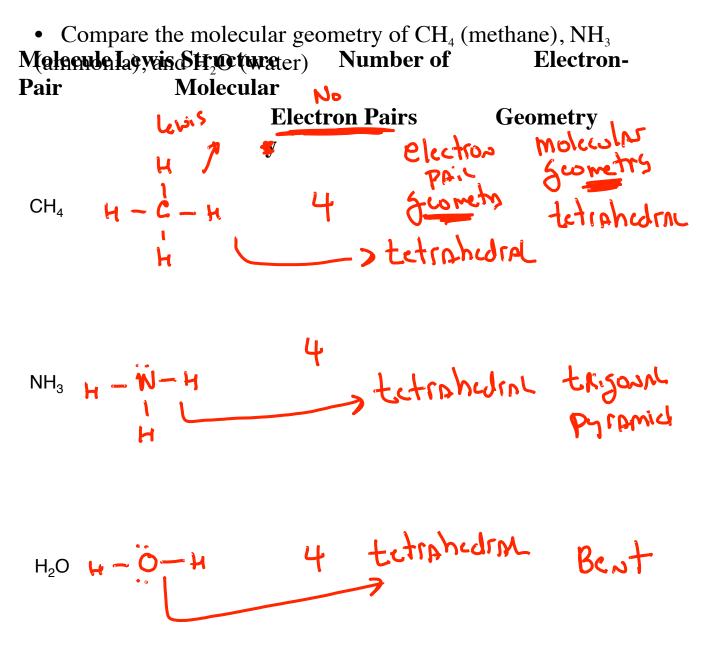
- What is taken into account by the Valence-Shell Electron Pair Repulsion (VSEPR) model to determine the geometry of a molecule?
- · electron pairs repel ench other, b/c 6F this repulsion these electron pair ArAAnge themselves far April Around the central Atom
 - What count as electron pairs?

Single bond All ATZ COUNSTED AS A SINGLE electron PAIR! double bond tripk bond LONE PAIL RADICAL

Molecular Geometry: No Lone Pairs


Guidelines for applying the VSEPR Model to predict molecular geometry

- 1. Determine the Lewis structure.
- 2. Determine the central atom and sum the electron pairs around it.


3. Determine the arrangement of the pairs that minimizes electron-pair repulsions. This type of geometry is called the **electron-pair geometry**.

4. Disregard the lone pair(s). Name the molecular geometry from the positions of the *atoms*. This is the **molecular geometry**.

• Determine the molecular geometry of BeCl₂, CO₂, BF₃, CCl₄, PF₅, and SF₆

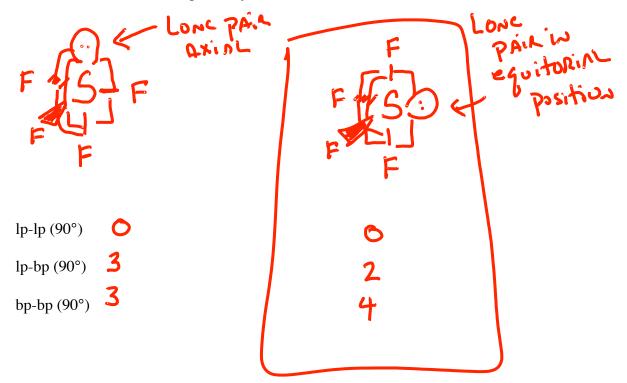
Molecular Shapes: Adding Lone Pairs

Note that the placement of the electron pairs determines the structure, but the name is based on the positions of the atoms. Therefore, it is incorrect to say that the NH_3 molecule is tetrahedral. It has a tetrahedral arrangement of electron

Table 10.1		Pairs About a Central Ator of Some Simple Molecules las No Lone Pair	
Number of Electron Pairs	Arrangement of Electron Pairs*	Molecular Geometry*	Examples
2	180° 	B—A—B	BeCl ₂ , HgCl ₂
3	Linear 120° Trigonal planar	Linear B B Trigonal planar	BF3
4	Tetrahedral	B B B B B B B B B B B B B B B B B B B	CH_4 , NH_4^+
5	Trigonal bipyramidal	Tetrahedral B B B B B B B B B B B B B B B B B B B	PCl ₅
6	90° • • • • • • • • • • • • • • • • • • •	B B Cotahedral	SF_6

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Molecular Shapes: Adding Lone Pairs


SF

• Predict molecular geometry of SF₄

There are 2 possibilities for placing the lone pair; which is the best geometry? There 3 types of repulsive forces. The order of repulsive forces, from strongest to weakest is:

HIGH ENCESS lone pair-lone pair > lone pair-bond pair > bond pair-bond pair

The closer together the electrons are forced, the stronger the repulsion between them. Therefore, the repulsion between two electron pairs is much more severe at an angle of 90° than at 120° or 180° , respectively.

A= central ATOM E= # of Lone pairs B= # of Bond pairs

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Table 10	.2 Geometry of S	imple Molecules	and lons in W	hich the Central At	om Has One or M	ore Lone Pairs
Class of molecule	Total number of electron pairs	Number of bonding pairs	Number of lone pairs	Arrangement of electron pairs*	Geometry	Examples
AB ₂ E	3	2		B B Trigonal planar	Bent *	
AB ₃ E	4			B A B B Tetrahedral	Trigonal pyramidal	P NH3
AB ₂ E ₂	4	2	2	A B Tetrahedral	Bent	H ₂ O P
AB4E	5	4	Ĵ	B B Trigonal bipyramidal	Distorted tetrahedron (or seesaw)	SF4 P
AB ₃ E ₂	5	3	2	B B B B Trigonal bipyramidal	T-shaped	CIF ₃
AB ₂ E ₃	5	2	3	B A B Trigonal bipyramidal	Linear	I ₃
AB5E	6	5		B B B B	Square pyramidal	P BrF5
AB ₄ E ₂	6	4		$B \xrightarrow{B} B$	Square plana	XeF ₄

Deviations from Ideal Bond Angles

• How can we explain the following experimental observations?

 CH_4

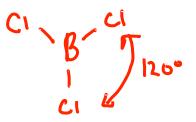
H–C–H bond angle: 109.5°

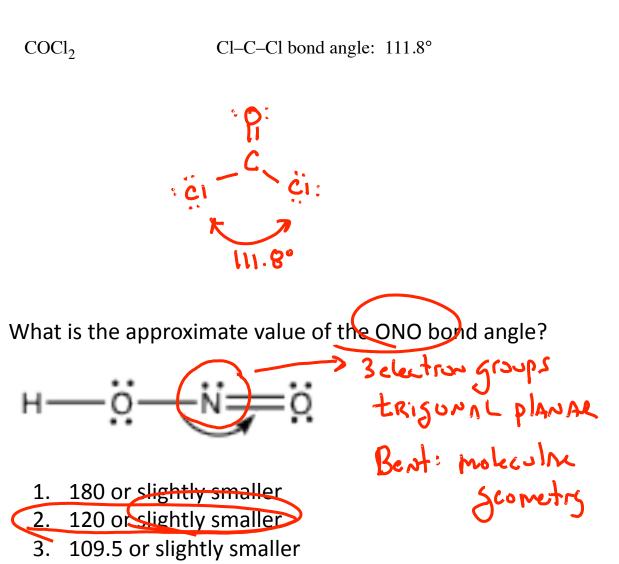
н то-Н 5 109.5°

 NH_3

H–N–H bond angle: 106.7°

H N H J 106.7°


 H_2O


H–O–H bond angle: 104.5°

Deviations from Ideal Bond Angles

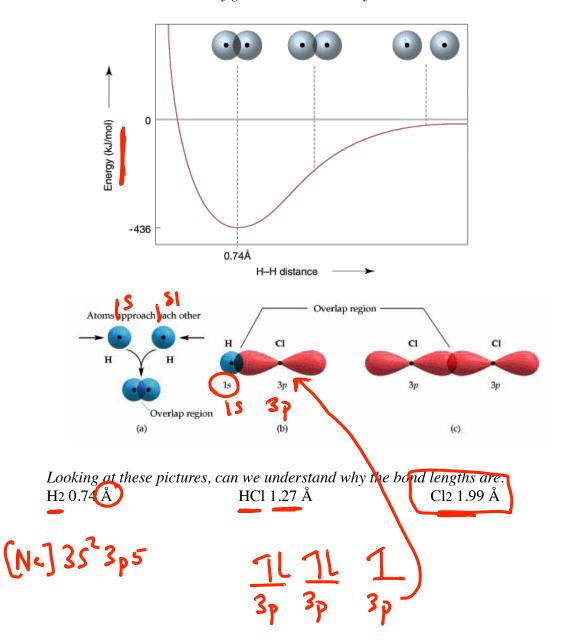
• How can we explain the following experimental observations?

BCl₃ Cl–B–Cl bond angle: 120°

Polarity of Molecules

• Recall that bonds can be *polar* if there is a difference in electronegativity between the atoms in the bond. However, it is possible for a molecule with polar bonds to be *nonpolar*.

I. A Molecule with A molecule with **T** : LONC PAIRS NO LOAC PAIRS All polar except For two! · T.F. All terminal Moms Are the same : NON POLAN (CC14) Except Linche FAND Squar plank All t-Atoms most he "IF terminal ATOMS chiForent: Polar (CH2CI) the IdentiaL Let's look at other examples н Н Н н IAR Polar Polar Н Н Н Nonpolar Nonpolar Polar


Valence Bond Theory

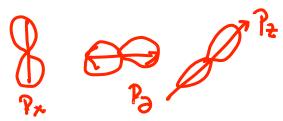
• Why do bonds form between atoms? How can we use atomic orbitals to explain bonding? Let's look at the bonding in H_2 , HCl, and Cl_2 as examples.

What are the electron configurations of H and Cl?

How can these electron configurations be used to form bonds?

Hybridization: Why?

• How can we use atomic orbitals to account for the geometries of the molecules? Consider the bonding in ammonia, NH₃:


Draw the Lewis structure for ammonia:

How many bonds are being formed by nitrogen? What nitrogen orbitals are available?

H: $|s' = N[H_0] 2s^2 2p^3 \frac{1}{2s} \frac{1}{2p} \frac{$

Given those four orbitals, what geometry might we predict for ammonia?

What is the observed electron pair geometry of ammonia?

How can this be explained using hybridization?

S + P + P + P

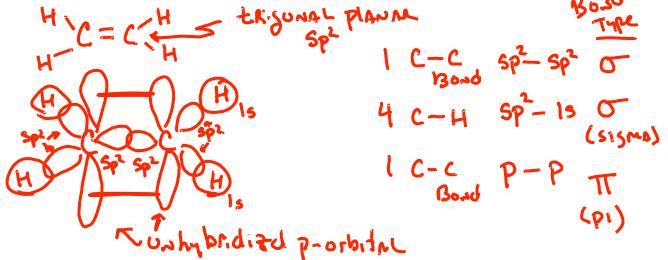
Tomic orb

brid orbitals

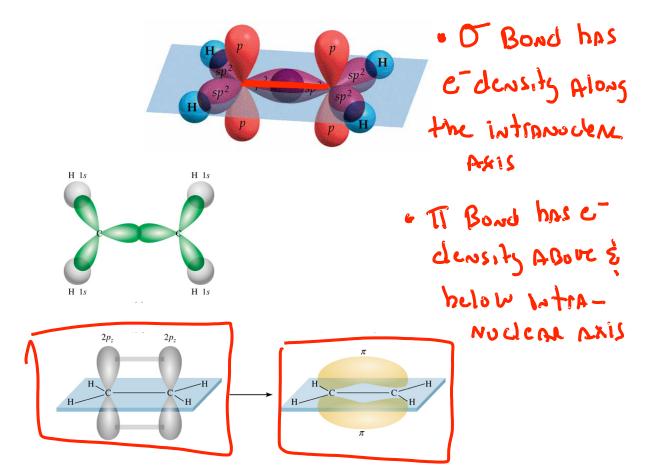
Hybridization is a **convenient fiction**. It can be used to describe the bonding for most common geometries. Hybridization is not the reason but the way we can think about bonding between atoms.

Hybridization: Quick and Dirty

• A dirty secret:


Hybridization is simply a code for electron-pair geometry. Let's take a look:

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display


Table 10.4	Important Hybrid	l Orbitals and	Their Shapes	
Pure Atomic Orbitals of the Central Atom	Hybridization of the Central Atom	Number of Hybrid Orbitals	Shape of Hybrid Orbitals	Examples
s, p	sp	2	180°	BeCl ₂
s, p, p	(sp ²)	3	Linear	BF ₃
s, p, p, p	sp ³	4	Trigonal planar	сн ₄ , NH ⁺ 5р³
s, p, p, p, d	sp ³ d 5p ³ cl	5	Tetrahedral	PCl ₅
s, p, p, p, d, d	sp ³ d ² Sp ³ d ²	6	Trigonal bipyramidal 90° 90° 90° 90° Octahedral	SF_6

Hybridization: Multiple Bonds

• Consider ethene (also called ethylene): C_2H_4 . Draw a Lewis structure, and use it to determine the geometry and hybridization of each of the carbon atoms.

How can we describe the double bond in terms of orbital overlap?

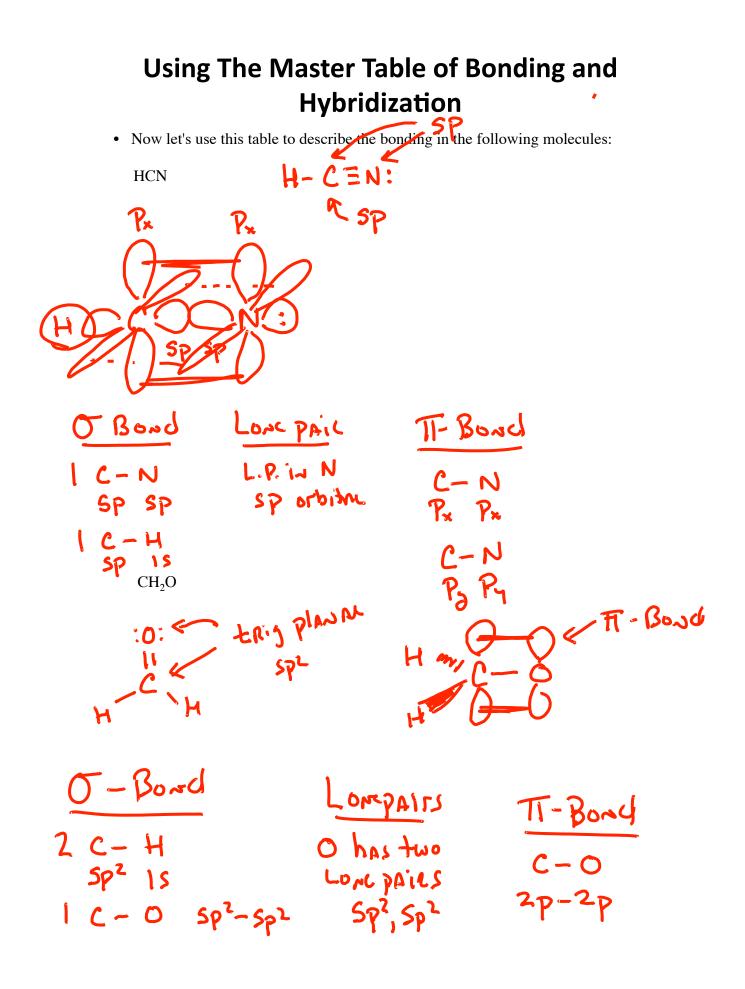
The Master Table of Bonding and Hybridization

• Let's fill out the following table of bonding and hybridization:

Number of Electron Domains	Electron-Pair Geometry	Hybridization	Number of σ bonds and lone pairs	Leftover p-orbitals
2	Linche	SP	2	2
3	TRIG" DIADAN	sp2	3	١
4	tetra- HedraL	Sp3	4	0
5	trig- Bipyramk	sp ³ d	5	0
6	octa- Hedtal	Spaz	6	0

Justin's Super Complete Table Of Everything

The Complete Table of Hybridization and Geometry

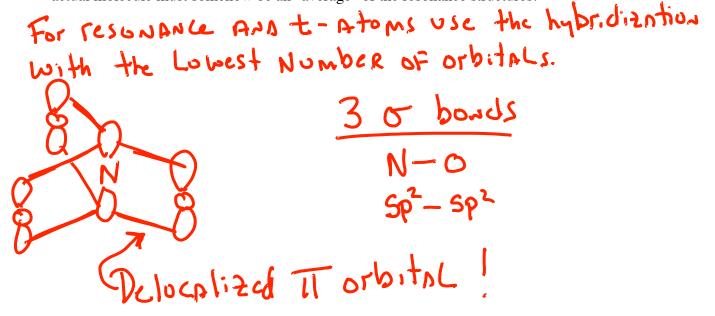

Number of Electron Domains	Hybrid- ization	Electron-Pair Geometry	Line, Dash, and Wedge Perspective Representation of the Electron-Pair Geometry	Number of Lone Pairs	Molecular Geometry	Bond Angles	Polar? (***)
2	sp	Linear		0	Linear	180°	No
(two sp hybrid orbitals)		als)	—A—				
(2 unhybridiz	ed p orbitals are	available for π bonding)					
3	sp^2	Trigonal Planar	1 .	0	Trigonal Planar	120°	No
(thre	(three sp ² hybrid orbitals)		A or A	1	Bent	< 120°	Yes
(1 unhybridi:	(1 unhybridized p orbital is available for π bonding)		~ ~ •				
4	sp ³	Tetrahedral		0	Tetrahedral	109.5°	No
four sp ³ hybrid orbitals) (0 unhybridized p orbitals are leftover; no π bonding)		tals)	A	1	Trigonal Pyramidal	< 109.5°	Yes
		leftover; no π bonding)		2	Bent	< 109.5°	Yes
5	sp ³ d	Trigonal Bipyramidal		0	Trigonal Bipyramidal	90° and 120°	No
(five sp ³ d hybrid orbitals) (0 unhybridized p orbitals are leftover; no π bonding)		tals)	A	1	See-Saw	$<90^\circ$ and $<120^\circ$	Yes
		leftover; no π bonding)		2	T-Shaped	< 90°	Yes
			Note: Contains Axial and Equatorial Positions.	3	Linear	180°	No
			Lone pairs (if any) go in Equatorial Positions				
6	$sp^{3}d^{2}$	Octahedral		0	Octahedral	90°	No
(six	sp³d² hybrid orbi	tals)	-A or A	1	Square Pyramidal	< 90°	Yes
(0 unhybridiz	zed p orbitals are	leftover; no π bonding)		2	Square Planar	90°	No
					-		

Number of Electron Domains (or "Number of electron pairs") = (Number of Other Atoms Something is Bonded To) + (Number of Lone Pairs)

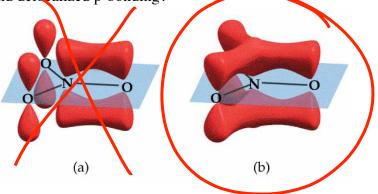
Hybrid orbitals are used to form σ bonds and to hold lone pairs of electrons.

Unhybridized p orbitals are used to form π bonds.

***Note: "Polar?" refers to a molecule in which all terminal atoms are the same. In general, if terminal atoms are different, the molecule will be polar.



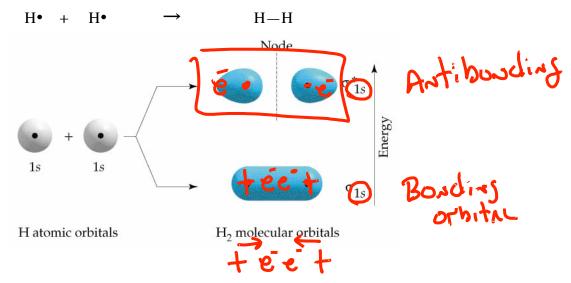
Delocalized π Bonding


Here is the Lewis structure for the retrate ion, NO_3^- . So O_3^- . So $O_$

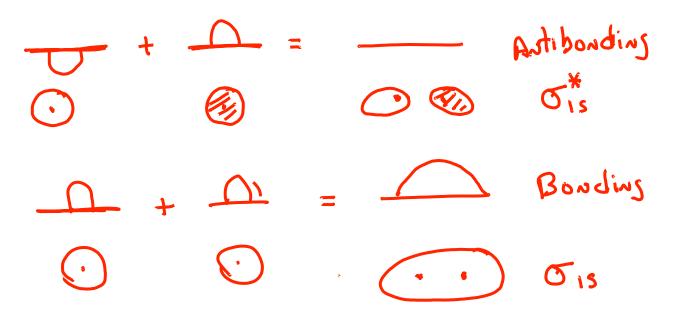
٠

• Using the "Master Table", how can we describe the bonding in nitrate? Remember: the actual molecule must somehow be an "average" of the resonance structures.

• Nitrate is a classic example of delocalized p-bonding. How do the pictures below represent localized and delocalized p-bonding?



Molecular Orbital Theory


MO theory pictures electrons as being distributed among a set of molecular orbitals of discrete energies.

Electron density distribution

Imagine making H₂ from combining 2H atoms

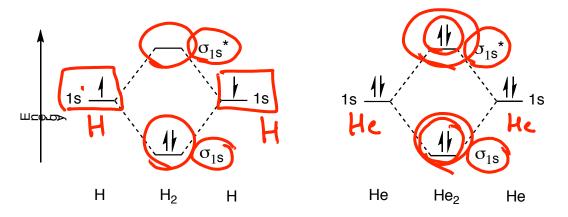
When two atomic orbitals are combined, two new molecular orbitals are created: bonding and antibonding

Bonding will result if the molecule has lower energy than the separated atoms.

Molecular Orbitals: H₂ and He₂

How to construct a molecular orbital (MO) energy level diagram

1. Write electron configurations for the valence electrons of the atoms involved.

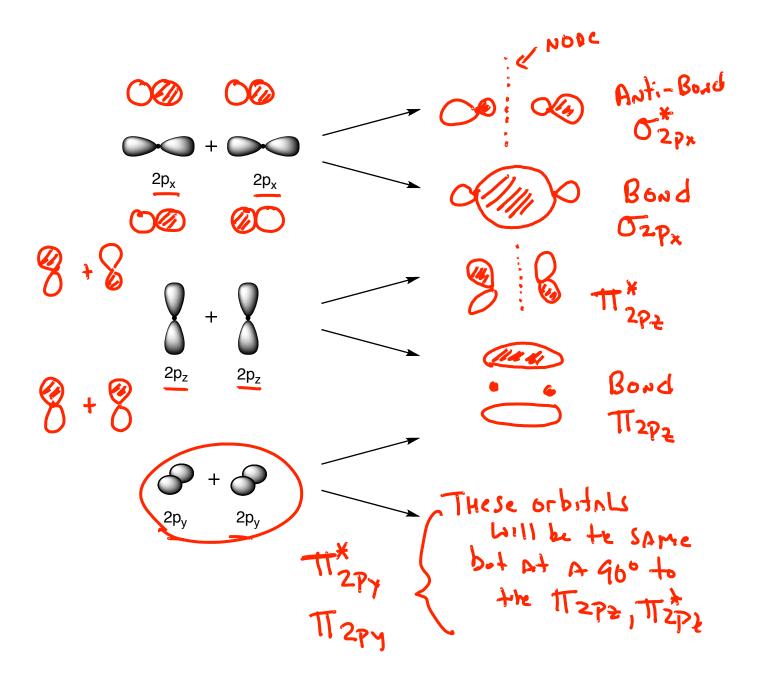

2. Create Molecular Orbitals(MOs) by combing the valence Atomic Orbitals (AOs) The number of MOs created will equal the number of AOs from the atom. Use dashed lines to indicate which AOs were combined to create a MO.

3. Fill these MOs with the valence electrons.

4. The filling of electrons in both AOs and MOs proceeds from low to high energies. Each orbital can accommodate up to two electrons with opposite spins. The number of electrons in the MOs is equal to the sum of all the electrons on the bonding atoms.

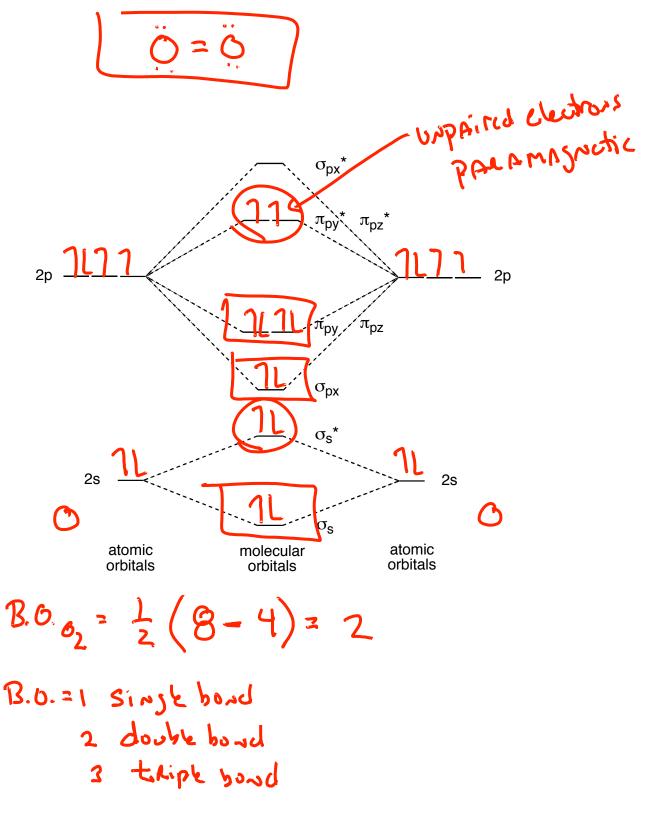
5. Label the MOs to indicate their symmetries (σ or π), characters (bonding or antibonding) and atomic orbitals used to create the MOs.

This molecular orbital treatment can explain why H_2 exists but He_2 does not.



• Bond order is used to evaluate the stabilities of these species: If the number of bonding electrons is greater than the number of antibonding electrons in a given molecule, the molecule is predicted to be stable.

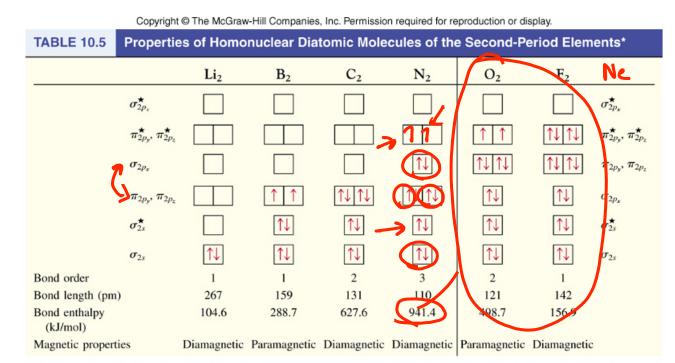
Bond order =
$$\frac{1}{2}$$
 (electrons in bonding orbitals electrons in antibonding orbitals
 $B \cdot O = \frac{1}{2}(2 - 0) = 1$ Single $H - H$
 H_2
 $B \cdot O = \frac{1}{2}(2 - 2) = 0$ No Boad
 $H_c = \frac{1}{2}(2 - 2) = 0$ No Boad


σ and π Molecular Orbitals

• If we use p-orbitals, we have more options for how to combine them. Note that these are analogous to the sigma (σ) and pi (π) bonds we saw earlier, except that now we have corresponding antibonding orbitals (which are required because of the rule of conservation of orbitals).

Molecular Orbitals: Second-Period Elements

• General MO energy diagram for the second-period homonuclear diatomic molecules. The diagram assumes no interaction between the 2s and the 2p atomic orbitals.


Molecular Orbitals: O₂, F₂, and Ne₂

• Now, all we need to do is fill the orbitals! Let's start with O₂:

• What can we learn from the MO diagram?

Molecular Orbitals: B₂, C₂, and N₂

• For reasons that are beyond the scope of this course, the MO energies for B, C, and N are slightly different. What changes?

*For simplicity the σ_{1s} and σ_{1s}^{\star} orbitals are omitted. These two orbitals hold a total of four electrons. Remember that for O₂ and F₂, $\sigma_{2\rho_s}$ is lower in energy than $\pi_{2\rho_s \text{ and }} \pi_{2\rho_s}$.

B.0 $N_2^{2^-} = \frac{1}{2}(8-4) = 2$

Molecular Orbitals of Heteronuclear Molecules

• Heteronuclear diatomic molecules (like NO) are exactly the same. Let's construct the MO diagram for NO, which has the same order of orbital energies as O_2 :

