

Abstract—A collective of robots can together complete a task
that is beyond the capabilities of any of its individual robots.
One property of a robotic collective that allows it to complete
such a task is the shape of the collective.

In this paper, we present a distributed control method,
called DASH, to enable a collective of robots to robustly and
consistently form and maintain a pre-defined shape. This
control method allows the shape that is formed to be at a scale
proportional to the number of robots in the collective. If this
collective shape is damaged through the un-controlled
movement, removal, or addition of some members of the
collective, the existing members will recover the desired shape,
proportional to the new number of robots in the collective.

We also analyze this control method in terms of class of
acceptable shapes and discuss the convergence to the desired
shape.

I. INTRODUCTION
n this paper we present a solution to the general problem
of controlling a collective of distributed robots (sometimes

referred to as a swarm, group, or ensemble) so that they can
robustly and consistently form and maintain a pre-defined
shape. By forming a specific shape, a robot collective can
complete a goal that cannot be completed by any of the
individual robots. For example, in a collective of
reconfigurable robot modules, the robots can form the
collective shape of a wheel, which will allow them to travel
faster and more efficiently, when compared to an individual
reconfigurable robot module [1]. Another example is shown
in [2], when a single SWARM-BOT is confronted with an
obstacle of rough terrain that it cannot cross. It then joins
together with other SWARM-BOTs to form a bridge shape,
allowing them to traverse the rough terrain as a group.

Due to the distributed nature of the robot collective, the
need for scalability, and the desired robustness against single
points of failure, the control method should be decentralized.
Most robot collective control methods are decentralized;
however, some require an initial unique seed to start the
shape formation [3,4]. This seed is not an unreasonable
requirement, however it does force a centralized decision to
be made, reducing robustness against single points of failure.

Along with being distributed, it is also important for the
control method to be capable of forming as many different
types of shapes as possible. Some methods have a limited
class of shapes that they are capable of forming. For
example in [5], the collective is only capable of forming

Manuscript received March 1, 2009. Michael Rubenstein and Wei-Min

Shen are with the Information Sciences Institute and Computer Science
Department at the University of Southern California, Marina del Rey, CA
90292, USA. (website: www.isi.edu/robots phone: 310-448-8710; fax: 310-
822-0751; e-mail: mrubenst@usc.edu , shen@isi.edu).

polar shapes. In [3,6], the collective cannot form a shape
that contains an empty internal volume.

It is also important for the collective to be resistant to
damage to the shape. If the shape helps the collective
complete a task, then damage to the shape may negatively
affect the collective’s ability to complete that task. Some
control methods for forming a shape [6,7] do not have the
ability to recover from most damage. Others [3], can
recover from the addition or removal of robots to the
collective, but not the un-controlled movement of robots
from one location to another.

In the event that the number of robots in the collective
changes through the addition or subtraction of robots, there
are two options for the collective to adapt (self-heal). The
first option, fixed scale self-healing, used in [4,8,9], is to
keep the size of the shape the same, but change the density
of robots. Due to an upper limit to this robot density (one
can fit only so many robots in a fixed area), there is a
maximum number of robots that can fit inside the collective
shape. Another drawback to this first option is that, for
many collective robotic systems, such as reconfigurable
robots [10], the robots require a close physical connection to
neighboring robots. This means that in general, the density
of robots in the collective should remain the same,
irrespective of the size of the collective. The second option
for adapting to the change in the number of robots is to
scalably self-heal, which adjusts the size of the shape
proportional to the number of robots in the collective,
keeping the robot density constant. This scalable self-
healing is shown in nature [11], where a small invertebrate,
the hydra, will reform its original shape after being cut in
half, but at half the size. This has been recreated in some
robotic collectives [3, 5].

During this process of self-healing as well as self-
assembly, robots outside the shape must move to a location
within the shape. At the same time, their movement is
constrained with the added restriction of avoiding the
locations of the other robots in the collective. Robots
already inside the shape must take care not to stop in a
location that would prevent robots outside the shape from
entering. Some approaches [3,6] enact very careful
communication exchanges between robots to guide moving
robots past neighbors, avoiding disconnection, and locations
where they can become trapped. Other approaches [5,8] use
random or biased random movement, as well as collisions
between robots, to move robots around neighbors, and
prevent choosing locations where they can become trapped.

In the work presented here, we use a fully distributed
control method, with no single point of failure, to enable a

Scalable Self-Assembly and Self-Repair In A Collective Of Robots
Michael Rubenstein, Wei-Min Shen

I

collective of robots to scalably self-assemble and self-repair
a large class of shapes. This control method is resilient to
the removal, addition, or un-controlled movement of robots
in the collective, always returning the collective to the
desired shape, proportional to the number of robots present.
Section 2 will provide details of this control method; section
3 will discuss the convergence of the group to the desired
shape; section 4 will provide experimental results of this
control method running on a simulated robot collective.

II. METHODS FOR SELF-ASSEMBLY AND SELF-HEALING
The following section describes DASH (Distributed

Assembly and Self-Healing), a distributed method to control
each robot in a robotic collective. This control method uses
an identical controller that runs in each robot. Each robot
controller also includes a full description of the desired
collective shape. When DASH is run on each robot in the
collective, the robots will self-assemble to form the desired
shape (some examples shown in Fig. 1), and self-repair if the
shape is damaged, as shown in Fig 5.

A. Assumptions
The robots are simple and homogeneous. Each robot is

shaped like a simple 2D circle, with radius Rrobot. It is
capable of moving in its local x direction along a plane, as
well as rotating about its center, perpendicular to the plane.
A robot cannot share the same space as another robot, and is
not capable of pushing any robots. All robots in the
collective are identical and indistinguishable from each other
in every way, even lacking a unique ID.

Communication between neighboring robots is
possible. Each robot can communicate to any of its
neighbors who are within a certain distance (Rcom).

Robots have a consistent coordinate system. The
collective has a shared coordinate system that is known by
all robots. This enables each robot to precisely know its
location in the coordinate system, in terms of (X,Y). This
coordinate system could be given from a Global Positioning
System (GPS) or developed from a local, distributed method
such as trilateration [12], MDS-MAP [13], or robust
quadrilaterals [14]. Using movement, the robot can also
determine the angle between its x direction and the x
direction of the coordinate system, as described in [5].

Robots know the total number of robots in the
collective. This number, Nr, represents the total number of
robots that are currently part of the collective. If some
robots are added or removed, Nr will change accordingly.

B. Class of Shapes
While DASH is extendable to forming 3D shapes, in this

paper, we will concentrate on 2D cases. DASH is
theoretically capable of forming any connected shape,
defined as a shape that for every location in that shape, there
is at least one path that is fully contained within the shape to
all other points in that shape. However, there are some
practical limitations on the details of the shape, as the result
of scaling the size of the shape. Namely, these limitations

are that for a given shape, at a given scale, the minimum
feature size must be greater than 2•Rrobot. This minimum
feature size is found by fully decomposing the desired shape
using largest possible overlapping circles. The diameter of
these circles is the minimum feature size. From the
minimum feature size, we can compute the minimum
allowable height of these shapes. The minimum allowable
height of the shape will be the height that causes the
minimum feature size to be 2•Rrobot. An example of some
possible shapes, shown as white, is shown in Fig. 1.

A B C

Fig. 1. Three example shapes (upper), and the approximation of those
shapes (lower) by a simulated collective of robots (simulator described in
detail in section 4).

C. DASH Controller Overview
The robot controller operates to achieve the following

high level behavior. The controller first determines the
desired scale of the shape, based on the number of robots. It
then determines if the robot under its control is inside the
desired shape. If the robot is inside the desired shape, the
robot will move in a way that keeps it within the desired
shape, but at the same time does its best to keep from
blocking other robots from entering the shape. There are
two possibilities if the robot is not in the desired shape. The
first possibility is that it is on the outside of the desired
shape. In this case, the robot will move along the perimeter
until it can find a location to enter the shape. The other
possibility is that the robot is not in the desired shape, but is
surrounded by the desired shape, for example, the center
black region in Fig 1.B. If this is the case, the robot will first
try to enter the shape. If this is not possible because it is
blocked by other robots already in the shape, then this robot
is trapped. This trapped robot will enact a mechanism using
robot-to-robot communication that moves some robots
within the shape out of its way, allowing the trapped robot to
move into the shape.

D. DASH Controller Details
The robot controller has two main sections. The first

section, which is run once at robot startup, takes in the
desired shape description, and outputs a gradient map (to be
described later). The second controller section uses this
gradient map, communication with other robots, Nr, and the
robot’s location in the shared coordinate system, to
determine if the robot should move, and in what direction.

1) Processing the Pixel Map
The input to the first section of the DASH controller is a

description of the desired collective shape. While other
choices are possible, in our implementation, we chose to use
a 100x100 pixel map to represent the desired shape. In this
pixel map, a pixel is white to represent a location within the
shape, and black to represent a location not in the shape, as
shown in Fig. 1. We also add a constraint that every pixel
on the outside border of this pixel map must be black. The
reason for this will be described shortly.

First, the pixel map is segmented into groups of connected
pixels with identical colors. Due to the shape constraints
given in section II.B. of this paper, there will be only one
segment that includes white pixels, which is called the shape
segment (shown as the white segment in Fig. 2B). There
will also be one segment called the external segment,
(shown as the black segment in Fig. 2B). The external
segment includes the pixel (0,0), which is the upper left most
pixel in the pixel map. Due to the constraint that every pixel
on the outside border of the pixel map must be black, the
external segment will completely surround the shape
segment. There are further possible segments, called
trapped segments, if there are black pixels in the pixel map
that are completely surrounded by the shape segment. Three
examples of trapped segments are shown as vertical,
horizontal and diagonal striped line segments in Fig. 2B.

In each segment, there is one “starting pixel”, which is
used later to generate the gradient map. For all segments
except the external segment, the upper left most pixel in that
segment is chosen as a starting pixel. For the external
segment, the starting pixel is chosen to
be the pixel in the external segment that is immediately to
the left of the starting pixel for the shape segment.

A B
Fig.2. A) the pixel map of the desired shape. B) the pixel map segmented
into 5 regions.

2) Creating the Gradient Map
The gradient map is a 100x100 array that has one integer

entry for every pixel in the pixel map. Each location in the
gradient map corresponds to the pixel in the same location of
the pixel map. The values in the gradient map are set as
follows. For the external and trapped segments in the pixel
map, do the following. For each pixel in that segment,
calculate the “Manhattan” distance of the shortest path
between that pixel and the segment’s starting pixel. This
shortest path is constrained to be fully within the
corresponding segment. The entry for this pixel in the
gradient map is then set to -(path_length + 1). For the shape
segment, a similar approach is used. For each pixel in the
shape segment, calculate the “Manhattan” distance of the
shortest path between that pixel and the shape segment’s

starting pixel. This shortest path is constrained to be fully
within the shape segment. The entry for this pixel in the
gradient map is then set to this path length.

When a gradient map is generated in this manner, any
location in the gradient map with a negative value is located
in a trapped or external segment. If the gradient value is
positive or zero, then it is within the shape segment. When a
location has a gradient map value of -1, then it is located at a
starting pixel for an external or trapped segment. An
example gradient map generated from a pixel map is shown
in Fig. 3.

Fig. 3. A) An example of a 9x9 pixel map. B) The gradient map generated
from that pixel map.

The second part of the DASH controller is run
continuously on each robot, and uses the gradient map built
from the pixel map, communication with other robots, Nr,
and the robot’s location in the shared coordinate system, to
determine if the robot should move, and if so, in what
direction.

3) Finding and Using Scale_Factor
DASH first determines at what scale the shape should be

formed, called the Scale_Factor. The controller uses an
experimentally determined value, called the packing
efficiency (Pe), as well as Nr, to find this scale. The Pe value
represents the following: if the scale of the pixel map is
made so that each pixel in the pixel map has the size
Rrobot×Rrobot , on average, Pe robots can fit in a pixel’s worth
of space. The Scale_Factor is determined by (1), which
gives the size of a pixel, in terms of Rrobot, where Npixels is the
number of white pixels in the pixel map.

 (1)

 Once Scale_Factor is known, the DASH controller can
virtually overlay the gradient map at the appropriate scale
onto the shared coordinate system. This will allow the
DASH controller to determine, for any location in the shared
coordinate system, what entry in the gradient map it
corresponds to. When overlaying the gradient map on the
shared coordinate system, we choose to place the center
entry of the gradient map, (49,49), to correspond to the
center of the shared coordinate system (0,0). To find the
entry in the gradient map that corresponds to the robot’s
current location in the shared coordinate system, (2) is used,
where xindex and yindex are the location in the gradient map,
and xscs and yscs are the location of the robot in the shared
coordinate system. The gradient map requires integer index
values, so the floor function is used to change the real value
within the parentheses of (2) to an integer value.

 (2)

4) Gradient Maximization Movement
Once the controller has determined where the robot is

located in the gradient map, it uses that
location, as well as its four neighboring grid locations in the
gradient map (up, down, left, right), to determine how to
move. Those four neighboring grid locations are used to
determine the maximum gradient direction of the gradient
map, around the robots current location in the gradient map.
The angle of this gradient is then set as the desired direction
of movement, θmove, for the robot. The computation of this
direction is shown in (3), where gm(x,y) returns the gradient
map entry for location (x,y).
 , (3)

If the robot has an xindex or yindex that is not between 0 and 99,
it will not have a valid entry in the gradient map. If that is
the case, the robot will move in the direction towards (0,0) in
the shared coordinate system, until it has a valid entry in the
gradient map.

5) Trapped Robot Movement
 If a robot finds itself at a location where the
corresponding gradient map indicates it is at a starting pixel
for an external or trapped segment, and its location in the
gradient map corresponds to a pixel in the pixel map that is
in a trapped segment, then the robot considers itself trapped,
and initiates a procedure to become un-trapped. This un-
trapping procedure uses communication between
neighboring robots, supersedes the previous gradient
following movement, and works as follows. First, the
trapped robot generates a trapped robot message. This
message contains the shared coordinate system location of
the trapped robot (xtrapped,ytrapped). It is sent to all neighboring
robots which have an xscs less then xtrapped, and a yscs that is
within the range (ytrapped - Twidth)<yscs<(ytrapped + Twidth), where
Twidth is a predefined constant. This message is further
propagated since, every time a robot receives the trapped
robot message, the receiving robot will send the message to
all of its neighbors that have a xscs less than that of the
receiving robot, and a yscs that is in the range (ytrapped -
Twidth)<yscs<(ytrapped + Twidth). When a robot receives a
trapped robot message, it commands a movement in the
negative x direction of the shared coordinate system. This
movement has priority over the previously described
gradient movement. The movement of these robots will
create a “corridor” for the trapped robot to eventually enter.
 As long as the trapped robot remains trapped, it will
continuously send out the trapped robot message. Once it is
no longer trapped, the message will stop. The robots that
received the trapped robot message directly or indirectly will

stop moving in the negative x direction, and revert to the
gradient following behavior.

6) Random Robot Movement
 If at any time a robot is unable to move in the commanded
direction, (determined by not detecting a change in the
robot’s coordinates after a commanded movement) then it
assumes it has bumped into another robot. When this
occurs, there is a possibility that the robot can get stuck in a
local minimum. In an example of this local minimum,
shown in Fig. 4, the robot in location 1 tries to move in the
direction to place it in location 2; however, it is prevented
from doing so when it bumps into a robot in location 3. To
prevent a robot from getting stuck in this minimum, when a
bump is detected, a robot will move in a random direction,
far enough to get out of the local minimum. This random
movement will only occur if it will not take the robot from a
location inside the shape segment to a location outside the
shape segment, according to values of the gradient map.
This random movement has the highest priority, and will
occur instead of the gradient maximization movement, or the
movement responding to a trapped robot message.

Fig. 4. Robot in local minimum. Black circles are robots, and the grey
circle labeled 2 is a desired location for the robot labeled 1.

III. ANALYSIS
The goal of DASH is for the collective to scalably form

and heal a desired shape. For the robot collective to have
fully formed or healed the desired shape, every robot must
be in a location that is within the shape, where the size of the
shape is determined from the current Nr. This means that
each robot is in a location that corresponds to an entry in the
gradient map greater than -1.

To show that all robots will move into the shape, we will
look at two possible cases. First, when a robot is on its own,
there is no possibility of collisions or blocking from other
robots. In this case, a single robot is capable of moving into
the shape from any location outside the shape, whether
external or trapped segments, by moving to maximize its
gradient map entry. This works because if a robot is at the
starting seed of an external or trapped segment, then gradient
maximization will take it into the shape. If the robot is not
at the starting seed, then gradient maximization will either
take it into the shape, or to a starting seed. Within the
external or trapped segment, the simple gradient
maximization movement will not get stuck in local maxima,
because there are no local maxima in the gradient map for
these segments, which can be proven as follows.

Proposition: There is no local maxima in the gradient
map for trapped or external segments.

Proof: The starting seed, , for the external or trapped
segment is not a local maximum, because it is always

immediately adjacent to a location in the shape segment
which has a higher value in the gradient map. For any other
location, , in the segment there is a shortest path

 from to the starting seed S, where is an
immediate neighbor of . Due to the fact that every sub-
path of a shortest path is also a shortest path for its
respective start and finish points, the shortest path from
is , which is 1 less than the shortest path
from . The values in the gradient map for the external or
trapped segment are set to be - (the length of the shortest
path from that location to the starting seed+1), so every
value in the gradient map for this segment must have an
immediate neighbor in the gradient map with a higher value,
and therefore is not a local maximum.

Once the single robot is inside the shape segment, the
gradient maximization movement will not move it out of the
shape. This is because the gradient map value of any
location inside the shape segment is greater than the gradient
map value of any location outside the shape segment.

The second possible case to look at which shows that
every robot will move into the shape, is when more than one
robot is trying to move into the desired shape. In this case,
there is the possibility of neighboring robots blocking
entrance into the shape. This blocking, called blockade
starvation, can prevent the collective from fully forming the
desired shape. Blockade starvation is when an area in the
shape segment cannot be filled by a robot because the
behavior of some robots inside the shape prevents robots
from reaching this area. There are two types of blockade
starvation: internal and external. An example of external
blockade starvation is shown in Fig. 5A. In this form of
blockade starvation, a robot in the external segment cannot
move inside the shape, thus preventing the shape from being
fully formed. An example of internal blockade starvation is
shown in Fig. 5B. Here, a robot in a trapped segment is not
capable of entering the desired shape, also preventing the
shape from fully forming.

When external blockade starvation occurs, the empty area
in the desired shape does not include any location that
corresponds to a local minimum of the gradient map. This is
because the generation of the gradient map in the shape
segment guarantees that there is no local minimum, which
can be proven in a similar fashion to the previous proof,
however is excluded from this paper for brevity. If a robot
immediately borders this empty area, and that robot has a
corresponding gradient map entry lower than that its
neighboring empty space (which is part of the empty area),
then by the gradient movement rule, the robot will move into
the empty space. Robots will continue to move into the
empty area until either the empty area is filled with robots,
or there are no robots next to the empty area that have a
gradient map value less than the gradient map value
corresponding to any of its empty neighbor spaces. If the
latter is true, then, because there are no local minima, the
empty area must include the starting pixel for the shape
segment. This starting pixel for the shape segment is on the

outside of the shape segment, where a robot in the external
segment can reach. If this is the case, this empty space is no
longer an external blockade starvation.

Fig. 5. Examples of A) external and B) internal blockade starvation of the
desired shape shown in Fig. 1B.

When internal blockade starvation occurs, an empty area

in the desired shape must become available to the trapped
robot. This empty location is made available to the trapped
robot using the trapped robot behavior. Similar to [7], but
with less coordination between robots, the trapped robot
behavior will create one or more empty spaces in the shape
directly below (lower x value) the trapped robot. Other
robots within the shape, but above this newly created space,
will move into it, in effect propagating the empty space
upward. Eventually, this empty space will reach the trapped
robot, allowing it to move into the desired shape, and
stopping the trapped robot behavior.

There are two side effects from this trapped robot
behavior. The first is that it may introduce multiple empty
locations inside the shape, below where the trapped robot
was located; however, these locations are easily filled with
robots using the gradient maximization movement. The
second side effect is that while some robots were moving to
create space for the trapped robot, they may have moved into
an external or trapped segment. If they moved into the
external segment, the gradient maximization movement will
direct them back into the desired shape. If they moved into a
trapped segment, and cannot move back into the desired
shape, they will also need to use the trapped robot behavior.
It is important to note that while the trapped robot behavior
may create more trapped robots, it only creates them in
locations below the original trapped robot. This means that
there is no cycle where a robot trapped in a specific segment
will cause more trapped robots in that segment. Without this
problem of feedback, the trapped robot behavior will quickly
cause the number of trapped robots to reduce to zero.

With the ability for each robot to move into the desired
shape both by itself and when considering possible
interference from other robots, the control method described
in section 2 should always form the desired collective shape.

IV. EXPERIMENTAL VERIFICATION
To verify that the DASH controller can indeed form a

desired shape, we tested it on a simulated collective of
robots. Each of these simulated robots was given the
capabilities described in section 2.A, with Rcom set to

. To start with, the robots were distributed

randomly in the simulated world, and given the pixel map of
the desired shape. In each simulated time step, the controller
for each robot would run once, commanding a movement for
the robot. At the end of each time step, the robots would
make the commanded movement, if possible. At the end of
each time step, the robots can also send messages to their
neighbors, which were received by the receiving robot at the
beginning of the next time step.

 The collective was tested on 75 shapes, where 50 of
them were chosen at random from [15], which is a library of
real world objects, and the remaining 25 were drawn by
students unaffiliated with our lab. Each image was given to
a simulated collective at the beginning of the simulation run
for a three simulation run series. Each of these three runs
would first wait Tdamage simulation steps, where the
collective would form the desired shape, shown in Fig.
6A→B, and then apply the following damage: For the first
run, the collective would be cut in half, where half the robots
are removed (Fig. 6B C). For the second run, the collective
would be cut in half, and the upper half would be moved
below the lower half, shown in Fig. 6B D. For the final run
in a series, more robots would be added near the collective,
as shown in Fig. 6B→E. In each case, after damage was
applied, the collective would reform the original shape until
it was complete at a scale proportional to the new number of
robots (Fig. 6F).

Fig. 6. Self assembly of the desired shape shown in Fig. 1C, the application
of various forms of damage (C,D,E), and the scalable self-healing of the
collective (F).

During each simulation run, at every time step we would

measure the percentage of robots that were inside the desired
shape, scaled appropriately based on Nr. The average of this
value for all 225 simulation runs, for every time step is
shown in Fig. 7. These results show that the DASH control
method can self-assemble a simulated collective from a
random starting configuration to a configuration where over
99% of the robots are within the desired shape.
Furthermore, the control method can fully recover after
various forms of damage back to a desired shape with over
99% of the robots in that shape.

Fig. 7. The percent of robots in the desired shape, averaged over 75 test
shapes. Damage was applied at the time of Tdamage.

V. CONCLUSION
In this paper we have shown that the described distributed

control method DASH can allow a collective of robots to
scalably form many shapes. In the event of damage, the
same method can reform the desired shape, but at a new
scale proportional to the number of robots remaining. For
videos of DASH running on a simulated collective, please
visit www.isi.edu/robots/media.html

REFERENCES
[1] H. Chiu, M. Rubenstein, W. Shen. Deformable Wheel, A Self-

Recovering Modular Rolling Track. Intl. symposium on Distributed
Robotic Systems, November 2008.

[2] R. Grady, R. Grob, A. Christensen, F. Mondada, M. Bonani, M.
Dorigo. Performance Benefits of Self-Assembly in a Swarm-Bot. IROS
2007.

[3] K. Stoy, R. Nagpal. Self-Repair Through Scale Independent Self-
Reconfiguration. IROS Sendai, Japan. 2004.

[4] D. Arbuckle, Self-Assembly and Self-Repair by Robot Swarms,
Dissertation, University of Southern California, August 2007.

[5] M. Rubenstein, W. Shen. A Scalable and Distributed Approach for
Self-assembly and Self-Healing of a Differentiated Shape. IROS 2008.

[6] M. Yim, J. Lamping, E. Mao, J. Chase. Rhombic Dodecahedron
Shape for Self-Assembling Robots. SPL Technical Report P9710277.
Palo Alto CA: Xerox PARC; 1997.

[7] M. Rosa, S. Goldstein, P. Lee, J. Campbell, P. Pillai. Scalable Shape
Sculpting Via Hole Motion : Motion Planning in Lattice-Constrained
Modular Robots. ICRA 2006.

[8] J. Cheng, W. Cheng,R. Nagpal, Robust and Self-repairing Formation
Control for Swarms of Mobile Agents, AAAI july 2005 .

[9] A. Kondacs, Biologically-inspired Self-Assembly of 2D Shapes, Using
Global-to-local Compilation, IJCAI 2003.

[10] M. Yim, W. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins,
G. Chirikjian. Modular Self-Reconfigurable Robot Systems --
Challenges and Opportunities for the Future. IEEE Robotics and
Autonomation Magazine, March():43–53, 2007.

[11] H. Bode. Head Regeneration in a Hydra, Developmental Dynamics
226:225-236, 2003.

[12] P. Maxim,S. Hettiarachchi, W. Spears, D. Spears, J. Hamman, T.
Kunkel, C. Speiser. Trilateration localization for multi-robot teams.
Sixth International Conference on Informatics in Control, Automation
and Robotics, Special Session on Multi-Agent Robotic Systems. 2008.

[13] Y. Shang, W. Ruml, Y. Zhang, M. Fromherz. Localization
Connectivity in Sensor Networks. IEEE Transactions on Parallel and
Distributed Systems, vol. 15 October 2004.

[14] D. Moore, J. Leonard, D. Rus, S. Teller. Robust distributed network
localization with noisy range measurements. SenSys 2004.

[15] J. M. Geusebroek, G. J. Burghouts, A. W. M. Smeulders, The
Amsterdam library of object images, Int. J. Comput. Vision, 61(1),
103-112, January, 2005.

