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Mobile Agents for Adaptive RoutingGianni Di Caro and Marco DorigoIRIDIA, Universit�e Libre de Bruxelles50, av. F. Roosevelt, CP 194/61050 - Brussels, Belgiumemail: fgdicaro,mdorigog@iridia.ulb.ac.be
To appear in Proceedings of 31st Hawaii International Conference on Systems Sciences (HICSS-31) - The Software Technology Track,The Big Island of Hawaii, January 6-9, 1998.

AbstractThis paper introduces AntNet, a new routing al-gorithm for telecommunication networks. AntNet isan adaptive, distributed, mobile-agents-based algorithmwhich was inspired by recent work on the ant colonymetaphor. We apply AntNet in a datagram networkand compare it with both static and adaptive state-of-the-art routing algorithms. We ran experiments forvarious paradigmatic temporal and spatial tra�c distri-butions. AntNet showed both very good performancesand robustness under all the experimental conditionswith respect to its competitors.1 IntroductionWe consider the problem of routing in communica-tions networks. Routing refers to the activity of build-ing forwarding tables, one for each node in the network,which tell incoming data which link to use to continuetheir travel towards the destination node.Routing, together with congestion and admissioncontrol algorithms, plays a critical role in communica-tion networks determining the overall network perfor-mance in terms of throughput and transmission delays.In this work we focus on datagram-like networkswith irregular topology, the most remarkable exampleof such networks being the Internet, and without con-gestion or admission control components.The routing algorithm that we propose in this paperwas inspired by previous works on ant colonies and,more generally, by the notion of stigmergy, introducedby Grass�e [7] to describe the indirect communicationtaking place among individuals through modi�cationsinduced in their environment. Real ants have beenshown to be able to �nd shortest paths using only thepheromone trail deposited by other ants [1].Algorithms which take inspiration from ants behav-ior in �nding shortest paths have recently been suc-

cessfully applied to both combinatorial optimization[6, 5] and circuit switched communications networkproblems [13]. In ant colony based algorithms a set ofarti�cial ants move on the graph which represents theinstance of the problem: while moving they build solu-tions and modify the problem representation by addingcollected information. In AntNet, the algorithm wepropose in this paper, each arti�cial ant builds a pathfrom its source to its destination node. While buildingthe path, it collects explicit information about the timelength of the path components and implicit informationabout the load status of the network. This informationis then back-propagated by another ant moving in theopposite direction and is used to modify the routingtables of visited nodes.We report on the behavior of AntNet as comparedto some e�ective static and adaptive vector-distanceand link-state shortest paths routing algorithms [14].AntNet shows the best performances and the more sta-ble behavior for all the paradigmatical temporal andspatial tra�c distributions considered. Absolute per-formances are scored according to a scale de�ned byan ideal algorithm giving an empirical bound. Com-peting algorithms performed poorly for heavy tra�cconditions and showed more sensitivity to internal pa-rameters tuning.2 Routing Algorithms: an OverviewThe goal of every routing algorithm is to direct traf-�c from sources to destinations maximizing networkperformance while minimizing costs. In this way, thegeneral problem of determining an optimal routing al-gorithm can be stated as a multiobjective optimizationproblem in a non-stationary stochastic environment.Additional constraints are posed by the underlying net-work switching and transmission technology.The performance measures that usually are takeninto account are throughput and average packet delay.The former quantify the quantity of service that thenetwork has been able to o�er in a certain amount of



time, while the latter de�nes the quality of service pro-duced at the same time.Routing algorithms can be at �rst broadly classi�edas static or adaptive. In static (or oblivious) routersthe path taken by a packet is determined only on thebasis of the source and destination, without regard tothe current network state. This path is usually chosenas the shortest one according to some cost criterion.Adaptive routers are, in principle, more attractive, be-cause they try to adapt the routing policy to the vary-ing tra�c conditions. As a drawback, they can causeoscillations in selected paths. This can generate circu-lar routes, as well as large uctuations in performances,specially for what concerns average delays [2].The most widely used routing algorithms (at leastconsidering only wide-area networks) are shortest pathsalgorithms. Shortest path routing has a source-destination pair perspective: there is no a global costfunction to optimize. Its objective is to determine theshortest path between two nodes, where the link costsare computed (statically or adaptively) following somestatistical description of the link states.The novel method we introduce in this paper in sect.4, shares the same optimization perspectives as short-est path algorithms but not their usual implementationparadigms (depicted in Appendix).3 The Communication Network ModelWe focus our experiments on datagram networkswith irregular topology without mechanisms for con-gestion and admission control. These mechanisms caninuence greatly the network performances [4], but, asa �rst step, we wanted to check the behavior of our al-gorithm and of its competitors in conditions which min-imize the number of critical interacting components.In our model the instance of the communication net-work is mapped on a directed weighted graph with Nnodes. All the links are viewed as bit pipes charac-terized by a bandwidth (bits/sec) and a transmissiondelay, and are accessed following a statistical multi-plexing scheme. For this purpose, every node, of typestore-and-forward (i.e., switch element), holds a bu�erspace where the incoming and the outcoming packetsare stored. This bu�er is a shared resource among allthe queues attached to every incoming and outgoinglink of the node. Traveling packets can be data or rout-ing packets. Packets of the same type have the samepriority, so they are queued and served only on thebasis of a �rst-in-�rst-out policy, with routing packetshaving greater priority than data packets.A packet reads from the routing table the informa-tion about which link to use to follow its path toward

its target node. When link resources are available, theyare reserved and the transfer is set up. The time ittakes to a packet to move from one node to a neigh-boring one depends on its size and on the link transmis-sion characteristics. If on packet's arrival there is notenough bu�er space to hold it, the packet is discarded.No arrival acknowledgment or error noti�cation pack-ets are generated back to the source.Situations causing a temporary or steady alterationof the network topology are not taken into account.4 AntNet: an Adaptive Agent-basedRouting AlgorithmAs emphasized before, the routing problem is astochastic distributed multiobjective problem. Infor-mation propagation delays and the di�culty to modelthe network dynamics under arbitrary tra�c patterns,make the general routing problem intrinsically dis-tributed. Routing decisions can only be made on thebasis of local and approximate information about thecurrent and the future network states.These features make the problem well adapted to besolved following a multiagent approach like our AntNetsystem, composed by two sets of homogeneous mobileagents (see [15] for an agents taxonomy), called in thefollowing respectively forward and backward ants.Agents1 in each set possess the same structure, butthey are di�erently situated in the environment; thatis, they can sense di�erent inputs and they can pro-duce di�erent, independent outputs. Agents behavereactively retrieving a pre-compiled set of simple be-haviors to select the route and to modify the routingtables, but at the same time they maintain a completeinternal state description.The AntNet algorithm can be informally describedas follows.1. At regular intervals, from every network node s, amobile agent (that we will call forward ant) Fs!d,is launched, with a randomly selected destinationnode d. The identi�er of every visited node k andthe time elapsed since its launching time to ar-rive at this k�th node, are pushed onto a memorystack Ss!d(k) and inserted in a dictionary struc-ture Ds!d, carried by the agent.2. Each traveling agent selects the next hop nodeusing the information stored in the routing ta-ble. The route is selected, following a randomscheme, proportionally to the goodness (probabil-ity) of each neighbors node, or, with a tiny proba-bility (exploration probability), assigning the same1In the following will use interchangeably the terms Ant andAgent2



selection probability to each of the neighbor nodes.If, in the proportional case, the chosen node hasalready been visited, a uniformly random selectionamong the neighbors is applied.3. If a cycle is detected, that is, if an ant is forcedto return in an already visited node, the cycle'snodes are popped from the ant's stack and all thememory about them destroyed.4. When the destination node d is reached, theagent Fs!d generates another agent (backwardant) Bd!s, transferring to it all its memory.5. The backward ant makes the same path as that ofits corresponding forward ant, but in the oppositedirection. At each node k along the path it popsits stack Ss!d(k) to know the next hop node.6. Arriving in a node k coming from a neighbor nodef , the backward ant updates the following twodata structures maintained by every node:i) a routing table, organized as in vector-distance algorithms; in the table, a proba-bility value Pin which expresses the goodnessof choosing n as next node when the desti-nation node is i, is stored for each pair (i; n)with the constraintXn2Nk Pin = 1; i 2 [1; N ]; Nk = fneighbors(k)g;ii) a list Tripk(�i; �i2) of estimates of arithmeticmean values �i and associated variances �i2for trip times from itself to all the nodes i inthe network (for agent-sized packets). Thisdata structure represent a memory of the net-work state as seen by node k.These two data structures are updated as follows:i) the list Tripk is updated with the valuesstored in the stack memory Ss!d(k); allthe times elapsed to arrive in every nodek0 2 Sk!d starting from the current node kare used to update the corresponding samplemeans and variances Tripk(�k0 ; �k02);ii) the routing table is changed incrementing theprobability Pdf associated with node f whenthe destination is node d and decrementingthe probability Pdn associated with the othernodes n in the neighborhood for the samedestination.The update of the routing table happens using theonly available feedback signal, that is, the trip timeexperienced by the forward ant. This time gives aclear indication about the goodness of the followedroute because it is proportional to its physical length

(hops, bandwidth and delay of the used links, process-ing speed of the crossed nodes) and to the tra�c con-gestion. This last aspect is extremely important: for-ward agents share the same queues as data packets(backward agents do not, they have priority over datato faster propagate the accumulated information), so ifthey cross a congested area, they will be delayed for along time. This has a double e�ect: (i) the trip timewill grow and then back-propagated probability incre-ments will be small and (ii) at the same time theseincrements will be assigned with a bigger delay.We used the time measure as a reinforcement signalto provide structural and temporal credit assignment.The credit assignment problem we have to face with isthe typical one arising in reinforcement learning �eld[3]: we cannot associate to the realized performance(trip time) an exact error measure. \Optimal" timesdepend on tra�c and/or components failure states, andthey have to be considered from a network wide point ofview. We can only give an \advice" about the goodnessof the observed trip time on the basis of the estimatedmean values for the agent's trip times, stored in thelist Tripk.In light of these considerations we can detail theprocedure followed to update the routing tables (wewill omit indices when they are not necessary).If T is the observed trip time and � is its mean value,as stored in the list Trip, we compute a raw quantityr0 measuring the goodness of T , with small values of r0corresponding to satisfactory trip times,r0 = 8>><>>: Tc�; c � 1 if Tc� < 11 otherwise:r0 is an adimensional measure, problem independent,scoring how good is the elapsed trip time with respectto what has been on average observed until now. �plays the role of a unit of measure and c is a scalefactor (we found that setting c to 2 is a reasonablechoice). \Out-of-scale" values are saturated to 1.A correction strategy is applied to the goodnessmeasure r0 taking into account how reliable is the cur-rently observed trip time with respect to the variancein the so far sampled values, that is, considering howstable is the trip time mean value. We say that theobservations in the mean are stable if �=� < �; �� 1In this case, a good trip time (i.e., r0 less than athreshold value t that we set to 0.5) is decreased bysubtracting a valueS(�; �; a) = e�a ��3



to the value of r0, while a poor trip time is increasedadding the same quantity.On the other side, if the mean is not stable, the rawvalues r0 cannot be completely considered reliable and,in this case, the quantityU (�; �; a0) = e�a0 ��ea0 ; �� 2 [�; 1];with a0 � a, is added to a good r0 value and subtractedfrom a poor one. In this case we try to avoid follow-ing the tra�c uctuations, with the risk of amplifyingthem: adding and subtracting the value U helps tostabilize them.The above correction strategy, for both cases of �=�values, can be summarized as:r0  r0 + sign(t � r0)sign(�� � �)f(�; �) ;with f being S or U according to the case. The f func-tions have been chosen as decreasing/increasing expo-nential because both the function and its �rst deriva-tive are monotonically decreasing/increasing with in-creasing values of the �=� ratio. The obtained valueof r0 is �nally reported on a more compressed scalethrough a power law, r0  (r0)h (see below for an ex-planation), and bounded in the interval [0; 1].These transformations from the raw value T to themore re�ned value r0 play the role of a local esti-mation of a tra�c model. More sophisticated andcomputationally-demanding models could be learnt tocompute a more e�ective tra�c-dependent correction.The obtained value r0 is used by the current node kto de�ne a positive reinforcement, r+, for the node fthe backward ant comes from, and a negative one, r�,for the other neighboring nodes n:r+ = (1� r0)(1� Pdf )r� = � (1� r0)Pdn; n 2 Nk; n 6= f;where Pdf and Pdn are the last probability values as-signed to neighbors of node k for destination d. Inthis way, the reinforcements are proportional to the ob-tained goodness measure r0 and to the previous valueof node probabilities.These probabilities are then increased/decreased bythe reinforcement values as follows (their sum will stillbe 1, being r0 2 [0; 1]):Pdf  Pdf + r+; Pdn  Pdn + r� :It is now clear that the power law rescaling of the r0value is equivalent to the de�nition of a learning rate:the scale compression factor and its degree of non lin-earity determine the �nale size of the allowed jumps inthe probability values.

The constants (c, a, a0, �, h, t) used in this sectionare not problem-dependent and they simply de�ne anappropriate scaling system for the computed values.They have been set to the following values: c = 2; a =10; a0 = 9; � = 0:25; h= 0:04; t = 0:5:As a last consideration, notice the critical role playedby the used paradigm for agents communication. Infact, each agent is enough complex to solve a singlesub-problem but the global routing optimization prob-lem cannot be solved e�ciently by a single agent. It isthe interaction between the agents that determines theemergence of a global e�ective behavior from the net-work performances point of view. The key concept inthe cooperative aspect lies in the way communicationamong agents happens. The intrinsically distributednature of the problem makes natural and convenientusing a blackboard type of inter-agents communication,that is, an indirect communication from one agent toall the others mediated by the environment. The in-formation locally stored and updated at each networknode de�nes the agent input state. Each agent usesit to realize the next node transition and, at the sametime, it will modify it, modifying in this way the localstate of the node as seen by future agents. This spe-ci�c form of indirect communication through the envi-ronment with no explicit level of agents coordinationis called stigmergy [7, 13, 15]. Active stigmergy occurswhen an agent alters the environment so as to a�ect theinput of another agent, passive stigmergy occurs whenan agent alters the environment in such a way that thee�ect of the actions of the other agents is no more thesame. In our case we used active stigmergy as a wayof transmitting the information associated with every\experiment" made by each agent (we could see oursystem as a particular instance of an iterated MonteCarlo simulation).5 Routing Algorithms Used for Com-parisonTo evaluate the performances of AntNet, we selecteda set of competitors algorithms from the shortest pathclass (see Appendix) reecting Internet standards andstate-of-the-art for routing algorithms.OSPF: is our implementation of the o�cial Internetrouting algorithm [11]. The Internet OSPF has alot of features for the full network management.Here we are only interested in data packet rout-ing in simpli�ed conditions, therefore, the originalalgorithm is reduced to the de�nition of routingtables by static shortest paths calculation.BF: is an implementation of the asynchronous dis-tributed Bellman-Ford algorithm with dynamic4



link metrics [2]. Vector-distance Bellman-Ford-like algorithms are today in use mainly for intra-domain routing, being used in the Routing Infor-mation Protocol (RIP) [9] supplied with the BSDversion of Unix.SPF: is the prototype of link-state algorithms withdynamic metric for link costs evaluations. A simi-lar algorithm was implemented in the second ver-sion of ARPANET [10] and in its successive revi-sions [8]. We implemented it with state-of-the-artlink costs evaluation and ooding algorithms.SPF 1F: is the same as SPF but with ooding lim-ited to the �rst neighbors. As far as we know, thisis the �rst time that a similar algorithm is pre-sented in literature. It has the nice features thatthe shortest paths are computed on the basis oflocally updated information and the costs of farlinks are all set to the same value.Daemon: is an ideal algorithm. It de�nes an em-pirical bound on the achievable performances inthe absence of any a priori assumption on tra�cstatistics. The algorithm posses a \daemon" ableto read in every instant the state of all the queuesin the network and then it can calculate instan-taneous \real" costs for all the links. With thisinformation paths are assigned on the basis of anetwork wide shortest paths re-calculation for ev-ery packet hop. Links costs are assigned in thefollowing way:Cli = dli+Spbli+(1��)SQ(li )bli +� �SQ(li)bli ; 8i 2 [1; N ]where dli is the delay for link li, bli is its band-width, Sp is the size of the data packet doing thehop, SQ(li) is the length of the queue for link li,�SQ(li) is the exponential mean of the length of linksqueue (it is a correction to the current length ofthe link queue on the basis of what observed untilthat moment), the weight � is set to 0.4.Algorithms BF , SPF and SPF 1F use a dynamicmetric for link costs. We tried the following di�erentmetrics documented in literature [12].1. The link cost is measured by the fraction of time ofnon-empty queue with respect to the empty-queueperiod, measured over the last time-window.2. The link cost is set to the sum of the mean packetdelay in the link queue over the last time-windowplus the transmission delay.3. The mean of the transmission time over the link,�Tl, and the mean delay in the link's queue, �Dq(l),are computed over the last time-window. The linkcost is then assigned to [8]: 1� �Tl=( �Dq(l) + �Tl).

4. The link cost is a weighted combination of a pairof the above metrics. We experimentally observedthat the best combination was given by a weightedaverage between metrics 2 and 3.6 Experimental SettingsWe de�ned a limited set of tunable components andfor each of them our choices are explained:
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12Figure 1: NSFNET. Numbers in circles are node identi-�ers. Each edge in the graph represents a pair of directedlink and the numbers are propagation delays in msec.Topology and physical properties of the net.In our experiments we used a real net instance,NSFNET, the USA backbone. It is composed of14 nodes and 21 bidirectional links. The topologyand the propagation delays are showed in �g. 1.The bandwidth is 1.5 Mbit/s for every link, theassigned link or node fault probability is null, lo-cal bu�ers have a gigabyte of capacity and linksare accessed through statistical multiplexing.Tra�c patterns. Two models, static and dynamic,of temporal tra�c patterns have been used, mod-eling respectively the case of Constant Bit Rate(CBR) and of Variable Bit Rate (VBR) [12].� In the static model all the sessions start atthe beginning of the simulation and they lastuntil the end. In this way we simulate a situa-tion of stationarity. The packets inter-arrivaltime is of 150 ms and their size distributionis negative exponential with mean 512 bytes.� In the dynamic model, sessions are activatedfollowing a negative exponential distributionfor the inter-arrival times. The distributionmean value is �xed to 15 sec. The total num-ber of packets per session, their sizes and5



their inter-arrival time, are negative exponen-tially distributed, with respectively mean val-ues of 50, 512 bytes and 10 �sec. In this casesessions are \bursty" and hence data owsare highly irregular.For the geographical distribution of tra�c pat-terns we considered four signi�cant situations.� Uniform-deterministic distribution (UD):there are n � 1 open sessions between anypair of nodes.� Uniform-random distribution (UR): there aren � N2 (N= total number of nodes) opensessions. Start and end-points are selecteduniformly randomly.� Uniform-deterministic-hot-spots distribution(UDHS): two di�erent types of load are con-currently present. One is the same as in theUD case, the other is represented by a set Hof end-points nodes, jHj < N , which act likehot-spots. Each node has n � 1 open sessionswith an end-point node h; h 2 H.� Uniform-random-hot-spots distribution(URHS): as for UDHS, two di�erent typesof load are concurrently present. One is thesame as in the UR case, while the other is thesame hot-spots component of UDHS.Metrics for performances evaluation.We considered only sessions having equal costs,bene�ts and priorities, In this perspective the mea-sures we are interested in are: throughput (deliv-ered bits/sec) and average packet delay (sec).Routing algorithms parameters. The generationinterval for AntNet is set to 1 (sec), start andend-points are sampled uniformly over the net-work, the exploration probability is set to 0.002,the agent size is 24 bytes for the forward and24+Nh bytes, Nh =number of hops, for the back-ward agent. The ant processing time is 2 ms.For shortest paths algorithms (see Appendix), thetime interval for information broadcasting and thetime window to average link costs are the same,and they are set to 8 seconds. For the BF algo-rithm the routing packet has elaboration time of4 ms and size of (24 + 12N ) bytes. For the otheralgorithms the elaboration time is set to 6 ms andthe size to (18+ 8jNkj) bytes, where Nk is the setof neighbors of the broadcasting node k.7 Experimental ResultsWe report results relative to the four cases of spa-tial tra�c distribution for each of the two temporaltra�c patterns, CBR and VBR. For very low and uni-form tra�cs loads, the six algorithms behave almost in

the same way and their performances are near to opti-mal. Increasing tra�c load and/or considering stronglyasymmetric spatial distributions, performances becomeappreciably di�erent from a statistical point of view.We report results only for some representative cases.The time length of the simulation has been set to120 seconds. We observed that after this time intervalthe behavior of the algorithms is already well charac-terized. A 100 seconds of \learning" time has beenassigned to the algorithms to learn routing tables inabsence of tra�c. Reported values are averaged over10 trials.In tables 1-8, observed mean values (and their stan-dard deviations, in brackets) for throughput and meanpacket delays are reported. The content of tables 1-4 isrelative to the case of VBR temporal distribution con-sidered together with the four spatial distribution casesof sect. 6 (UD, UR, UDHS, URHS). Tables 5-8 followthe same scheme but are relative to the CBR case astemporal tra�c distribution. Experimental conditionsare explained in detail in tables captions with the fol-lowing conventions: NUD =active sessions between allthe node pairs; NUR =randomly selected sessions inthe network, except for hot-spot sessions; NHSN = hot-spot nodes; NHSS =hot-spot sessions. Graphs2-11 refer to some of the most meaningful cases con-sidered in tables. For each of the considered situa-tions, temporal evolution of the average packet delay isshowed for every algorithm. Throughput plots are notshowed because of space reasons and because through-put performances present much less striking di�erencesthan those for packet delays. From tables it is evidentthat BF, the algorithm based on distributed Bellman-Ford, scores very poorly with respect to the others,therefore, results about it are not plotted.Reported results show clearly that AntNet is thebest performing algorithm among the considered ones(except for the ideal algorithmDaemon). In some casesits superiority is evident, in others it performs like thebest ones within statistical uctuations. In the CBRcase AntNet shows very low delays compared to theothers, while in the VBR case, the other new algorithm,SPF 1F, presents comparable or slightly better perfor-mances. Of course, the Daemon algorithm has alwaysthe best performances, as expected, and comparing itsperformances with those of AntNet we can see that inthe half of the cases AntNet performances are almostthe same within statistical uncertainties, con�rming inthis way the excellent behavior of our algorithm ac-cording to an absolute scale of values.\Classical" algorithms (OSPF, SPF and BF) per-formed poorly with respect to AntNet and SPF 1F(limited to the VBR case) and their behavior showed6



Table 1: Results for VBR temporal tra�c distribution and Uniform-deterministic spatial tra�c distribution. NUD = 5.AntNet OSPF SPF SPF 1F Daemon BFMean Delay (sec) 0.10 (0.01) 0.78 (0.10) 1.41 (0.12) 0.075 (0.03) 0.036 (0.003) 7.85 (2.5)Throughput (107 bits/sec) 1.348 (0.005) 1.345 (0.007) 1.330 (0.007) 1.347 (0.004) 1.347 (0.005) 0.590 (0.150)Table 2: Results for VBR temporal tra�c distribution and Uniform-random spatial tra�c distribution. NUR = 840:AntNet OSPF SPF SPF 1F Daemon BFMean Delay (sec) 0.09 (0.01) 0.17 (0.12) 1.00 (0.52) 0.05 (0.04) 0.033 (0.002) 7.00 (2.51)Throughput (107 bits/sec) 1.244 (0.003) 1.245 (0.003) 1.201 (0.002) 1.244 (0.002) 1.244 (0.003) 0.434 (0.580)Table 3: Results for VBR temporal tra�c distribution and Uniform-deterministic-hot-spots spatial tra�c distribution.NUD = 5;NHSN = 5 and NHSS = 5.AntNet OSPF SPF SPF 1F Daemon BFMean Delay (sec) 0.86 (0.35) 4.80 (2.50) 2.13 (0.35) 1.05 (0.25) 1.05 (0.07) 4.80 (2.03)Throughput (107 bits/sec) 1.822 (0.008) 1.677 (0.008) 1.784 (0.016) 1.823 (0.002) 1.824 (0.003) 0.870 (0.300)Table 4: Results for VBR temporal tra�c distribution and Uniform-random-hot-spots spatial tra�c distribution.NUR = 840; NHSN = 5 and NHSS = 5.AntNet OSPF SPF SPF 1F Daemon BFMean Delay (sec) 0.32 (0.12) 3.01 (1.50) 1.94 (0.54) 0.53 (0.18) 0.11 (0.11) 7.48 (2.22)Throughput (107 bits/sec) 1.723 (0.001) 1.652 (0.008) 1.680 (0.002) 1.723 (0.002) 1.723 (0.001) 0.671 (0.117)Table 5: Results for CBR temporal tra�c distribution and Uniform-deterministic spatial tra�c distribution. NUD = 5.AntNet OSPF SPF SPF 1F Daemon BFMean Delay (sec) 0.93 (0.20) 5.85(1.43) 3.58 (0.83) 4.96 (1.25) 0.10 (0.03) 4.27 (1.22)Throughput (107 bits/sec) 2.392 (0.011) 2.100 (0.002) 2.284 (0.033) 2.201 (0.004) 2.403 (0.010) 1.410 (0.047)Table 6: Results for CBR temporal tra�c distribution and Uniform-random spatial tra�c distribution. NUR = 840:AntNet OSPF SPF SPF 1F Daemon BFMean Delay (sec) 0.79 (0.18) 4.63 (1.03) 2.01 (0.50) 2.36 (0.67) 0.06 (0.01) 3.90 (1.05)Throughput (107 bits/sec) 2.219 (0.011) 2.013 (0.011) 2.171 (0.023) 2.141 (0.008) 2.205 (0.007) 1.280 (0.065)Table 7: Results for CBR temporal tra�c distribution and Uniform-deterministic-hot-spots spatial tra�c distribution.NUD = 5;NHSN = 5 and NHSS = 5.AntNet OSPF SPF SPF 1F Daemon BFMean Delay (sec) 3.37 (0.60) 12.00 (2.25) 9.60 (1.44) 11.48 (1.52) 3.28 (0.54) 4.19 (1.97)Throughput (107 bits/sec) 3.134 (0.060) 2.128 (0.044) 2.815 (0.047) 2.480 (0.054) 3.140 (0.058) 1.250 (0.131)Table 8: Results for CBR temporal tra�c distribution and Uniform-random-hot-spots spatial tra�c distribution.NUR = 840; NHSN = 5 and NHSS = 5.AntNet OSPF SPF SPF 1F Daemon BFMean Delay (sec) 3.18 (0.75) 10.30 (1.94) 9.42 (0.85) 9.25 (1.00) 2.83 (0.78) 5.09 (1.28)Throughput (107 bits/sec) 2.986 (0.014) 2.235 (0.009) 2.619 (0.008) 2.350 (0.021) 3.012 (0.008) 1.321 (0.140)signi�cant uctuations, both in terms of absolute per-formances and of stability. AntNet resulted in the morestable performances and behavior, that is, always mov-ing rapidly toward a good stable delay value after aninitial transitory phase.8 Discussion and ConclusionsIn this paper, we introduced AntNet, a new al-gorithm for adaptive routing. It is a mobile-agents-based distributed algorithm using stigmergy as primi- tive form of communication among agents. Its behaviorwith respect to throughput and mean packet delay hasbeen compared to the behavior of �ve shortest pathsrouting algorithms. As a testbed we considered heavytra�c conditions for some representative temporal andspatial tra�c patterns for a real network instance.AntNet performed always as the best among its com-petitors or at the same level within the statisticaluctuations. Di�erently from the other algorithms,7
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Figure 2: AntNet: Average packet delay for CBR temporaltra�c distribution and Uniform-deterministic spatial tra�cdistribution. NUD = 5.
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Figure 3: OSPF: Average packet delay for CBR temporaltra�c distribution and Uniform-deterministic spatial tra�cdistribution. NUD = 5.
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Figure 4: SPF: Average packet delay for CBR temporaltra�c distribution and Uniform-deterministic spatial tra�cdistribution. NUD = 5.
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Figure 5: SPF 1F: Average packet delay for CBR tem-poral tra�c distribution and Uniform-deterministic spatialtra�c distribution. NUD = 5.
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Figure 6: Daemon: Average packet delay for CBR tem-poral tra�c distribution and Uniform-deterministic spatialtra�c distribution. NUD = 5.
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Figure 7: AntNet: Average packet delay forVBR temporaltra�c distribution and Uniform-random-hot-spots spatialtra�c distribution. NUR=840, NHSN=5, NHSS=5.8
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Figure 8: OSPF: Average packet delay for VBR temporaltra�c distribution and Uniform-random-hot-spots spatialtra�c distribution. NUR=840, NHSN=5, NHSS=5.
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Figure 9: SPF: Average packet delay for VBR temporaltra�c distribution and Uniform-random-hot-spots spatialtra�c distribution. NUR=840, NHSN=5, NHSS=5.
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Figure 10: SPF 1F: Average packet delay for VBR tempo-ral tra�c distribution and Uniform-random-hot-spots spa-tial tra�c distribution. NUR=840, NHSN=5, NHSS=5.
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Figure 11: Daemon: Average packet delay for VBRtemporal tra�c distribution and Uniform-random-hot-spotsspatial tra�c distribution. NUR=840, NHSN=5, NHSS=5.AntNet showed always a robust behavior, being ableto rapidly reach a good stable level in performances.Its performances are a�ected mainly by the frequencywith which the agents are launched and by their spa-tial distribution. We ran several experiments to checkthe sensitivity of the algorithm to these parameters.With no tra�c, we observed that the system convergesmore quickly to the shortest paths if the launchingrate is increased till a threshold value (of order of afew millisec for the considered network). Beyond that,the routing tables oscillate too much or have the ten-dency to converge too fast, and the overall performancetends to degradate (in case of no tra�c the ant systemcan solve shortest paths instances, although other algo-rithms, like Bellman-Ford or Dijkstra, can solve themmore e�ciently). A similar behavior has been observedin presence of a tra�c load. If the launching rate istoo high, the interaction among the ants creates oscil-lations and degrades the performances. We observedthat for the considered network, varying the launch-ing rate approximatively in the range between 0.5 and2.0 sec does not a�ect considerably the performances.Concerning the spatial distribution of the ants, we notethat selecting the (source, destination) pairs uniformlyover the network makes possible to update uniformlyin time all the routing tables and therefore to balanceat the best the load over all the network. If we createa bottleneck somewhere in the network the overall per-formance will su�er because of it, even if other pathsare selected in an apparently very optimized way. Animportant point concerns the \reaction time" of thealgorithm: each forward ant makes a single \experi-ment", and successively the backward ant updates theprobabilistic tables (this is equivalent to an iteratedparallel Monte Carlo system, with the addition of tem-poral constraints). This means that, from the moment9



of the \implicit observation" of a tra�c situation bythe forward ant, to the moment the backward ant willuse this observation, there is a delay. In the consid-ered cases this delay is of the order of approximately1 second: this is perfectly compatible with a \high"rate of varying tra�c. Anyway, also if the update is nolonger consistent with an evolved tra�c situation, theupdate will a�ect only the route for a single destina-tion. This feature makes the system robust to \wrongestimates", and it is very di�erent from what happensfor example in SPF, where a wrong link cost estimatealters all the routes crossing the node. As a last note,it is important to note that the impact of the systemon the network resources is neglectable, both in termsof bandwidth and computation, and this is also truefor the other considered algorithms.AcknowledgmentsThis work was supported by a Madame Curie Fel-lowship awarded to Gianni Di Caro (CEC-TMR Con-tract N. ERBFMBICT 961153). Marco Dorigo is aResearch Associate with the FNRS.Appendix: Shortest Path RoutingIn relation to the di�erent content stored in eachnode routing table, shortest path algorithms can beclassi�ed as distance-vector or link-state [14]. Theyshow the following common behavior: each node as-signs a static or dynamic cost (assigned on the basisof failure states and of some link-tra�c statistics aver-aged over a time-window) to each of its outgoing linksand broadcasts them periodically to its neighbor nodes.These latter use the received information to updatetheir local routing tables.Distance-vector algorithms maintain a set of triplesof the form (Destination, Estimated Distance, NextHop), de�ned for all the destinations in the networkand for all its neighbor nodes. The information sentto neighbor is the list of its last estimates of the dis-tances from itself to all the other nodes in the network.On receiving this information from a neighbor node j,the receiving node i updates its table of distance esti-mates in the entry corresponding to the case of node jas next hop node. Iterating this procedure, known asdistributed Bellman-Ford [2] and based on the princi-ples of dynamic programming, the routing tables willconverge to shortest paths tables.Link-state algorithms maintain in each node a repli-cated database describing all the topological detailsof the network components. Using this database asinput each node calculates its best paths using anappropriate algorithm for shortest paths calculations.Each node acts autonomously, assigning costs to itsconnected links, periodically ooding the information
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