SEE Detailed Answer key Poster on Wiebsiat for Answers to problems not workep Throne below

Chem E-1a
Friday Review Problems
cl counter ion
Chapter 20: Coordination Compounds

1. Consider the coordination compound $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{ClBr}\right] \mathrm{Cl}$
a) Write the correct name of this compound.

$$
\text { TRansition Mia: } C_{0}^{+3}
$$

LIGAND: $2 \mathrm{NH}_{3}=$ Ammine
$2 \mathrm{H}_{2} \mathrm{O}=A$ QUA
$1 \mathrm{Cl}^{-}=$CHLORO
$1 \mathrm{Br}^{-}=$Bromo
DIAMMWNEDIAQUABROMOCHLOROCOBALT (III) CHLORIDE
b) Determine the oxidation state of cobalt in this compound.

$$
+3
$$

c) Determine the number of d electrons on cobalt.

$$
6 \mathrm{~d} \text { ELECTRONS }
$$

d) This complex is low-spin. Draw an energy level diagram for the d orbitals of Co in this compound.
e) Determine the number of unpaired electrons in this compound.

1. (cont.)
f) Draw all unique geometric and optical isomers of the complex $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{ClBr}\right]^{+}$

TRANS:

$$
\begin{gathered}
\mathrm{NH}_{3}-\mathrm{NH}_{3} \\
\mathrm{H}_{2} \mathrm{O}-\mathrm{H}_{2} \mathrm{O} \\
\mathrm{C}-\mathrm{Br}
\end{gathered}
$$

$\mathrm{NU}_{3}-\mathrm{NH}_{3}$
$\mathrm{H}_{2} \mathrm{O}$ - C
$1.120-B r$

$\mathrm{H}_{2} \mathrm{O}-\mathrm{H}_{2} \mathrm{O}$
$\mathrm{Ce}-\mathrm{NH}_{3}$

$$
{ }^{\bar{B}} \mathrm{C}-\mathrm{NH}_{3}^{3}
$$

$$
B_{r}-H_{2}
$$

$$
\mathrm{Cl}-\mathrm{NH}_{3}
$$

$\mathrm{H}_{2} \mathrm{O}-\mathrm{NH}_{3}$

CHA
CHINA

EnANTOMGER
$\mathrm{Br}-\mathrm{NH}_{3}$
$\mathrm{Ce}-\mathrm{H}_{2} \mathrm{O}$
$\mathrm{H}_{2} \mathrm{O}$ - NH,
2. You have three solutions each containing one of the following complex ions:

$$
\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \quad\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+} \quad\left[\mathrm{Ni}(\mathrm{en})_{3}\right]^{2+}
$$

One solution is blue, one is green, and one is violet (though not necessarily in that order).
a) Match the color of each solution with the nickel complex it contains.

ABSORBS: $R O$ Y G AV

$$
\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+1}
$$

b) All of these nickel complexes have the same d-orbital electron configurations. Show a diagram of the d-orbital energies with the correct number and configuration of electrons.
c) Will these complexes be paramagnetic or diamagnetic?

3. Consider the octahedral complex $\left[\mathrm{CoClBr}(\mathrm{en})_{2}\right]^{+}$ where en = ethylenediammine $\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)$

Biperitar Lions
a) Provide the correct systematic name for the compound $\left[\mathrm{CoClBr}(\mathrm{en})_{2}\right] \mathrm{Cl}$.
er sing

b) Draw all the unique geometric and optical isomers of this complex. Indicate whether each isomer is chiral or achiral.
2 en Ligands:

Citing
Alitipar
(SDELIDR Ca be-
DONS KGLIOW
norms

3. (cont.)
c) This cobalt complex, $\left[\mathrm{CoClBr}(\mathrm{en})_{2}\right]^{+}$, is known to be diamagnetic. The cobalt complex $\left[\mathrm{CoF}_{6}\right]^{3-}$, however, is paramagnetic. Explain why these two species exhibit different magnetic behavior.
d) The $\left[\mathrm{CoF}_{6}\right]^{3-}$ complex appears blue. Would you expect the $\left[\mathrm{CoClBr}(\mathrm{en})_{2}\right]^{+}$complex to absorb light of a higher energy or lower energy? Name one color that $\left[\mathrm{CoClBr}(\mathrm{en})_{2}\right]^{+}$ could not be.

