The Complete Table of Hybridization and Geometry

Number o Electron Domains	of Hybrid- s ization	Electron-Pair Geometry	Line, Dash, and Wedge Perspective Representation of the Electron-Pair Geometry	Number of Lone Pairs	Molecular Geometry	Bond Angles	Polar? (***)
2	sp	Linear		0	Linear	180°	No
(two sp hybrid orbitals)			—A—				
(2 unhybrid	dized p orbitals ar	e available for π bonding)					
3	sp^2	Trigonal Planar	1	0	Trigonal Planar	120°	No
(three sp ² hybrid orbitals)			A or $-A$	1	Bent	< 120°	Yes
(1 unhybri	idized p orbital is	available for π bonding)					
4	sp ³	Tetrahedral		0	Tetrahedral	109.5°	No
(four sp ³ hybrid orbitals)				1	Trigonal Pyramidal	< 109.5°	Yes
(0 unhybridized p orbitals are leftover; no π bonding)				2	Bent	< 109.5°	Yes
5	sp ³ d	Trigonal Bipyramidal		0	Trigonal Bipyramidal	90° and 120°	No
(five sp ³ d hybrid orbitals)			A ``	1	See-Saw	< 90° and < 120°	Yes
(0 unhybridized p orbitals are leftover; no π bonding)				2	T-Shaped	< 90°	Yes
			Note: Contains Axial and Equatorial Positions.	3	Linear	180°	No
			Lone pairs (if any) go in Equatorial Positions				
6	$sp^{3}d^{2}$	Octahedral		0	Octahedral	90°	No
(six sp ³ d ² hybrid orbitals)			-A or A	1	Square Pyramidal	< 90°	Yes
(0 unhybri	idized p orbitals a	re leftover; no π bonding)		2	Square Planar	90°	No

Number of Electron Domains (or "Number of electron pairs") = (Number of Other Atoms Something is Bonded To) + (Number of Lone Pairs)

Hybrid orbitals are used to form σ bonds and to hold lone pairs of electrons.

Unhybridized p orbitals are used to form π bonds.

***Note: "Polar?" refers to a molecule in which all terminal atoms are the same. In general, if terminal atoms are different, the molecule will be polar.