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Abstract—This paper proposes a strategy for transporting a

large object to a goal using a large number of mobile robots

that are significantly smaller than the object. The robots only

push the object at positions where the direct line of sight

to the goal is occluded by the object. This strategy is fully

decentralized and requires neither explicit communication nor

specific manipulation mechanisms. We prove that it can transport

any convex object in a planar environment. We implement this

strategy on the e-puck robotic platform and present systematic

experiments with a group of 20 e-pucks transporting three objects

of different shapes. The objects were successfully transported

to the goal in 43 out of 45 trials. Further experiments show

that the goal can be mobile, making it possible to navigate the

object around obstacles. We also tested the strategy in a 3-D

environment using physics-based computer simulation. Due to

its simplicity, the transport strategy is particularly suited for

implementation on micro-scale robotic systems.

Index Terms—Swarm robotics, cooperative transport, cooper-

ation without communication, occlusion, e-puck.

I. INTRODUCTION

T

HE transport of large and heavy objects towards specific
goal locations is a task that lends itself to the use of

multiple robots. However, a survey of the literature reveals
that multi-robot systems that are capable of solving this task
are often sophisticated even in proof-of-concept studies. One
of the problems is visual occlusion. To move the object in the
correct direction, the robots must interact not only with the
object, but also with the goal. As the object is often larger than
the robots, it may occlude their view of the goal. The problem
of how the robots should perceive the goal and potentially
inform each other about its position is not simple to solve [2],
[3], and often imposes limitations on the system. For instance:

• In a 2-D environment, the robots could perceive the
goal using sensors that are positioned higher than the
object [4], [5]. However, this imposes a limitation on the
maximum possible height of the object.
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• A centralized system could be used, whereby an in-
frastructure is in place to handle the localization of
and communication with robots [6]. The applicability of
such systems is restricted to environments where these
infrastructures are available.

• A decentralized system could be used that relies on inter-
robot communication. For example, some of the robots
could perceive the goal and inform other robots that are
not able to perceive the goal [7], [8], [9], [10], [11].
This solution usually requires a reliable communication
technology, which may limit the system’s scalability in
the number of robots.

• The object itself could be considered as part of the
solution, whereby it is explicitly designed or modified
in such a way to assist the robots in transporting it to the
goal [3]. This, however, results in a system with limited
generalizability to other objects.

The novelty of the transport strategy presented in this paper
is that rather than treating occlusion as a problem to be
overcome, occlusion is used to organize a swarm of robots
to push a large object to a goal. The basic idea is to push the
object across the portion of its surface where it occludes the
direct line of sight to the goal. This results in the transportation
of the object along a path that may not be optimal but always
arrives at the goal. As shown in this paper, the strategy can
be implemented in a fully decentralized manner. The robots
use on-board cameras to perceive the object and goal. They
do not need to communicate explicitly with each other. The
performance of the group scales well with the number of
robots, making it possible to transport objects of various shape
and size.

The simplicity of the strategy makes it particularly suited
for the implementation on mobile robots that have limited
capabilities [12], [13]. In the long term, such simple multi-
robot strategies could be implemented at very small scales.
Potential applications for swarms of such minimalist robots
could be the delivery of drugs through the vascular network
of humans or the removal of debris within fluid pipelines.

This paper extends preliminary work that was presented
in [1]. It presents for the first time a mathematical analysis
of the transport strategy, proving its correctness for objects of
arbitrary convex shapes. Moreover, it presents the results from
a new set of experiments that assess (i) the effectiveness of the
strategy in transporting objects of different shapes and sizes,
and (ii) the ability of the strategy to transport an object towards
a dynamic target. Finally, results obtained from simulation
suggest that the strategy can be implemented as well in 3-
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D environments.
This paper is organized as follows. Section II discusses

related work. Section III describes the problem formulation
and introduces the transport strategy in a platform-independent
manner. Section IV provides a proof of the strategy’s correct-
ness for objects of arbitrary convex shapes moving in a planar
environment. Section V presents a set of experiments using the
e-puck robotic platform. Section VI studies the strategy when
the goal is a mobile robot controlled by a human. Section VII
presents a conceptual implementation of the strategy in a
3-D environment using physics-based computer simulation.
Section VIII concludes the paper.

II. RELATED WORK

Over the past 20 years, multi-robot object transportation has
become a canonical task for studying cooperation in a group of
robots. The three most common types of strategies are pulling,
pushing and caging.

Transport by pulling involves making a number of robots
connect themselves to the object, for example, through grasp-
ing [14], [15], [16] and/or lifting [17], [18], [19], [20]. In
nature, such behavior seems to require relatively little intelli-
gence on behalf of the individuals [21]. However, the pulling
strategy is still difficult to be applied on robotic systems
because of the complexity of the physical mechanisms.

Transport by pushing is a simple way of manipulating an
object when the object is relatively large compared to the
robots. The problem to stabilize the moving direction of the
object while being pushed by a single robot is similar to the
inverted pendulum problem; the controller design is difficult
compared to the simple physical mechanism it requires. In a
multi-robot pushing system, increasing the number of pushing
robots not only increases the overall pushing force but also
simplifies the stabilization problem because the pushing forces
distributed over multiple contact points on the object can
be used to reach equilibrium [22]. For example, in [23], a
physical system that uses two six-legged robots to push a large
rectangular object was presented. In the experiment, the object
is movable by one robot, but the performance was improved
significantly when the object was pushed by two robots that
cooperated through wired communication. Nevertheless, it is
still a problem for robots in cooperative transport to choose
good pushing positions and speeds.

Cooperative transport by caging is a special case of pushing.
It requires a group of robots to organize themselves into a
formation around the object in a way that the object is caged
inside the formation [5], [24]. As long as the formation of the
robots is maintained while they are moving, the object will
follow the group of robots. Depending on the shape of the
object, caging can be a complex problem [25], [26]. As the
caging solutions often require a certain number of robots and
a considerable amount of information about the object, it is
challenging to design a single caging system that is scalable
in terms of the number of robots and flexible in terms of
object types. In [6], a caging system that copes with a variable
number of robots is presented. A group of robots orbit around
an object that has corners. The object is however only moved

by a few robots at a given time. This imposes a limit on the
object’s weight that can be handled by the system.

It is desirable for a cooperative transport system to be
scalable in the number of robots [2]. One common point of
pushing/caging based systems (including all systems referred
to before except for [6]) is that the number of robots is not
large, typically fewer than five. One important factor that limits
the number of robots is the use of inter-robot communication
to achieve highly cohesive behavior. There are a few works
that have studied how a relatively large group of robots can
be used in a cooperative transport task when the controller
only requires local information. For example, in [4] and [27],
a system that took some inspiration from ants is studied.
The robots simply map the perceptual cues obtained from a
small number of sensors onto nine motion primitives. Due to
the simplicity of the control method, the number of robots
working simultaneously in the cooperative transport task is
flexible and a physical system containing 3 to 6 robots was
used in experiments. In [3], a physical system that includes up
to 100 Kilobots was used to study a decentralized strategy for
collective transport. The strategy was evaluated in situations
where the robots resided within the object being transported.
In [28], a large swarm of Kilobots was controlled using a
global input signal issued by a human operator to transport
objects towards a goal.

It is also very common that the dimensions of the object
need to be limited so that the pushing robots can directly
perceive the other robots or the goal. For example, many
systems (including all pushing systems referred to before)
require the object to be lower than some of the sensors on
the robots. An alternative decentralized approach is through
role differentiation using explicit inter-robot communication.
For example, in [8], a box pushing system is presented where
robots assume different roles. In the case of cooperative
transport, the roles are “pusher” and “watcher”. The watcher
is in front of the object and observe the goal while the pushers
are behind the object. The robots communicate through WiFi.
In [9], an underwater box-pushing system is presented with
three robotic fish; two of them work as pushers while the other
works as an observer. The fish can share sensing information
through explicit communication to work out the approximate
pose of the box, the two pushers can push on appropriate
positions without seeing the goal directly.

One important property of the method we propose is that
neither consistent perception of the goal nor explicit com-
munication are required for the robots that are pushing the
object. This removes most of the limitations discussed above.
Assuming the robots are significantly smaller than the object,
they can organize themselves into positions where the direct
line of sight to the goal is occluded.

III. METHODOLOGY

A. Problem Formulation

The task we consider is as follows. A bounded environment
contains a convex-shaped object, a goal, and a number of
robots. The environment is otherwise free of obstacles. The
aim is that the robots, which are initially placed in arbitrary
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Fig. 1. Illustration of how a swarm of robots can push a large object in a 2-D
planar environment (adapted from [1]). The robots keep pushing only along
the section of the object’s perimeter that occludes their views of the goal. As
a consequence, the motion of the object will be approximately towards the
goal.

locations, push the object to the goal. Note that the goal
specified in the problem may not be the final destination of
the transportation. In a broader scenario, the goal could be
moving, or it could be one of a series of way points (see
Section VI).

We make the following assumptions. The object and the
goal can each be recognized by the robots. The dimension of
the object is large enough to occlude the robots’ perception
of the goal when they are behind it (see Fig. 1). The robots
can perceive the goal from any point within the environment,
unless it is occluded by the object.

B. Occlusion-Based Cooperative Transport Strategy

Consider a number of robots that can distribute themselves
uniformly around the section of the object’s surface that
occludes their view of the goal (the “back side” of the object),
as shown in Fig. 1. Then, if all the robots push the object by
moving in a direction perpendicular to the object’s surface
at their points of contact, the overall motion of the object
will be approximately towards the goal. As the object moves,
its occluded surface changes over time, thus changing the
direction of motion. If the robots keep pushing only against the
occluded surface, the object will eventually reach the goal1.

The occlusion-based cooperative transport strategy can be
realized using a fully decentralized behavior and without ex-
plicit communication among the robots. In Fig. 2, the behavior
of the individual robots is given in form of a state machine.
A robot first searches the object using an algorithm that is
suitable for the environment (‘Search Object’). For bounded
environments, as considered in this work, the robot performs
a random walk. More sophisticated search algorithms could
help our strategy to also cope with unbounded environments.
Once the object is seen, the robot moves towards it (‘Approach
Object’). When the robot has reached the object, it enters
state ‘Check for Goal’ to work out whether the goal can
be seen from its position. If the goal can not be seen, the

1The strategy could in principle be also used for transporting objects that
are not tall enough to occlude the robots’ view of the goal. If a robot reached
the object but the goal was visible ‘behind’ it, the robot would then still push.


































Fig. 2. A state machine representation of the individual robot behavior
realizing the occlusion-based cooperative transport strategy. The start state
is ‘Search Object’. If the object is lost at any stage, the robot restarts from
‘Search Object’. The behavior is fully decentralized and does not require
explicit inter-robot communication.

robot will push the object simply by moving against it (‘Push
Object’). If the goal can be seen, the robot will attempt to find
another position around the object (‘Move Around Object’), for
example, executing a left-hand-wall-following behavior.

Although not strictly necessary, a behavior realizing the
above strategy should also prevent robots from colliding
with each other and the boundaries of the environment. This
can greatly improve performance because robots move with
fewer collisions. Hence, in our implementations robots and
the boundary are treated as obstacles to avoid. The goal, if
embodied, is also treated as an obstacle, while it still serves
as the target of transportation.

When a group of robots execute the overall behavior, they
eventually end up at different positions along the occluded
section of the object due to the stochastic nature of the system.
However, the more robots that are used, the more likely it
is that they approximate a uniform distribution (as shown in
Fig. 1).

IV. MATHEMATICAL ANALYSIS

In this section, we analyze the occlusion-based cooperative
transport strategy for the case of arbitrary convex objects in
planar environments. We prove that, under some idealized
assumptions, the strategy always succeeds in moving the
object to the goal. Note that the transport strategy is not suited
for objects of arbitrary concave shapes (for a counter example,
see Appendix A).

A. Modeling of the Occlusion Problem

We assume that each of the goals and robots are points
(without embodiment). Let c 2 R2 be the center of mass of a
rigid convex object with respect to a coordinate frame in which
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Fig. 3. If normal forces are uniformly applied on the blue section of
the convex-shaped object’s perimeter (major arc ab in this diagram), the
combined force vector, F, is the vector (b� a) rotated by +⇡

2 and its
magnitude is proportional to the length b� a (chord ab in this diagram).
Point q is an affecting point of F.

g = [0, 0]

T is the goal point. Let the perimeter of the object be
described by a closed, convex and differentiable curve given
by:

p(✓) =


r(✓) cos ✓

r(✓) sin ✓

�
+ c, (1)

with ✓ 2 [0, 2⇡] and r : [0, 2⇡] ! R differentiable and
satisfying r(2⇡) = r(0). By specifing r(✓), any convex shape
can be approximated by p. Initially, g is outside p.

The inwards pointing normal vector on p(✓), named N(✓),
is the derivative of p(✓) rotated by ⇡

2 :

N(✓) =


0 �1

1 0

�
p0
(✓). (2)

Points along p where the direct line of sight to g is occluded
are between the two tangent points of p from point g. We write
the two tangent points as p(↵) and p(�), ↵,� 2 [0, 2⇡]. As
tangent points, they satisfy:

p(↵) ·N(↵) = p(�) ·N(�) = 0,

p(✓) ·N(✓) > 0, 8✓ 2 (↵,�).

(3)

Since p is convex and g is outside p, ↵ and � are well
defined. For convenience, write a = p(↵) and b = p(�).
Additionally, they are named so a is the tangent point on the
right side of vector (c�g) while b is the one on the left side.
Strictly speaking, a and b satisfy

a

x

c

y

� a

y

c

x

> 0,

b

x

c

y

� b

y

c

x

< 0,

(4)

with x and y subscripts denoting the x and y coordinates.
These properties of a and b will play an important role in the
proof of the transport strategy later.

Fig. 3 illustrates the above definitions. In colloquial terms,
all points p(✓) with ✓ 2 (↵,�) are on the occluded perimeter
of the object while all other points on p are visible from g.

B. The Resultant Force Applied on the Object

Lemma 1. Assume that n ! 1 robots are uniformly
distributed along the occluded perimeter of the object and
they are the only robots asserting a force on the object. The
direction of the resultant force asserted on the object by the
robots is equal to the direction of the vector (b � a) rotated
by +

⇡

2 and its magnitude is proportional to kb� ak.

Proof. According to the strategy, all robots along the occluded
perimeter assert normal forces on p. Without loss of generality
let the magnitude of the force be one unit force per unit length.
The combined force is the definite integral given by

F =

Z
�

↵


0 �1

1 0

�
p0
(✓) d✓. (5)

The solution of the definite integral in (5) is:

F =


0 �1

1 0

�⇣
p(�)� p(↵)

⌘
, (6)

which is:
F =


0 �1

1 0

�
(b� a) . (7)

We can also derive the torque around the z-axis caused by
the robots. For this, with slight abuse of notation, we interpret
all previous points as embedded in the x, y plane in R3. Again,
we assume that the magnitude of the force is one unit force per
unit length. Then the magnitude of the torque around z-axis
contributed by all robots with respect to point c is

Q =

Z
�

↵

[(p(✓)� c)⇥N(✓)] · ẑ d✓, (8)

where ẑ represents a unit vector pointing along the z-axis. The
part within the integral is equal to
2

4
r(✓) cos(✓)

r(✓) sin(✓)

0

3

5⇥

2

4
�r

0
(✓) sin(✓)� r(✓) cos(✓)

r

0
(✓) cos(✓)� r(✓) sin(✓)

0

3

5 ·

2

4
0

0

1

3

5
, (9)

which can be simplified to r

0
(✓)r(✓). Then (8) can be written

as:

Q =

Z
�

↵

r

0
(✓)r(✓)d✓. (10)

Its solution is:

Q =

r

2
(�)� r

2
(↵)

2

. (11)

Lemma 2. If the combined force contributed by the robots, F,
is considered as a single force while Q is the torque induced
by F, the mid point of segment ab is an affecting point of F.

Proof. Naming the affecting point of F as q, F, q and Q must
satisfy

Q = [(q� c)⇥ F] · ẑ. (12)

The above equation can be transformed into

q · (b� a) =
r

2
(�)� r

2
(↵)

2

+ c · (b� a), (13)

which can be viewed as the vector equation of a line.
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While q can be any point on (13), we make q a convenient
point on (13), which is

q =

a+ b

2

. (14)

C. Motion Dynamics of the Object

As the object is moved, a and b can change over time.
We assume that the robots react instantly to such changes so
that the occluded perimeter is always uniformly filled up with
pushing robots. Thus, (7) is valid at any point in time as long
as g is outside p. In other words:

F(t) =


0 �1

1 0

�⇣
b(t)� a(t)

⌘
. (15)

From (15), it follows that the rotation of the object does
not affect the relationship between a, b and F. According to
Newton’s laws, the translation dynamics of the center of mass
of the object are

v =

˙c, ˙v =

F

M

, (16)

where ˙v (respectively ˙c) is the derivative of v (respectively c)
with respect to time t.

We can apply a quasi-static analysis to the case here in
which some robots are pushing a rigid object slowly [29].
Then the translation dynamics of the object is

˙c = kF, (17)

where k 2 R+ is a positive constant that transfers F propor-
tionally to the velocity of the object.

D. Convergence of the Object’s Distance to the Goal

Theorem 1. The distance between c and g is strictly decreas-
ing over time if the velocity of the object is governed by (17).
As t ! 1, g will be on the object perimeter p.

Proof. Let l(t) = c(t) · c(t) be the squared distance of the
center of mass c to goal g, then its derivative with regard to
time is

˙

l = 2kc · F. (18)

Substituting F with (7), we get

c · F = (b

x

c

y

� b

y

c

x

)� (a

x

c

y

� a

y

c

x

). (19)

According to (4), c·F < 0. Hence, l(t) is strictly decreasing.
Since l(t) � 0 for all t > 0 (as long as g is outside p), we
get lim

t!1
l(t) = L 2 R. Therefore,

lim

t!1
c · F = lim

t!1
b

x

c

y

� b

y

c

x

+ a

y

c

x

� a

x

c

y

= 0, (20)

which together with (4) implies that:

lim

t!1
b

x

c

y

� b

y

c

x

= 0,

lim

t!1
a

y

c

x

� a

x

c

y

= 0.

(21)

In other words, the areas of the triangles gca and gcb
approach zero as t ! 1. Since c is always inside p the
triangles gca and gcb can never have 0 area unless a = g

(a)































(b)
Fig. 4. The e-puck robot. (a) An e-puck fitted with a black skirt and a green
top marker. (b) Top-view schematic of an e-puck (adapted from [1]), indicating
the locations of its wheels, camera and proximity sensors.

and b = g (see Fig. 3). Hence as t ! 1, g will be on p. In
other words, the object will ultimately coincide with the goal
and stop moving.

V. EXPERIMENTS WITH OBJECTS OF DIFFERENT SHAPES

To assess the occlusion-based cooperative transport strategy
in a 2-D planar environment, a decentralized controller is
implemented on a centimeter-scale mobile robot platform.

In our previous work [1], a preliminary version of the
controller was validated by experiment using a rectangular
box of dimensions 42 cm ⇥ 39 cm as the object. Using this
relatively regular object, we demonstrated the feasibility of
the transport strategy; the object was transported successfully
to the goal in all 30 trials that were conducted.

After analyzing the transport strategy mathematically, we
obtained an indication of objects with not-unusual shapes that
are nevertheless challenging for the strategy to handle. In this
section, a new set of experiments is introduced to evaluate the
strategy using objects of these shapes as well as compare the
experiments against predictions from the mathematical model.
The section also describes the robotic system as well as the
controller, which is an improved version over [1].

A. Robot Platform and Sensing

For the physical implementation we use the e-puck, which
is an off-the-shelf differential-wheeled robot [30]. The e-
puck is around 7.0 cm in diameter, around 5.5 cm high, and
weighs approximately 150 g. Its maximum speed is 12.8 cm/s.
Fig. 4(a) shows a photograph of an e-puck. In this study, each
e-puck was fitted with a black ‘skirt’ to give it a uniform color.



IEEE TRANSACTIONS ON ROBOTICS 6

In addition, it was fitted with a green top marker to facilitate
the post analysis of videos taken by an overhead camera.

Fig. 4(b) shows a schematic of the e-puck including the
locations of the sensors used in this study. The e-puck has
eight infrared proximity sensors distributed around its body;
they are 3.1 cm above the ground. It also has a directional
color camera in the front of its hull that is 2.8 cm above the
ground.

The infrared proximity sensors measure 50 times per second
the proximity to embodied items: the object, the goal, the
environment boundary, and other e-pucks. The proximity to the
first three items (passive items) is estimated by sending pulses
of infrared light and measuring their reflections (discarding
possible contributions from ambient infrared light). We found
that this method does not provide reliable estimates for the
proximity of e-pucks—neither the black skirts nor the plain e-
pucks would be suitable reflectors. To mitigate this problem,
we use a customized sampling routine, whereby the e-puck
emits infrared light almost continuously (see [1] for details).2

The directional color camera is used to recognize both
object and goal. The object is the only blue item in the
environment; the goal is the only red item in the environment.3
The camera provides images of resolution up to 640 ⇥ 480

at around 18 frames per second. The image is however sub-
sampled to 40⇥ 15 pixels.4 Each captured image is processed
to provide four scalar values: (i) the number of pixels that are
considered blue and red, and (ii) the horizontal distribution
biases of the blue and red pixels. For details, see [1] .

B. Controller

The e-puck controller is a state machine implementing the
individual behaviors of the transport strategy (see Fig. 2).

The robot performs a random walk and approaches any blue
object seen with its camera. If the robot loses sight of the
object, it resumes the search. When it reaches the object, it
does a full rotation to look for the red goal. If the goal is
not seen, the robot starts pushing the object. If the goal is
seen, the robot executes a left-hand-wall-following behavior,
which relocates the robot to a position where the goal may be
occluded by the object.

When in the pushing formation, a robot’s perception of the
goal may not only be occluded by the object but also by
its neighboring robots. However, the robots at the two ends
of the formation (i.e. at Positions A and B in Fig. 1) can
effectively monitor the visibility of the goal. These robots
can be considered as observers. When an observer perceives
the goal, it leaves the formation. Consequently, its neighbor
becomes an observer. Thus, those pushing robots that are no
longer in the occluded perimeter happen to leave in a recursive
manner. For e-pucks, this behavior is utilized so that only
observers are required to scan the environment for the goal
while the other pushing robots can be devoted exclusively to
pushing the object.

2Note that the sensors are not used for explicit inter-robot communication,
which in principle would be possible [3], [31].

3The e-puck’s wheels, which are partly red too, are hidden behind the skirt.
4To achieve this, a customized library was used.

During transport, a pushing robot moves perpendicularly
towards the object’s surface in front of it. If the object has
a curved perimeter (e.g. circle), this means that the distance
between two pushing robots will become smaller when the
object starts moving. Thus, collisions between the robots in
the pushing formation will occur. This problem is magnified
by the e-puck’s design: two e-pucks will easily get stuck when
they collide. In our previous work [1], the e-pucks avoided
collisions by leaving the pushing formation. In the version
used in this experiment, an improved implementation was used
to let the pushing robots adjust their moving direction to avoid
collisions and/or leave the pushing formation.

In order to make the controller work in a real environment,
basic behaviors like collision avoidance and error handling are
added into the state machine. For most of the state transition
conditions, certain sensory inputs are compared against a
preset threshold. In each of the states, specific low-level
motion controllers are activated to achieve the required motion.
Each of these controllers calculates the left and right wheel
speed by summing the weighted input of the proximity sensors
and of values extracted from the camera.

In [1], the implementation of the motion controllers is
detailed. The full state machine used on the e-puck and the
input weights can be found in [32].

C. Experimental Setup

1) Objects: We conducted experiments with three objects
of different shapes and sizes:

a) A circular object: Theoretically, this is an ideal case
as the resulting force points directly to the goal. However, in
practice, the curved perimeter could make the robots more
prone to collide with each other as the object is being
moved. Therefore, it is essential that the collision avoidance
mechanism in the pushing state is effective. As the pushing
forces of e-pucks are rather limited, at least three robots are
required to push this object.5

b) A scalene triangular object: This is a simple example
of a non-symmetric object. In this case, the ratio of the lengths
of the triangle’s sides is 3:4:5. According to Lemma 2, the
robots cannot push this object along a straight line, because
the resultant force vector will never pass through the object’s
centroid (i.e. the resultant torque can never be zero). As a
result, depending on which side(s) the robots are pushing from,
the object will rotate either clockwise or anticlockwise. Two
robots pushing on the same side near the sharpest corner are
enough to rotate this object. On the other hand, it takes at
least four robots pushing on the same side in order to induce
a translational motion.

c) An elongated rectangular object: This shape is prob-
lematic for the occlusion-based transport strategy, because the
resultant force can deviate by almost 90 degrees from the ideal
direction of transport. The object easily rotates if the pushing
formation is not uniform; in fact, one robot pushing at one end
is sufficient to induce a rotation. It takes at least two robots

5Depending on the floor condition and robot power, occasionally this object
may also be pushed by just two robots.
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TABLE I
SUMMARY OF THE EXPERIMENTAL SETUP AND DATA

Object Characteristics Experimental Results

Shape and Size Height Mass Pushing Force Successful Completion Time (s) Path Efficiency AE (deg)

Required Trials mean � mean � mean �

Circular, 40 cm diameter 10 cm 222 g ⇡ 0.75N 15 out of 15 220.0 26.3 0.914 0.029 26.7 16.8

Triangular, 45� 60� 75 cm 14 cm 432 g ⇡ 1.5N 14 out of 15 255.1 63.0 0.793 0.099 90.1 36.2

Rectangular, 58.5⇥ 13.5 cm 6.5 cm 160 g ⇡ 0.5N 14 out of 15 295.4 183.1 0.766 0.192 204.6 79.2







 























Fig. 5. Experimental setup. The robots were placed approximately in such a
formation because the self-calibration of the proximity sensors on the e-puck
requires a certain amount of space around the robot.

pushing on the same side in order to give a translational motion
to this object.

The physical details of the three objects are given in Table I.
The mass of each of the objects was chosen so that it is
theoretically possible for the e-pucks to push the object from
all directions. The side of the objects are painted blue. Two
orange markers of different size are attached on top of each
object, so that its position and orientation can be tracked in
an offline analysis.

2) Environment: The environment of the experiment is a
rectangular arena of size 400 ⇥ 225 cm that is bounded by
50 cm-high walls. The floor of the arena has light gray color,
and its walls are painted in white. The goal is a red cylinder
of 25 cm diameter and 42 cm height.

3) Trial Procedure: For each of the objects, we conducted
15 trials, that is, we conducted 45 trials in total. The number
of robots used in each trial was 20. This was much larger than
the least number of robots required for pushing the objects.
The strategy benefits from the use of more robots when dealing
with objects of various sizes and shapes.

The initial configuration of a trial is illustrated in Fig. 5. The
object’s centroid was positioned as indicated. The orientation

of the object was generated using a random number generator.
The robots were placed in a zone between the object and the
goal. The actual positions of the robots were loosely snapped
to a grid to ensure a minimum gap between robots which is
required by our self-calibration routine for the e-puck. Before
starting a trial, each robot rotated by a random proportion
of a full rotation to obtain its initial orientation. The trials
were started by issuing a signal via an infrared remote control
that is received by all robots simultaneously.6 The robots were
programmed to stop automatically after 15 minutes.

A trial was stopped if either of the following situations
happened:

1) The object collided with the goal object. The trial was
then considered successful.

2) All of the robots stopped automatically due to the 15-
minute time limit. This means the trial was unsuccessful.

3) The object was too close to the wall and thus cannot be
transported via pushing any more. For example, either
side of the triangular object fully touched the wall. This
means the trial was unsuccessful.

The trials were recorded with an overhead camera. The
videos were used in the offline tracking of the object. The
accompanying video shows three experimental trials, one for
each type of object, respectively. Videos of all 45 trials are
available in [32].

D. Results

a) Successful Trials: Overall, 43 out of the 45 trials were
successful. The object reached the goal within 15 minutes.
One trial with the triangular object failed. The other failed
trial was with the rectangular object. In both cases, one side
of the object became very close to the boundaries of the arena.
This was due to the limited width of the arena and a relatively
large error in the transport direction.

b) Completion Time: The completion time, T
k

, is defined
as the time elapsed from the start of a trial until the centroid
of the object is less than 62.5 cm away from the center of the
goal (i.e. when the centroid of the object is within the goal
region in Fig. 5).

A box-and-whisker plot7 of the completion time is given in

6The e-puck’s top features an infrared receiver, which can decode the
modulated infrared signal from a TV remote.

7The line inside the box represents the median of the data. The edges of the
box represent the lower and the upper quartiles (25-th and 75-th percentiles)
of the data, while the whiskers represent the lowest and the highest data points
that are within 1.5 times the inter-quartile range from the lower and the upper
quartiles, respectively. Crosses represent outliers.
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(a) Circular Object, T = 339 s.

(b) Triangular Object, T = 345 s.

(c) Rectangular Object, T = 352 s.

T � 300 s T � 240 s T � 180 s T � 120 s T � 60 s T

Fig. 7. Snapshots showing three trials with similar durations in the systematic experiments with a circular, triangular and rectangular object, respectively. T
is the total length of the videos (in s), which ends at the moment when the object collides with the goal. Videos of all the 45 trials are available in [32].
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Fig. 6. Completion time of the circular object, scalene triangular object, and
elongated rectangular object .

Fig. 6. The deviations of completion times for the triangular
and rectangular objects are larger than for the circular object,
which shows that the shape of the object will affect the
transport. During the trials it was observed that if the elongated
rectangular object reaches an orientation with either of its two

small sides pointing towards the goal, it cannot be pushed
effectively anymore. In Fig. 7(c), it can be observed from the
last three snapshots that such a situation stalled the transport
by at least 60 s. It depends on randomness when the robots
manage to rotate the object out of such situation.

c) Object Paths: According to Lemmas 1 and 2, the
resultant force and torque applied on the object can be calcu-
lated given the initial position and orientation of the object and
goal position (assuming an infinite number of point robots are
equally dispersed around the occluded perimeter of the object).
When the force and torque are directly transferred to the linear
and angular velocities of the object, it is possible to predict the
objects’ paths for the trials. The predicted paths are given in
Fig. 8. In addition, the actual paths of the objects were traced
from the videos recorded by the overhead camera. These true
paths are given in Fig. 9.

The differences between each pair of individual paths in
Figs. 8 and 9 are obvious; in only some trials, the prediction
is close to the actual paths. This result however was expected
since many of the idealized assumptions made in Section IV
are violated in a physical environment. For example, the robots
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(c) Rectangular Object
Fig. 8. Predicted paths of the centroid of the objects based on Lemmas 1
and 2. These paths are plotted using the same ratio on both of the axes, so
they can be compared with Fig. 9.

will not be able to react instantaneously to changes in the ob-
ject’s occluded perimeter. Moreover, the robot’s embodiment
raises the issue of physical interferences. However, the overall
distributions of the paths show a good correspondence:

• The circular object tends to move directly to the goal.
• The paths of the triangular object are typically curved.

This object is difficult to be pushed along a straight line
towards the goal.

• The paths of the rectangular object have a more random
but uniform distribution.
d) Path Efficiency: We define the path efficiency of a

trial as:
PE =

s

min

s

. (22)

s

min

is the length of the shortest straight line from the start
position to the goal region. s is the length of the path of
the object when its centroid enters the goal region. An ideal
transport path should have a PE of 1.0.

(a) Circular Object

(b) Triangular Object

(c) Rectangular Object
Fig. 9. Actual paths of the centroid of the objects. The dashed black lines
are the paths of the two failed trials. The dotted red line is the goal region.
It can be observed that the strategy has an effect to correct the direction in
which the object is moved. Sometimes, this correction resulted in a significant
change in the transport direction.

For all successful trials, both the actual PE values and
the PE values corresponding to the predicted paths shown
in Fig. 8 are calculated. Fig. 10 shows a box-and-whisker plot
of predicted PE versus actual PE for each of the objects.
The predicted and actual PEs of an object both indicate
the difference in the efficiency when transporting objects of
different shapes.

e) Accumulated Angular Error (AE): The efficiency of
a pushing-based transport strategy may also be affected if a
substantial amount of unnecessary object rotation occurs in
the process.

We define the accumulated angular error as the difference
between the relative difference in the orientations at the
beginning and the end of a trial and the total amount of
changes of orientation. Let p(t) and q(t) be the centroids
of the two tracking markers on top of the object in the video
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Fig. 10. Path efficiency in the successful trials. This metric compares the
length of the path that the object moved against the length of the ideal straight
path to reach the goal. For each of the objects, the predicted PE and actual
PE are shown in blue (left) and black (right), respectively.
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Fig. 11. Accumulated angular error when the object enters the goal region.
This metric reflects how much unnecessary rotation appeared in the trans-
portation.

of a trial at time step t. Then, the orientation vector of the
object at time step t is

a(t) = p(t)� q(t). (23)

The step interval used in the offline video tracking is 1 s.
The change of the orientation between two time steps, t0 and
t1, is defined as:

D(t0, t1) =

����arccos
a(t0) · a(t1)

ka(t0)k ka(t1)k

���� . (24)

The accumulated angular error is calculated as:

AE =

�����D(T

k

, 0)�
TkX

t=1

D(t, t� 1)

����� . (25)

Note that the relative difference between the object’s initial ori-
entation and its orientation when it reaches the goal (D(T

k

, 0))
is excluded, because we focus on quantifying the unnecessary
effort on rotation (e.g. two continuous rotations that cancel out
each other).

This metric will be zero if the transport process is ideal.
Fig. 11 shows the box-and-whisker plot of the accumulated
angular error of the successful trials. Due to the length of the

elongated rectangular object, randomness in the distribution
of the pushing robots can cause a torque that is big enough
to rotate the object rapidly. However, it is also due to the
randomness in such rotations that this object will not always
point with one of its ends towards the goal, which would cause
the occluded surface for pushing to be very small.

VI. EXPERIMENTS WITH A MOVING GOAL

In a more complex environment, the goal may not be
perceived from any position around the object. For example,
there could be obstacles between the object and goal, or the
distance between the two could be bigger than the range of
sensors of the robots. The transport strategy as it stands can
not deal with such an environment. However, it is possible to
adapt the goal in the strategy to expand the capability of the
transport system.

If the goal is a mobile robot, it can change its position
while the object is being transported. It could navigate along
a complex route and thereby lead the object to its final
destination. How to implement such an intelligent goal robot
is a research topic in itself [33]. In this section, we present
an experiment in which a tele-operated goal robot was used
to guide the pushing robots (and thus the object) through a
corridor with corners.

A. Implementation

The e-pucks in charge of pushing the object (the transport
robots) used the controller exactly as introduced in the previ-
ous section. In other words, these e-pucks are programmed to
push a blue object to a red goal.

An extra e-puck was used to implement a mobile goal (the
goal robot). To make this robot be perceived as the goal, a red
cylinder was placed over it. To further increase its visibility,
it kept all of its red LEDs turned on.

The goal robot was programmed to be driven remotely
by a human operator via Bluetooth. Because the transport
robots push the object towards the goal robot, the operator
can indirectly control the transport direction by driving the
goal robot.

B. Experimental Setup

1) Environment: Fig. 12 illustrates the experimental envi-
ronment. We used the same circular object and arena as before,
but two walls were added to serve as obstacles. The initial
position of the object was alternated between the bottom left
corner and the top right corner of the arena. The destination
was a rectangular region opposite the initial position of the
object. The direct line of sight between the object’s start
position and the destination were blocked by the walls.

2) Trial Procedure: The human operator was required to
move the guiding robot along a designated path. The path
was specified by a series of way points (Fig. 12). When the
distance between the object and the goal robot was very small,
the operator moved the goal robot to the next way point. When
the object touched the destination region (finish line), the trial
was considered successful.
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t = 1min t = 2min t = 3min t = 4min

t = 5min t = 6min t = 7min t = 8min

t = 9min t = 10min t = 11min t = 12min

Fig. 13. Snapshots of one of the trials in the systematic experiments where the transport group pushes the object towards a tele-operated goal robot and
thereby through an environment with obstacles. In the first snapshot (t = 1min), the way points for the goal robot are highlighted.













 





 
















 



Fig. 12. Setup for experiments with a moving goal. The initial position of the
object was alternated between a and b while their corresponding destination
regions were A and B.

C. Results

In total, 20 trials were performed. In all trials, the object
reached the destination region. The mean and median of
the completion times are 859 s and 861 s respectively. The
minimum and maximum are 649 s and 1086 s respectively.
Fig. 13 shows snapshots from an example trial.

Fig. 14. The traces of the object’s centroid.

The traces of the object’s centroid is shown in Fig. 14.
From the plot, it is clear that the object generally followed
the designated route of the goal robot.

According to these results, the transport strategy is able to
deal with a moving goal. This means the transport strategy
can potentially become part of a more complex behavior to
autonomously complete transport tasks in a more complex
environment. From another point of view, the human operator
successfully commanded the swarm of robots to achieve an
object transportation task through remote control.

VII. SIMULATION IN 3-D ENVIRONMENT

The transport strategy has potential to be implemented in
a 3-D environment. In this section, we present a conceptual
implementation of the occlusion-based transport strategy in
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Fig. 15. In this 3-D physics-based simulation, a swarm of robots are pushing
an object (the blue capsule) towards a light source (the white sphere). The
robots only push across the shadow side of the object where the direct line
of sight to the goal light is occluded by the object.

a simulated 3-D environment with rigid body physics using
the Bullet Physics Library8. The environment was a bounded
gravity-less rectangular space. The speed of any objects in this
space were damped such that consistent forces are required to
maintain the motion of objects. These conditions approximate
under water environments where the density of the object
equals the density of water. One hundred robots were deployed
in this environment to push an object towards a goal. The goal
was set to be the dominant light source in the environment. The
robots were required to push across the portion of the object’s
surface where the direct light from the goal was occluded by
the object. Fig. 15 shows the scenario.

A. Conceptual Robot Design

A robot model was specifically designed for the task (see
Fig. 16). Following the concept of swarm robotics, the capa-
bility of the robot was kept simple. The robot is modeled as a
cylinder of diameter 8 cm and height 6 cm. Its mass is 300 g.
It is propelled by three thrusters mounted on its backside.
Each of them can generate a thrust force both forwardly or
backwardly, denoted as p0, p1 and p2. As shown in Fig. 16,
these thrusters are configured in a way that makes the speed,
yaw and pitch of the robot controllable through the difference
in outputs as follows:

2

4
p0

p1

p2

3

5
=

2

4
1, 0, �1

1, �1, 0.5

1, 1, 0.5

3

5

2

4
speed

yaw

pitch

3

5
. (26)

For example, thrusters on the left (p1) and right (p2) make �1

and 1 contributions to the yaw speed, respectively.
The robot has four sensors, each providing a Boolean

reading:
1) I: Long range object sensor. This sensor can detect

whether there are objects along the line of sight of it. Its
normal vector (pointing direction) is (1.0, 0.0, 0.0) in the
robot’s local coordinate system. Its range is 1000 cm.

2) J : Short range object sensor. This sensor can detect
whether there are objects along the line of sight of it. Its

8http://bulletphysics.org/wordpress/











 







Fig. 16. Conceptual robot used in the simulations. In this image, the three
thrusters of the robot (p0, p1 and p2) and the beams of three line-of-sight
sensors (I , J and W ; all truncated) are shown. The robot also has an omni-
directional ambient light sensor (K; not shown).

normal vector is (1.0, 0.57,�0.57) in the robot’s local
coordinate system. Its range is 40 cm.

3) K: Ambient light sensor. This omni-directional sensor
can detect whether the robot is directly illuminated by
the goal light source. It simply checks the line of sight
between the robot and the goal light.

4) W : Obstacle sensor. This sensor can detect whether
there are obstacles along the line of sight of it. The envi-
ronment boundary, other robots and the embodiment of
the goal light are considered as obstacles in the environ-
ment. The sensor’s normal vector is (1.0,�0.57,�0.57)

in the robot’s local coordinate system. Its range is
40 cm.

Note that these sensors are designed to directly meet the
requirements of the behavior described in Section III-B, which
simplifies the controller implementation.

B. Robot Controller

The overall behavior of the robot follows the state machine
description shown in Fig. 2. Due to the specific design of this
robot, both the state machine and low-level motion controller
can be implemented using a single reactive controller.

Table II shows how the controller input (from the four
binary sensors) is directly mapped to the motion output (speed,
yaw and pitch values). The parameters in column Motion
Outputs were manually derived based on the overall behavior
described in Section III-B. Where a range is provided, the
motion output is randomly chosen at every control cycle
following a uniform distribution in this range. We do not claim
optimality of these parameters. They were chosen to give a
working configuration for these proof-of-concept simulations.

Table II also indicates the equivalent states (see Fig. 2).
Note that state “Check for Goal” is no longer required: the
robot can check whether the goal is visible in an instant using
its omni-directional ambient light sensor (K).

C. Simulation Setup

One hundred robots were randomly placed in a bounded
space of dimension 800 cm⇥ 500 cm⇥ 500 cm.
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TABLE II
MAPPING FROM INPUTS TO MOTION OUTPUTS. STATES CORRESPOND TO THOSE IN FIG. 2 AND ARE GIVEN FOR INFORMATION ONLY.

Inputs State Motion Outputs

W I J K speed yaw pitch

0 0 0 � Search Object 0.6 [�0.03, 0.07] [�0.1, 0.1]

0 1 0 � Approach Object 0.8 0.0 0.0

0 0 1 1
Move Around Object

0.3 [0.02, 0.12] [�0.3, 0.3]

0 1 1 1 0.0 [�0.13,�0.03] [�0.1, 0.1]

0 0 1 0
Push Object

0.2 [�0.03, 0.17] [�0.1, 0.1]

0 1 1 0 0.7 [�0.2, 0.2] [�0.2, 0.2]

1 � � � Avoid Obstacles �0.8 [�0.3, 0.3] [�0.3, 0.3]
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Fig. 17. Completion time of the simulation trials in a 3-D environment.

Consider the environment as a box of which the two
diagonal vertices are positioned at (0, 0, 0) and (800, 500, 500)

in the global coordinate system. The goal light was fixed
at position (650, 250, 250). The object was initialized at
(280, 250, 250) while its initial orientation was randomized
using uniform spherical distribution.

Four types of objects were used:
1) a sphere with a radius of 41 cm;
2) a capsule with side length 60 cm and a radius of 30 cm;
3) a cube with side length 66 cm;
4) a cone with a height of 100 cm and a radius of 52 cm.

The mass of these objects were all approximately 280 kg

(calculated from their volumes using the density of water).
For each type of object, 100 simulation trials were run.

When the centroid distance between the object and goal
light was less than 90 cm, the trial would be stopped, and
considered successful. The trial would also be stopped when
900 s elapsed.

D. Simulation Results

In all 400 trials, the object reached the goal within the
time limit. The box plot of the completion times (in simulated
seconds) for each of the objects is shown in Fig. 17. The path
efficiency of the trials are shown in Fig. 18.

Typical situations of the four objects are shown in the ac-
companying video and the online supplementary material [32].

According to both of the numeric results and the direct
observation, the transport task was successfully completed by
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Fig. 18. Path efficiency of the simulation trials in a 3-D environment.

the robots. Similar to the 2-D case, the shape of the object
affects the performance of the strategy.

VIII. CONCLUSION

This paper introduced a cooperative transport strategy that
uses a large number of relatively simple and small mobile
robots to transport a large object that can occlude the robots
perception of the goal. The strategy makes robots push along
the surface of the object where the robots’ line of sight to
the goal is occluded by the object itself. By ensuring that
the robots only push the object over the occluded surface,
the object will eventually reach the goal (but the orientation
of the object can not be controlled). This paper focused on
studying the strategy in a 2-D work space. A mathematical
formulation of the strategy was provided. We proved that any
convex-shaped object will always be successfully transported
to the goal point and that the same is not necessarily true for
objects of concave shape.

The main advantage of the occlusion-based cooperative
transport strategy is that it is suitable for a decentralized
system using a large number of relatively simple robots. The
robots do not need to communicate (explicitly) with each other.
The system is also fully scalable and not sensitive to the exact
number of robots that are deployed; in fact, more robots make
the strategy work better.

The strategy was implemented on a system of 20 physical e-
puck robots. A systematic experiment was performed to verify
the implementation using three particularly challenging types
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of objects. In 43 out of 45 trials in total, the objects were
successfully transported to the goal. The self-correction effect
introduced by the occlusion-based strategy can be clearly ob-
served in these trials. Depending on the shape of the objects to
be transported, the paths traced by them on average were 9.4%
to 30.5% longer than the shortest possible path. The paths were
compared against predictions from the mathematical model.
While most individual paths differed substantially, their overall
distribution showed a good correspondence. In an extended
experiment, an extra e-puck was used as the goal. This goal
robot was remotely controlled by a human operator. Following
the path of the goal robot, the transport robots pushed the
object in all 20 trials through an environment with obstacles.

A physics-based simulation was used to show an implemen-
tation of the transport strategy in a 3-D environment using
a swarm of conceptual robots that have only four binary
sensors. The simulation shows that the transport strategy has
potential to be implemented in a 3-D environment using a
large swarm of simple robots. For example, nano-robot swarms
could transport materials such as drugs within the human body.

To the best of our knowledge, this is the first successful
attempt of using a large number of autonomous robots to push
a large non-specific object. Moreover, the experiment using a
mobile goal can be viewed as a successful instance of human-
robot interaction in which a human remotely controls a swarm
of robots through a single agent robot. In future work, the goal
robot could also be one of a series of way points formed by a
group of robots (e.g. mimicking a trail of virtual pheromones
[33], [34]). Such a system may accomplish a more complex
cooperative transport task autonomously. The strategy itself
may also be improved. For example, multiple layers of robots
could push objects that are heavy but small in surface area.

APPENDIX A
ANALYSIS FOR CONCAVE OBJECTS

In Section IV, it has been proven that the combined force
introduced by the transport strategy always reduces the dis-
tance between an arbitrarily convex-shaped object and the
goal. This property may not hold for some extreme concave
objects (depending on their relative distance and orientation
to the goal). For instance, Fig. 19 shows a counter example
with c ·F > 0. In other words, the resultant force asserted by
all robots will move the object away from the goal.
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