
  

 

Abstract—A collective of robots can together complete a task 
that is beyond the capabilities of any of its individual robots.  
One property of a robotic collective that allows it to complete 
such a task is the shape of the collective.   

In this paper, we present a distributed control method, 
called DASH, to enable a collective of robots to robustly and 
consistently form and maintain a pre-defined shape.  This 
control method allows the shape that is formed to be at a scale 
proportional to the number of robots in the collective.  If this 
collective shape is damaged through the un-controlled 
movement, removal, or addition of some members of the 
collective, the existing members will recover the desired shape, 
proportional to the new number of robots in the collective. 

We also analyze this control method in terms of class of 
acceptable shapes and discuss the convergence to the desired 
shape.     

I. INTRODUCTION 
n this paper we present a solution to the general problem 
of controlling a collective of distributed robots (sometimes 

referred to as a swarm, group, or ensemble) so that they can 
robustly and consistently form and maintain a pre-defined 
shape.  By forming a specific shape, a robot collective can 
complete a goal that cannot be completed by any of the 
individual robots.  For example, in a collective of 
reconfigurable robot modules, the robots can form the 
collective shape of a wheel, which will allow them to travel 
faster and more efficiently, when compared to an individual 
reconfigurable robot module [1].  Another example is shown 
in [2], when a single SWARM-BOT is confronted with an 
obstacle of rough terrain that it cannot cross.  It then joins 
together with other SWARM-BOTs to form a bridge shape, 
allowing them to traverse the rough terrain as a group. 

Due to the distributed nature of the robot collective, the 
need for scalability, and the desired robustness against single 
points of failure, the control method should be decentralized.  
Most robot collective control methods are decentralized; 
however, some require an initial unique seed to start the 
shape formation [3,4].  This seed is not an unreasonable 
requirement, however it does force a centralized decision to 
be made, reducing robustness against single points of failure. 

Along with being distributed, it is also important for the 
control method to be capable of forming as many different 
types of shapes as possible.  Some methods have a limited 
class of shapes that they are capable of forming.  For 
example in [5], the collective is only capable of forming 
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polar shapes.  In [3,6], the collective cannot form a shape 
that contains an empty internal volume. 

It is also important for the collective to be resistant to 
damage to the shape.  If the shape helps the collective 
complete a task, then damage to the shape may negatively 
affect the collective’s ability to complete that task.  Some 
control methods for forming a shape [6,7] do not have the 
ability to recover from most damage.  Others [3], can 
recover from the addition or removal of robots to the 
collective, but not the un-controlled movement of robots 
from one location to another.  

In the event that the number of robots in the collective 
changes through the addition or subtraction of robots, there 
are two options for the collective to adapt (self-heal).  The 
first option, fixed scale self-healing, used in [4,8,9], is to 
keep the size of the shape the same, but change the density 
of robots.  Due to an upper limit to this robot density (one 
can fit only so many robots in a fixed area), there is a 
maximum number of robots that can fit inside the collective 
shape.  Another drawback to this first option is that, for 
many collective robotic systems, such as reconfigurable 
robots [10], the robots require a close physical connection to 
neighboring robots.  This means that in general, the density 
of robots in the collective should remain the same, 
irrespective of the size of the collective.  The second option 
for adapting to the change in the number of robots is to 
scalably self-heal, which adjusts the size of the shape 
proportional to the number of robots in the collective, 
keeping the robot density constant.  This scalable self-
healing is shown in nature [11], where a small invertebrate, 
the hydra, will reform its original shape after being cut in 
half, but at half the size.  This has been recreated in some 
robotic collectives [3, 5]. 

During this process of self-healing as well as self-
assembly, robots outside the shape must move to a location 
within the shape.  At the same time, their movement is 
constrained with the added restriction of avoiding the 
locations of the other robots in the collective.  Robots 
already inside the shape must take care not to stop in a 
location that would prevent robots outside the shape from 
entering.  Some approaches [3,6] enact very careful 
communication exchanges between robots to guide moving 
robots past neighbors, avoiding disconnection, and locations 
where they can become trapped.  Other approaches [5,8] use 
random or biased random movement, as well as collisions 
between robots, to move robots around neighbors, and 
prevent choosing locations where they can become trapped. 

In the work presented here, we use a fully distributed 
control method, with no single point of failure, to enable a 
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collective of robots to scalably self-assemble and self-repair 
a large class of shapes.  This control method is resilient to 
the removal, addition, or un-controlled movement of robots 
in the collective, always returning the collective to the 
desired shape, proportional to the number of robots present.  
Section 2 will provide details of this control method; section 
3 will discuss the convergence of the group to the desired 
shape; section 4 will provide experimental results of this 
control method running on a simulated robot collective.  

II. METHODS FOR SELF-ASSEMBLY AND SELF-HEALING 
The following section describes DASH (Distributed 

Assembly and Self-Healing), a distributed method to control 
each robot in a robotic collective.  This control method uses 
an identical controller that runs in each robot.  Each robot 
controller also includes a full description of the desired 
collective shape.  When DASH is run on each robot in the 
collective, the robots will self-assemble to form the desired 
shape (some examples shown in Fig. 1), and self-repair if the 
shape is damaged, as shown in Fig 5. 

A.  Assumptions 
The robots are simple and homogeneous.  Each robot is 

shaped like a simple 2D circle, with radius Rrobot.  It is 
capable of moving in its local x direction along a plane, as 
well as rotating about its center, perpendicular to the plane.  
A robot cannot share the same space as another robot, and is 
not capable of pushing any robots.  All robots in the 
collective are identical and indistinguishable from each other 
in every way, even lacking a unique ID.      

Communication between neighboring robots is 
possible.  Each robot can communicate to any of its 
neighbors who are within a certain distance (Rcom). 

Robots have a consistent coordinate system.   The 
collective has a shared coordinate system that is known by 
all robots.  This enables each robot to precisely know its 
location in the coordinate system, in terms of (X,Y).  This 
coordinate system could be given from a Global Positioning 
System (GPS) or developed from a local, distributed method 
such as trilateration [12], MDS-MAP [13], or robust 
quadrilaterals [14].  Using movement, the robot can also 
determine the angle between its x direction and the x 
direction of the coordinate system, as described in [5].   

Robots know the total number of robots in the 
collective.  This number, Nr, represents the total number of 
robots that are currently part of the collective.  If some 
robots are added or removed, Nr will change accordingly. 

B. Class of Shapes 
While DASH is extendable to forming 3D shapes, in this 

paper, we will concentrate on 2D cases.  DASH is 
theoretically capable of forming any connected shape, 
defined as a shape that for every location in that shape, there 
is at least one path that is fully contained within the shape to 
all other points in that shape.  However, there are some 
practical limitations on the details of the shape, as the result 
of scaling the size of the shape.  Namely, these limitations 

are that for a given shape, at a given scale, the minimum 
feature size must be greater than 2•Rrobot.  This minimum 
feature size is found by fully decomposing the desired shape 
using largest possible overlapping circles.  The diameter of 
these circles is the minimum feature size.  From the 
minimum feature size, we can compute the minimum 
allowable height of these shapes.  The minimum allowable 
height of the shape will be the height that causes the 
minimum feature size to be 2•Rrobot.  An example of some 
possible shapes, shown as white, is shown in Fig. 1. 
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Fig. 1. Three example shapes (upper), and the approximation of those 
shapes (lower) by a simulated collective of robots (simulator described in 
detail in section 4). 

C. DASH Controller Overview 
The robot controller operates to achieve the following 

high level behavior.  The controller first determines the 
desired scale of the shape, based on the number of robots.  It 
then determines if the robot under its control is inside the 
desired shape.  If the robot is inside the desired shape, the 
robot will move in a way that keeps it within the desired 
shape, but at the same time does its best to keep from 
blocking other robots from entering the shape.  There are 
two possibilities if the robot is not in the desired shape.  The 
first possibility is that it is on the outside of the desired 
shape.  In this case, the robot will move along the perimeter 
until it can find a location to enter the shape.  The other 
possibility is that the robot is not in the desired shape, but is 
surrounded by the desired shape, for example, the center 
black region in Fig 1.B.  If this is the case, the robot will first 
try to enter the shape.  If this is not possible because it is 
blocked by other robots already in the shape, then this robot 
is trapped.  This trapped robot will enact a mechanism using 
robot-to-robot communication that moves some robots 
within the shape out of its way, allowing the trapped robot to 
move into the shape.          

D. DASH Controller Details 
The robot controller has two main sections.  The first 

section, which is run once at robot startup, takes in the 
desired shape description, and outputs a gradient map (to be 
described later).  The second controller section uses this 
gradient map, communication with other robots, Nr, and the 
robot’s location in the shared coordinate system, to 
determine if the robot should move, and in what direction. 



  

1) Processing the Pixel Map 
The input to the first section of the DASH controller is a 

description of the desired collective shape.  While other 
choices are possible, in our implementation, we chose to use 
a 100x100 pixel map to represent the desired shape.  In this 
pixel map, a pixel is white to represent a location within the 
shape, and black to represent a location not in the shape, as 
shown in Fig. 1.  We also add a constraint that every pixel 
on the outside border of this pixel map must be black.  The 
reason for this will be described shortly. 

First, the pixel map is segmented into groups of connected 
pixels with identical colors.  Due to the shape constraints 
given in section II.B. of this paper, there will be only one 
segment that includes white pixels, which is called the shape 
segment (shown as the white segment in Fig. 2B).  There 
will also be one segment called the external segment, 
(shown as the black segment in Fig. 2B).  The external 
segment includes the pixel (0,0), which is the upper left most 
pixel in the pixel map.  Due to the constraint that every pixel 
on the outside border of the pixel map must be black, the 
external segment will completely surround the shape 
segment.  There are further possible segments, called 
trapped segments, if there are black pixels in the pixel map 
that are completely surrounded by the shape segment.  Three 
examples of trapped segments are shown as vertical, 
horizontal and diagonal striped line segments in Fig. 2B. 

In each segment, there is one “starting pixel”, which is 
used later to generate the gradient map.  For all segments 
except the external segment, the upper left most pixel in that 
segment is chosen as a starting pixel.  For the external 
segment, the starting pixel is chosen to 
be the pixel in the external segment that is immediately to 
the left of the starting pixel for the shape segment. 

A  B  
Fig.2. A) the pixel map of the desired shape. B) the pixel map segmented 
into 5 regions. 

2) Creating the Gradient Map 
The gradient map is a 100x100 array that has one integer 

entry for every pixel in the pixel map.  Each location in the 
gradient map corresponds to the pixel in the same location of 
the pixel map.  The values in the gradient map are set as 
follows.  For the external and trapped segments in the pixel 
map, do the following.  For each pixel in that segment, 
calculate the “Manhattan” distance of the shortest path 
between that pixel and the segment’s starting pixel.  This 
shortest path is constrained to be fully within the 
corresponding segment.  The entry for this pixel in the 
gradient map is then set to -(path_length + 1).  For the shape 
segment, a similar approach is used.  For each pixel in the 
shape segment, calculate the “Manhattan” distance of the 
shortest path between that pixel and the shape segment’s 

starting pixel.  This shortest path is constrained to be fully 
within the shape segment.  The entry for this pixel in the 
gradient map is then set to this path length.   

When a gradient map is generated in this manner, any 
location in the gradient map with a negative value is located 
in a trapped or external segment.  If the gradient value is 
positive or zero, then it is within the shape segment.  When a 
location has a gradient map value of -1, then it is located at a 
starting pixel for an external or trapped segment.  An 
example gradient map generated from a pixel map is shown 
in Fig. 3.   

Fig. 3. A) An example of a 9x9 pixel map. B) The gradient map generated 
from that pixel map.  

The second part of the DASH controller is run 
continuously on each robot, and uses the gradient map built 
from the pixel map, communication with other robots, Nr, 
and the robot’s location in the shared coordinate system, to 
determine if the robot should move, and if so, in what 
direction. 

3) Finding and Using Scale_Factor   
DASH first determines at what scale the shape should be 

formed, called the Scale_Factor.  The controller uses an 
experimentally determined value, called the packing 
efficiency (Pe), as well as Nr, to find this scale. The Pe value 
represents the following: if the scale of the pixel map is 
made so that each pixel in the pixel map has the size 
Rrobot×Rrobot , on average, Pe robots can fit in a pixel’s worth 
of space.  The Scale_Factor is determined by (1), which 
gives the size of a pixel, in terms of Rrobot, where Npixels is the 
number of white pixels in the pixel map.     

           (1)  

 Once Scale_Factor is known, the DASH controller can 
virtually overlay the gradient map at the appropriate scale 
onto the shared coordinate system.  This will allow the 
DASH controller to determine, for any location in the shared 
coordinate system, what entry in the gradient map it 
corresponds to.  When overlaying the gradient map on the 
shared coordinate system, we choose to place the center 
entry of the gradient map, (49,49), to correspond to the 
center of the shared coordinate system (0,0).  To find the 
entry in the gradient map that corresponds to the robot’s 
current location in the shared coordinate system, (2) is used, 
where xindex and yindex are the location in the gradient map, 
and xscs and yscs are the location of the robot in the shared 
coordinate system.   The gradient map requires integer index 
values, so the floor function is used to change the real value 
within the parentheses of (2) to an integer value.  
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4) Gradient Maximization Movement 
Once the controller has determined where the robot is 

located  in the gradient map, it uses that 
location, as well as its four neighboring grid locations in the 
gradient map (up, down, left, right), to determine how to 
move.  Those four neighboring grid locations are used to 
determine the maximum gradient direction of the gradient 
map, around the robots current location in the gradient map.  
The angle of this gradient is then set as the desired direction 
of movement, θmove, for the robot.  The computation of this 
direction is shown in (3), where gm(x,y) returns the gradient 
map entry for location (x,y).    
   , (3) 

 
 

 
If the robot has an xindex or yindex that is not between 0 and 99, 
it will not have a valid entry in the gradient map.  If that is 
the case, the robot will move in the direction towards (0,0) in 
the shared coordinate system, until it has a valid entry in the 
gradient map. 

5) Trapped Robot Movement 
 If a robot finds itself at a location where the 
corresponding gradient map indicates it is at a starting pixel 
for an external or trapped segment, and its location in the 
gradient map corresponds to a pixel in the pixel map that is 
in a trapped segment, then the robot considers itself trapped, 
and initiates a procedure to become un-trapped.  This un-
trapping procedure uses communication between 
neighboring robots, supersedes the previous gradient 
following movement, and works as follows.  First, the 
trapped robot generates a trapped robot message.  This 
message contains the shared coordinate system location of 
the trapped robot (xtrapped,ytrapped).  It is sent to all neighboring 
robots which have an xscs less then xtrapped, and a yscs that is 
within the range (ytrapped - Twidth)<yscs<(ytrapped + Twidth), where 
Twidth is a predefined constant.  This message is further 
propagated since, every time a robot receives the trapped 
robot message, the receiving robot will send the message to 
all of its neighbors that have a xscs less than that of the 
receiving robot, and a yscs that is in the range (ytrapped - 
Twidth)<yscs<(ytrapped + Twidth).  When a robot receives a 
trapped robot message, it commands a movement in the 
negative x direction of the shared coordinate system.  This 
movement has priority over the previously described 
gradient movement.  The movement of these robots will 
create a “corridor” for the trapped robot to eventually enter. 
 As long as the trapped robot remains trapped, it will 
continuously send out the trapped robot message.  Once it is 
no longer trapped, the message will stop.  The robots that 
received the trapped robot message directly or indirectly will 

stop moving in the negative x direction, and revert to the 
gradient following behavior. 

6) Random Robot Movement                 
 If at any time a robot is unable to move in the commanded 
direction, (determined by not detecting a change in the 
robot’s coordinates after a commanded movement) then it 
assumes it has bumped into another robot.  When this 
occurs, there is a possibility that the robot can get stuck in a 
local minimum.  In an example of this local minimum, 
shown in Fig. 4, the robot in location 1 tries to move in the 
direction to place it in location 2; however, it is prevented 
from doing so when it bumps into a robot in location 3.  To 
prevent a robot from getting stuck in this minimum, when a 
bump is detected, a robot will move in a random direction, 
far enough to get out of the local minimum.  This random 
movement will only occur if it will not take the robot from a 
location inside the shape segment to a location outside the 
shape segment, according to values of the gradient map.  
This random movement has the highest priority, and will 
occur instead of the gradient maximization movement, or the 
movement responding to a trapped robot message.   

 
Fig. 4. Robot in local minimum.  Black circles are robots, and the grey 
circle labeled 2 is a desired location for the robot labeled 1. 

III. ANALYSIS 
The goal of DASH is for the collective to scalably form 

and heal a desired shape.  For the robot collective to have 
fully formed or healed the desired shape, every robot must 
be in a location that is within the shape, where the size of the 
shape is determined from the current Nr.  This means that 
each robot is in a location that corresponds to an entry in the 
gradient map greater than -1.    

To show that all robots will move into the shape, we will 
look at two possible cases.  First, when a robot is on its own, 
there is no possibility of collisions or blocking from other 
robots.  In this case, a single robot is capable of moving into 
the shape from any location outside the shape, whether 
external or trapped segments, by moving to maximize its 
gradient map entry.  This works because if a robot is at the 
starting seed of an external or trapped segment, then gradient 
maximization will take it into the shape.  If the robot is not 
at the starting seed, then gradient maximization will either 
take it into the shape, or to a starting seed.  Within the 
external or trapped segment, the simple gradient 
maximization movement will not get stuck in local maxima, 
because there are no local maxima in the gradient map for 
these segments, which can be proven as follows.  

Proposition: There is no local maxima in the gradient 
map for trapped or external segments. 

Proof: The starting seed, , for the external or trapped 
segment is not a local maximum, because it is always 



  

immediately adjacent to a location in the shape segment 
which has a higher value in the gradient map.  For any other 
location, , in the segment there is a shortest path

 from  to the starting seed S, where  is an 
immediate neighbor of .  Due to the fact that every sub-
path of a shortest path is also a shortest path for its 
respective start and finish points, the shortest path from  
is , which is 1 less than the shortest path 
from .  The values in the gradient map for the external or 
trapped segment are set to be - (the length of the shortest 
path from that location to the starting seed+1), so every 
value in the gradient map for this segment must have an 
immediate neighbor in the gradient map with a higher value, 
and therefore is not a local maximum.        

Once the single robot is inside the shape segment, the 
gradient maximization movement will not move it out of the 
shape.  This is because the gradient map value of any 
location inside the shape segment is greater than the gradient 
map value of any location outside the shape segment.   

The second possible case to look at which shows that 
every robot will move into the shape, is when more than one 
robot is trying to move into the desired shape.  In this case, 
there is the possibility of neighboring robots blocking 
entrance into the shape.  This blocking, called blockade 
starvation, can prevent the collective from fully forming the 
desired shape.  Blockade starvation is when an area in the 
shape segment cannot be filled by a robot because the 
behavior of some robots inside the shape prevents robots 
from reaching this area.  There are two types of blockade 
starvation: internal and external.  An example of external 
blockade starvation is shown in Fig. 5A.  In this form of 
blockade starvation, a robot in the external segment cannot 
move inside the shape, thus preventing the shape from being 
fully formed.  An example of internal blockade starvation is 
shown in Fig. 5B.  Here, a robot in a trapped segment is not 
capable of entering the desired shape, also preventing the 
shape from fully forming. 

When external blockade starvation occurs, the empty area 
in the desired shape does not include any location that 
corresponds to a local minimum of the gradient map.  This is 
because the generation of the gradient map in the shape 
segment guarantees that there is no local minimum, which 
can be proven in a similar fashion to the previous proof, 
however is excluded from this paper for brevity.  If a robot 
immediately borders this empty area, and that robot has a 
corresponding gradient map entry lower than that its 
neighboring empty space (which is part of the empty area), 
then by the gradient movement rule, the robot will move into 
the empty space.  Robots will continue to move into the 
empty area until either the empty area is filled with robots, 
or there are no robots next to the empty area that have a 
gradient map value less than the gradient map value 
corresponding to any of its empty neighbor spaces.  If the 
latter is true, then, because there are no local minima, the 
empty area must include the starting pixel for the shape 
segment.  This starting pixel for the shape segment is on the 

outside of the shape segment, where a robot in the external 
segment can reach.  If this is the case, this empty space is no 
longer an external blockade starvation. 

 
Fig. 5. Examples of A) external and B) internal blockade starvation of the 
desired shape shown in Fig. 1B. 

   
When internal blockade starvation occurs, an empty area 

in the desired shape must become available to the trapped 
robot.  This empty location is made available to the trapped 
robot using the trapped robot behavior.  Similar to [7], but 
with less coordination between robots, the trapped robot 
behavior will create one or more empty spaces in the shape 
directly below (lower x value) the trapped robot.  Other 
robots within the shape, but above this newly created space, 
will move into it, in effect propagating the empty space 
upward.  Eventually, this empty space will reach the trapped 
robot, allowing it to move into the desired shape, and 
stopping the trapped robot behavior.   

There are two side effects from this trapped robot 
behavior.  The first is that it may introduce multiple empty 
locations inside the shape, below where the trapped robot 
was located; however, these locations are easily filled with 
robots using the gradient maximization movement.  The 
second side effect is that while some robots were moving to 
create space for the trapped robot, they may have moved into 
an external or trapped segment.  If they moved into the 
external segment, the gradient maximization movement will 
direct them back into the desired shape.  If they moved into a 
trapped segment, and cannot move back into the desired 
shape, they will also need to use the trapped robot behavior.  
It is important to note that while the trapped robot behavior 
may create more trapped robots, it only creates them in 
locations below the original trapped robot.  This means that 
there is no cycle where a robot trapped in a specific segment 
will cause more trapped robots in that segment.  Without this 
problem of feedback, the trapped robot behavior will quickly 
cause the number of trapped robots to reduce to zero. 

With the ability for each robot to move into the desired 
shape both by itself and when considering possible 
interference from other robots, the control method described 
in section 2 should always form the desired collective shape. 

IV. EXPERIMENTAL VERIFICATION 
To verify that the DASH controller can indeed form a 

desired shape, we tested it on a simulated collective of 
robots.  Each of these simulated robots was given the 
capabilities described in section 2.A, with Rcom set to 

.  To start with, the robots were distributed 



  

randomly in the simulated world, and given the pixel map of 
the desired shape.  In each simulated time step, the controller 
for each robot would run once, commanding a movement for 
the robot.  At the end of each time step, the robots would 
make the commanded movement, if possible.  At the end of 
each time step, the robots can also send messages to their 
neighbors, which were received by the receiving robot at the 
beginning of the next time step.            

 The collective was tested on 75 shapes, where 50 of 
them were chosen at random from [15], which is a library of 
real world objects, and the remaining 25 were drawn by 
students unaffiliated with our lab.  Each image was given to 
a simulated collective at the beginning of the simulation run 
for a three simulation run series.  Each of these three runs 
would first wait Tdamage simulation steps, where the 
collective would form the desired shape, shown in Fig. 
6A→B, and then apply the following damage:  For the first 
run, the collective would be cut in half, where half the robots 
are removed (Fig. 6B C).  For the second run, the collective 
would be cut in half, and the upper half would be moved 
below the lower half, shown in Fig. 6B D.  For the final run 
in a series, more robots would be added near the collective, 
as shown in Fig. 6B→E.  In each case, after damage was 
applied, the collective would reform the original shape until 
it was complete at a scale proportional to the new number of 
robots (Fig. 6F). 

 
Fig. 6. Self assembly of the desired shape shown in Fig. 1C, the application 
of various forms of damage (C,D,E), and the scalable self-healing of the 
collective (F).  

 
During each simulation run, at every time step we would 

measure the percentage of robots that were inside the desired 
shape, scaled appropriately based on Nr.  The average of this 
value for all 225 simulation runs, for every time step is 
shown in Fig. 7.  These results show that the DASH control 
method can self-assemble a simulated collective from a 
random starting configuration to a configuration where over 
99% of the robots are within the desired shape.  
Furthermore, the control method can fully recover after 
various forms of damage back to a desired shape with over 
99% of the robots in that shape.            

 
Fig. 7. The percent of robots in the desired shape, averaged over 75 test 
shapes.  Damage was applied at the time of Tdamage. 

V. CONCLUSION 
In this paper we have shown that the described distributed 

control method DASH can allow a collective of robots to 
scalably form many shapes.  In the event of damage, the 
same method can reform the desired shape, but at a new 
scale proportional to the number of robots remaining.  For 
videos of DASH running on a simulated collective, please 
visit www.isi.edu/robots/media.html      
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