CHAPTER3

EVOLUTIONARY COMPUTING

“.. one general law, leading to the advancement of all organic beings, namely, multiply,
vary, let the strongest live and the weakest die.”
(C. Darwin, The Origin of Species, 1859; Wordsworth Editions Limited (1998), p. 186).

“The work done by natural selection is R and D, so biology is fundamentally akin to en-
gineering, a conclusion has been deeply resisted out of misplaced fear for what it might
imply. In fact, it sheds light on some of our deepest puzzles. Once we adopt the engineer-
ing perspective, the central biological concept of function and the central philosophical
concept of meaning can be explained and united. Since our own capacity to respond to
and create meaning — our intelligence — is grounded in our status as advanced products
of Darwinian processes, the distinction between real and artificial intelligence collapses.
There are important differences, however, between the products of human engineering
and the products of evolution, because of differences in the processes of evolution into
focus, by directing products of our own technology, computers, onto the outstanding
questions.”

(D. Dennett, Darwin’s Dangerous Idea: Evolution and the Meanings of Life, Penguin
Books, 1995, p. 185-186)

“... nothing in biology makes sense, except in the light of evolution.”
(T. Dobzhansky, The American Biology Teacher, 35, 1973, p. 125-129)

3.1 INTRODUCTION

Evolutionary computing, also called evolutionary computation, is the field of
research that draws ideas from evolutionary biology in order to develop
search and optimization techniques for solving complex problems. Most evolu-
tionary algorithms are tooted on the Darwinian theory of evolution. Darwin
proposed that a population of individuals capable of reproducing and subjected
to (genetic) variation followed by selection result in new populations of indi-
viduals increasingly more fit to their environment. Darwin’s proposal was very
radical at the time it was formalized, in the late 1850s, because it suggested that
a simple algorithmic process of reproduction plus variation and natural selection
was sufficient to produce complex life forms.

This simple theory for the origin and diversity of life resulted in the develop-
ment of one of the most useful natural computing approaches to date, namely,
the evolutionary algorithms (EAs). There are several types of EAs, among
which the most classical ones are genetic algorithms, evolution strategies, evolu-
tionary programming, and genetic programming. This chapter starts by describ-
ing what is problem-solving as a search task, and follows with an introduction to
hill-climbing and the simulated annealing algorithm, some traditional search
techniques. The motivation behind the simulated annealing algorithm is provi-
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62 Problem Solving as a Search Task

ded and it is theoretically compared with hill-climbing and some of its varia-
tions. This paves the ground for a better understanding of EAs. The focus of the
chapter is on the standard genetic algorithm, but an overview of the other main
evolutionary algorithms is also provided. To appropriately describe the inspira-
tion behind all evolutionary algorithms, with particular emphasis on the genetic
algorithm, some background on evolutionary genetics is provided.

3.2 PROBLEM SOLVING AS A SEARCH TASK

Under the evolutionary perspective to be studied in this chapter, a problem may
be understood as a collection of information from which something (e.g.,
knowledge) will be extracted or inferred. For instance, consider the cases of a
numeric function to be maximized, and the problem of allocating a number of
classes to some set of students, known as a timetabling problem. In the first
problem, some knowledge (information) about the function to be optimized is
available (e.g., the function itself, fix)=x>+x + 3), and the objective is to de-
termine the values of x that maximize this function. In the timetabling problem,
a lot of information might be available, such as the number of students, class-
rooms, teachers, and so forth. The objective may be, for example, to make a

timetable for all the classes at a college in a semester, given the information
available.

The process of problem solving corresponds to taking actions (steps), or se-
quences of actions (steps), that either lead to a desired performance or improve
the relative performance of individuals. This process of looking for a desired
performance or improved performances is called search. A search algorithm will
take a problem as input and return a solution to it. In this case, one or more indi-
viduals, which could be viewed as agents, will be used as candidate solutions to
the problem. Some knowledge about the desired performance of a given indi-
vidual is not always available, but it might still be possible to evaluate the rela-
tive quality of individuals that are being used as means to solve the problem.

The first step in problem solving is the problem formulation, which will de-
pend on the information available. Three main concepts are then involved in
problem solving (Michalewicz and Fogel, 2000):

1) Choice of a representation: encoding of alternative candidate solutions
(individuals) for manipulation. For each problem, the representation of a
candidate solution is of paramount importance, and its corresponding in-
terpretation implies the search space and its size. The search (or state)
space is defined by the initial staze (configuration) and the set of possible
states (configurations) of the problem.

2) Specification of the objective: description of the purpose to be fulfilled.
This is a mathematical statement of the task to be achieved. It is not a
function, but rather an expression. For instance, if the objective is to

minimize the function fO=x+x+3 given above, then the objective
can be stated as follows: min Sx).
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3) Definition of an evaluation function: a function .that returns a §pgf:1%c
value indicating the quality of any particular candidate solution (1nh chll -
ual), given the representation. In cases .when no knowledge ;l;out. the de-
sired performance of individuals is aval!able, thc? evah.latl.or'l nction maly
be used as a means to evaluate the relative qua!lty.of }qd1v1dual§, t'hus al-
lowing for the choice of one or more high quality individuals within a set
of candidate solutions.

3.2.1. Defining a Search Problem

Given a search space S, assume the existence of some constrair.ats that, (;f v;o-
lated, avoid the implementation of a solution. In the search for 1‘mproveh ) u:[
tions to a problem, we have to be able to move from one solution to t ‘13 ?ex
without violating any of the constraints imposed by.the prob}em formlllX ation,
that is, we need operators that generate or select feasible solutions. See Appen-
dix B.4.1 for a brief review of optimization problems.

It is now possible to define a search (or optimization) prol?lem (Michalewicz
and Fogel, 2000). Given the search space S, together with its feasible part F,
F c S, find x* € F such that eval(x*) < eval(x), Vx € F.

In this case, the evaluation function that returns smaller values for x is cpn51d-
ered better. Thus, the problem is one of minimization. However, we coullld just as
easily use an evaluation function for which largfer values are fayored, t uhs. turn-
ing the search problem into one of maximizatzon: To maximize S(')met ing 1Ist
equivalent to minimize the negative of the same thing (max flx) = mllln —f(ng.
is important to stress that the search process itself qoes not know.w at pro. elrln
is being solved, as will be further discussed in.Sectlon 39.1. All 1t_ knowsdls t g
information provided by the evaluation function, the. representation use ; an
how the possible solutions are sampled. If the eyaluatlon ﬁmf:tlon does n(i cglr-
respond with the objective, we will be searching for the right answer to the
wrong problem! ’

The point x that satisfies the above cond.ition is called a glgbal solutzond%r
global optimum. Finding such a global solut?on toa pl.'oblem mgh_t be ve%Il 1t -
ficult, but sometimes finding the best solution is easier vyhen it is possible to
concentrate on a small portion of the search space. Effective searqh t.echmbq'ues
have to provide a mechanism for balancing two apparently conﬂlctmg (l) jec-
tives: exploiting the best solutions found S0 far and at the same time exp ogrlzf
the search space. Among the search techpxques to be studied, some ge.g., :) -
climbing) exploit the best available solution ‘but neglect exp}ormg a large p 1
tion of the search space, while others (e.g., S}mulated annealing and gf?ne;tlc al-
gorithms) combine exploration with exploitation of the sea_rch space. It is impor-
tant to note, however, that it has been proved mathematically that ther‘e is no
way to choose a single search method that can have an aver?ge superior pe;:

formance in all runs for all problems; a theorem known as ‘No Free Lunc
(Wolpert and Macready, 1997).
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It is possible, on the other side, to assess and compare the performance of dif-
ferent algorithms in specific problem domains and, therefore, it is possible to

look for a technique that provides the best performance, on average, in this do-
main.

In contrast to the global optimum, a local optimum is a potential solution
x € Fin respect to a neighborhood N of a point y, if and only if eval(x) < eval(y),
Vy € Mx), where N(x)={y e F : dist(x,y) < &}, dist is a function that deter-
mines the distance between x and ¥, and € is a positive constant. Figure 3.1 illus-
trates a function with several local optima (minima) solutions, a single global

optimum (minimum), and the neighborhood of radius & around one of the local
optima solutions.

The evaluation function defines a response surface, which will later be termed
fitness landscape (Section 3.4.4), that is much like a topography of hills and
valleys. The problem of finding the (best) solution is thus the one of searching
for a peak, assuming a maximization problem, in such a fitness landscape. If the
goal is that of minimization, then a valley has to be searched for. Sampling new
points in this landscape is basically made in the immediate vicinity of current
points, thus it is only possible to take local decisions about where to search next
in the landscape. If the search is always performed uphill, it might eventually
reach a peak, but this might not be the highest peak in the landscape (global op-
timum). The search might sometimes go downhill in order to find a point that
will eventually lead to the global optimum. Therefore, by not knowing the fit-

ness landscape and using only local information, it is not possible to guarantee
the achievement of global optima solutions.

—
Local optima (minima)

Global optimum (minimum)

Figure 3.1: Illustration of global and local minima of an arbitrary function. Dark circle:
global minimum; White circles: local minima.
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3.3 HILL CLIMBING AND SIMULATED ANNEALING

This section introduces two standard segrch techpiques: hill-climbing a;lds glz'tmz%
lated annealing. The simulated annealing algorlthm can be.siaen as a sort of
probabilistic hill-climber, and it can glso be': viewed asa spemaA((:le:is.(:. 0 an evor
lutionary algorithm, which is the main subject of FhlS chapter. ; i f1\on Oh}lzt,ion_
study of these two procedures serves as a preparation fgr the stufy o efY lution-
ary algorithms, a better understanding of their behavior, and for perfo

comparisons as well.

3.3.1. Hill Climbing

Hill climbing is a local search method thgt uses an iterative. improvteTe)n_t iitrte;;
egy. The strategy is applied to a single pqlnt ’ the current point (?r sta ne i the
search space. At each iteration, a new point x'is sellected by per or'mtx. Sgselected
displacement or perturbation in the cu.rrent point x, i.e., the new pou;1 i lected
in the neighborhood of the current point: x' € N(x.). Depend}ng ont elfer;; sen-
tation used for x, this can be implemented by simply adding a sma

number, Ax, to the current value of x: X' = x + Ax.

If that new point provides a better value for the evah}ation functl(?n, thfrtllotgg
new point becomes the current point. Else, some other d1splacerr}ent 1: proeViOuS
in the current point (a new neighbor is chosen) gnd testegl agalpst its pr v
value. Termination occurs when one of the following stopping criteria is met:

e No further improvement can be achieved.

e A fixed number of iterations have been performed.

e A goal point is attained. o

Let x be the current point, g the goal point (assuming it is known), and
max it a maximum number of iterations allowed. {\lgorlthm 3.1 contains the
pseuaocode of a standard (simple) hill-climbing algorithm.

procedure [x] = hill-climbing(max_it,q)
initialize x
eval (x)
t « 1 .
while t < max it & x != g & no_improvement do,
X' <« perturb (x)
eval (x")
if eval(x’) is better than eval(x),
then x « x’
end if
t« t +1
end while
end procedure

Algorithm 3.1: A standard (simple) hill-climbing procedure.
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Procedure [best] = IHC(n_start,max_it,g)

initialize best

tl « 1

while t1 < n_start & best != g do,
initialize x
eval (x)
X < hill-climbing(max_it,gq) //Algorithm 1
tl « tl1 + 1
if x is better than best,

then best « x
end if
end while
end procedure

Algorithm 3.2: An iterated hill-climbing procedure.

Hill climbing algorithms have some weaknesses. First, they usually terminate
at local optima solutions. Second, there is no information about the distance
from the solution found and the global optimum. Third, the optimum found de-
pends on the initial configuration. F inally, it is generally not possible to provide
an upper bound for the computational time of the algorithm.

An important aspect of this algorithm, however, is that it performs a blind
search, i.e., the current point is randomly perturbed and evaluated to check for
an improvement of the objective function (see discussion in Section 3.9.1). Note
also that hill-climbing methods can only converge to local optima solutions, and
these values are dependent upon the starting point. Furthermore, as the global
optimum is usually unknown, there is no general procedure to bound the relative
error with respect to it. As the algorithm only provides local optima solutions, it
is reasonable to start hill-climbing methods from a large variety of points. The
hope is that at least one of these initial locations will have a path leading to the
global optimum. The initial points might be chosen randomly, or by using a
regular grid or pattern, or even by using other types of information. In the case
the standard hill-climbing algorithm allows for multiple initializations and main-
tains a ‘memory’ of the best solution found so far, we have the so-called iterated
hill-climbing, as described in Algorithm 3.2 (The input variable n start is the
number of different starting points to be used).

As an alternative stopping criterion, it is possible to verify if the algorithm
reached a local optima solution by comparing the current value of x (or best)
with some of its previous values. If the value of x (best) does not change signifi-
cantly after a number of iterations, then the algorithm can be said to have con-
verged to a local optimum and the process can be halted.
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Figure 3.2: An illustrative example of the behavior of the basic hill-climbing algorithm.

There are a number of variations for the hill-clirpbing algorithm, and the one;
discussed here are the simplest cases. Figure 32 1llustr§tes the .pe.:r-folrma.nfe 0
the iterated hill-climbing algorithm assuming only two different 1n1t1i p01.11 hs,ﬂ)l(el
and x,. This function is uni-dimensional gnd contains only fouF pea s,tgw ne
third peak from left to right corresponding to the gl(?ba! optlmuhm (the f)nner
peaks are all local optima solutions). If the first start point ;s at xy, then g i ne
loop of the algorithm converges to the locgl optimum x;*. I: the second start,
point x,, the global optimum will be determined and bes? = x,*. ‘ .

Note that in practical applications the number of local optima solfuthrllj is 1:/]:,}.,
high, making such pure a trial and error strategy a}lmo§t al.ways un lc)ea51 e. o
ertheless, the good exploitation capability of h111—chmb1ng has been usel o
combination with many other techniques capable of performing a better explora
tion of the search space. '

The standard hill-climbing procedure can be modified in order to accomn'xq-
date a probabilistic selection of the perturbed point xf. The prgbablllty tll;a;c x' is
selected depends upon the relative merit of x and X/, i.e., the dlfferenig e v&(/jeef:irf
the values returned by the evaluation function for jchesg twg po'mts. T 1sdmo i
cation leads to a new algorithm called sto.cfzastzc hzll—c.lzmbmg plroce1 uri,' as
described in Algorithm 3.3, with the capability of escaping from ll?ca op 1ma_1
solutions. The parameter T is a control parameter fqr the decay of the exponen
tial function, and it remains constant along the iterations. .

In Algorithm 3.3, by looking at the probability P of a?cepting the new pollln:
X, P=1/(l+exp[ (eval (x)-eval (x7))/T]),itis p0851b1.e to pote tha
the greater the value of T, the smaller the importance of the relative dllfference
between the evaluation of x and x'. If T is very large, then the search becomes
similar to a random search.
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prgcedure [®x] = stochastic hill-climbing (max it,qg)
initialize x -
eval (x)
t « 1
while t < max_it & x != g do,
x’ <« perturb (x)
eval (x')
if random[0,1) < (1/(l+eXp[(eval(x)~eval(x’))/T])),
then x « x’
end if
t« t +1
end while
end procedure

Algorithm 3.3: A stochastic hill-climbing procedure.

3.3.2. Simulated Annealing

The ;imu!ated annealing (SA) algorithm, proposed by Kirkpatrick et al. (1983),
was inspired by the annealing process of physical systems. Annealing corre-
sponds to subjecting a material (e.g., glass or metal) to a process of heating and
slow cooling in order to toughen and reduce brittleness.

The SA algorithm is based upon that of Metropolis et al. (1953), which was
originally proposed as a means of finding the equilibrium configuration of a
collection of atoms at a given temperature. The basic ideas of SA were taken
from s{atistical thermodynamics, the branch of physics that makes theoretical
predictions about the behavior of macroscopic systems (both, liquid and solid)
on the basis of laws governing its component atoms.

Although the connection between the Metropolis algorithm and optimization
problems had already been noted by Pincus (1970), it was Kirkpatrick et al.
(198'3)'wh0 proposed that it could form the basis of a general-purpose search
(optimization) technique to solve combinatorial problems. The authors realized
that. there is a useful connection between statistical thermodynamics and multi-
variate combinatorial optimization. A detailed analogy with annealing in solids
cou.Id provide a framework to develop an optimization algorithm capable of es
caping local optima solutions (configurations).

A fundamental question in statistical thermodynamics was raised concerning
whgt happens to a system in the limit of low temperature. Do the atoms remain
fluid or solidify? If they solidify, do they form a crystalline structure or a glass?
The SA algorithm was instantiated with a procedure used to take a material to its
ground state; that is, to a state of lowest energy in which a crystal, instead of a
glass, can be grown from a melt. The material is first heated to a high tempera-
Fure so that it melts and the atoms can move freely. The temperature of the melt
is then slowly lowered so that at each temperature the atoms can move enough
to begin adopting a more stable orientation. If the melt is cooled down slowly
enough, the atoms are able to rest in the most stable orientation, producing a
crystal. This heating followed by a slow cooling process is known as annealing.

Kirkpatrick et al. (1983) proposed that when it is possible to determine the en-
ergy of a system, the process of finding its low temperature is akin to combina-
torial optimization. Nevertheless, the concept of temperature of a physical sys-
tem had no obvious equivalent in a problem being solved (optimized). By con-
trast, any cost function could play the role of the energy of the system. It re-
mained thus important to propose an equivalent to the temperature parameter
when dealing with optimization problems.

Basic Principles of Statistical Thermodynamics

In statistical thermodynamics large systems at a given temperature approach
spontaneously the equilibrium state, characterized by a mean value of energy,
depending on the temperature. By simulating the transition to the equilibrium
and decreasing the temperature, it is possible to find smaller and smaller values
of the mean energy of the system (Cerny, 1985).

Let x be the current configuration of the system, £(x) the energy of x, and T
the temperature. The equilibrium is by no means a static situation. In equilib-
rium, the system randomly changes its state from one possible configuration to
another in such a way that the probability of finding the system in a particular
configuration is given by the Boltzmann-Gibbs distribution:

P(x) = K.exp(-E(x)/T) G.n

where K is a constant. If we assume a system with a discrete number of possible
states, then the mean energy E,, of the system in equilibrium is given by

ZEconf exp(_Econf /T)

— | conf
Em Z exp(_Econf / T) (3.2)

conf
The numerical calculation of E,, might be quite difficult if the number of con-
figurations is high. However, it is possible to employ a Monte Carlo simulation
of the random changes of state from one configuration to another such that, in
equilibrium, Equation (3.1) holds. One such algorithm is the Metropolis et al.
(1953) procedure.

The Simulated Annealing Algorithm

Assuming the general problem of minimizing a function, the simulated anneal-
ing algorithm works as follows. Having a current configuration x, this is given a
small random displacement, resulting in x’, where the point x’ is chosen in the
neighborhood of x. The energy E(x’) of this new configuration is computed, and
one has to decide whether to accept x’ as the new configuration, or to reject it.
The resulting change in the energy of the system, AE = E(x') — E(x), is calcu-
lated. If AE <0, then the displacement is accepted and the configuration x' is
used as the starting point for the next iteration step. If AE > 0, the probability
that the configuration x’ is accepted is given by Equation (3.3), which is a par-
ticular case of the Boltzmann-Gibbs distribution (Equation (3.1)).
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P(AE) = exp(—AE/T) 3.3)

To implement the random portion of the procedure, one can simply generate a
random number 7 = random[0,1), sampled over the interval [0,1), and compare
it with P(AE). If r < P(AE), the new configuration x’ is retained, else it is dis-
carded and x is maintained in the next iteration of the algorithm.

By repeating the basic steps described in the paragraph above, one is simulat-
ing the thermal motion of atoms in thermal contact with a heat bath at tempera-

ture T. By using P(AE) as described by Equation (3.3), the system evolves into a
Boltzmann distribution.

To apply this algorithm as a general-purpose optimization procedure, the en-
ergy of the system is replaced by an evaluation function and the configurations
are defined by a set of variables for this function. The temperature is a control
parameter in the same units as the evaluation function. As annealing corre-
sponds to first heating and then slowly cooling down the system, the tempera-
ture 7 in the simulation usually starts with a high value and is decreased during
the iterative procedure. At each temperature, the simulation must proceed long
enough for the system to reach a steady state. The sequence of temperatures and
the number of rearrangements of the parameters attempted to reach equilibrium
at each temperature are termed annealing schedule (Kirkpatrick et al., 1983).

Let x be the current configuration of the system, x’ be the configuration x after
a small random displacement, and T the temperature of the system. The standard
simulated annealing algorithm for solving minimization problems is described in
Algorithm 3.4. The function g(7, t) is responsible for reducing the value of the
temperature. Usually a geometrical decrease is employed, e.g., T < B.7, where
B<l.

procedure [x] = simulated annealing(g)
initialize T
initialize x
eval (x)
t « 1
while not stopping criterion do,
x’ <« perturb (x)
eval (x")
if eval(x’) is less than eval (x),
then x « x’
else if random([0,1) < expl[ (eval (x)-eval(x’'))/T],
then x « x’
end if
T « g(T,t)
t« t+1
end while
end procedure

Algorithm 3.4: The simulated annealing procedure.
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Step 1: initialize T
initialize x
Step 2: x' <« perturb (x)

if eval(x’) is less than eval (x),
then x « x'

else if random[0,1) < expl(eval (x)-eval(x'))/T]
then x « X

end if

repeat this step k times

Step 3: T« B.T

if T > Tpin
then goto Step 2

else goto Step 1

Algorithm 3.5: Typical implementation of the simulated annealing procedure.

The Metropolis algorithm can be viewed as a generalized iterative improve-
ment method, in which controlled uphill steps can also be incorporated into the
search. Also, this algorithm is very similar to the stochastic hill-climber, with
the difference that it allows changes in the parameter T during the run. Most
implementations of the simulated annealing algorithm follow the simple se-
quence of steps (Michalewicz and Fogel, 2000) presented in Algorithm 3.5.

In this typical implementation (Algorithm 3.5) the algorithm is initialized a
number of times, whenever the temperature reaches is minimal value (frozen
temperature). Also, for each temperature value the algorithm is run a number &
of times.

From Statistical Thermodynamics to Computing

In the previous sections the simulated annealing algorithm was dgscribed to-
gether with its inspiration in physical systems. Table 3.1 summarizes hoyv to
interpret the terminology from the physics domain into the one used in the simu-
lated annealing algorithm.

Table 3.1: Interpretation from the physics terminology into the computational domain.

Physics Simulated Annealing Algorithm

State (Feasible) solution to the problem, also called point in
the search space

Energy Value returned by the evaluation function

Equilibrium state Local optimum

Ground state Global optimum

Temperature Control parameter

Annealing Search by reducing T

Boltzmann-Gibbs distribution ~ Probability of selecting a new point
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3.3.3. Example of Application

Consider the uni-dimensional function g(x) presented in Figure 3.3. The variable
x is defined over the interval [0,1], x € [0,1], and assume the global maximum of
this function is unknown. It was discussed above that to optimize this function it
is necessary to have a well-defined representation, objective function, and
evaluation function.

Representation. The most straightforward representation, in this case, is to use
the real value of variable x to represent the candidate solutions to the problem.
Another representation can be obtained by using a bitstring data structure, as
will be described in detail in Section 3.5.2. In order to perturb the current point,
i.e., to generate a candidate point in the neighborhood of the current point, a
Gaussian random noise of zero mean and small variance, G(0,5), can be added
to the current point. If the added noise results in an individual that lies within the
domain of x, x € [0,1], then accept it; else, discard it: x’ = x + G(0,5), where & is
a small positive constant. The same could be done with a uniform, instead of
Gaussian, distribution.

Objective. The objective for this problem is to find the maximal value of the
function g(x); that is, max g(x).

Evaluation. The evaluation function used to determine the relative quality of
candidate solutions is obtained by simply evaluating the function g(x) for the
values of x.

By using real values over the interval [0,1] to represent the variable x, all hill-
climbing procedures described (simple, iterated, and stochastic) and the simu-
lated annealing algorithm can be implemented and applied to find the global
maximum of g(x). For the simple hill-climbing, different initial configurations
can be tried as attempts at finding the global optimum.
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Figure 3.3: Graph of the function g(x) = 2720/ 09y’ (sin(S;zx))6 to be maximized.

3.4 EVOLUTIONARY BIOLOGY

Evolutionary biology is a science concerned, among other things, with the study
of the diversity of life, the differences and similarities among organisms, and the
adaptive and non-adaptive characteristics of organisms. Its importance are mani-
fold, from the health sciences to the understanding of how the living organisms
adapt to the environment they inhabit. For instance, evolutionary biology helps
in the understanding of disease epidemics, population dynamics, and the produc-
tion of improved cultures. Over roughly the last 60 years, computer scientists
and engineers realized that evolutionary biology has various interesting ideas for
the development of theoretical models of evolution (some of them being rather
abstract models) that can be useful to obtain solutions to complex real-world
problems.

The word evolution is originated from the Latin evolvere, which means to un-
fold or unroll. Broadly speaking, evolution is a synonym for ‘change’. But what
type of change? We do not usually employ the word evolution to refer to the
changes suffered by an individual during its lifetime. Instead, an evolving sys-
tem corresponds to the one in which there is a descent of entities over time, one
generation after the other, and in which characteristics of the entities differ
across generations (Futuyma, 1998). Therefore, evolution can be broadly defined
as descent with modification and often with diversification. Many systems can
be classified as evolutionary: languages, cellular reproduction in immune sys-
tems, cuisines, automobiles, and so on.

Any evolutionary system presents a number of features:

e Population(s): in all evolutionary systems there are populations, or
groups, of entities, generally termed individuals.

e Reproduction: in order for evolution to occur, the individuals of the popu-
lation(s) must reproduce either sexually or asexually.

e Variation: there is variation in one or more characteristics of the indi-
viduals of the population(s).

e  Hereditary similarity: parent and offspring individuals present similar
characteristics. Over the course of generations, there may be changes in
the proportions of individuals with different characteristics within a popu-
lation; a process called descent with modification.

o Sorting of variations: among the sorting processes, it can be emphasized
chance (random variation in the survival or reproduction of different
variants), and natural selection (consistent, non-random differences
among variants in their rates of survival and reproduction).

Adaptation as a result of variation plus natural selection leads to improvement
in the function of an organism and its many component parts. “Biological or
organic evolution is change in the properties of populations of organisms, or
groups of such populations, over the course of generations.” (Futuyma, 1998; p.
4). Note that according to this definition of evolution, individual organisms do
not evolve and the changes of a population of individuals that are assumed to be
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evolutlonary are those resultant from inheritance, via the genetic material, from
one generation to the other.

Thf: history of evolutionary biology is marked by a number of hypotheses and
theories abopt how life on earth appeared and evolved. The most influential the-
ory to dat§ is the one proposed by Charles Darwin and formalized in his book
On the Origins of Species by Means of Natural Selection, or the Preservation of
Favourec{ Races in the Struggle for Life (Darwin, 1859). Historically, Alfred
Wallace is al§o one of the proponents of the theory of evolution by means of
natural selection, but it was Darwin’s book, with its hundreds of instances and
arguments supporting natural selection, the landmark for the theory of evolution.

Among the many preDarwinian hypotheses for the origin and development of
beings, the one proposed by Jean Baptist Pierre Antoine de Monet, chevalier de
Lamar'ck,. was the most influential. According to Lamarck, every species origi-
nate§ 1nd1v1dpally by spontaneous generation. A ‘nervous fluid’ acts within each
species, causing it to progress up the chain over time, along a single predeter-
mme':d path that every species is destined to follow. No extinction has occurred:
fossil species are still with us, but have been transformed. According to La-
marck, species also adapt to their environments, the more strongly exercised
organs attract more of the nervous fluid, thus getting enlarged; conversely, the
less, usgd organs become smaller. These alterations, acquired during an individ-
ual’s lifetime through its activities, are inherited. Like everyone at that time,
Lamarck believed in the so-called inheritance of acquired characteristics.

The most famous example of Lamarck’s theory is the giraffe: according to
Lamarck, giraffes need long necks to reach the foliage above them; because they
are cgnstantly stretching upward, the necks grow longer; these longer necks are
inherited; and over the course of generations the necks of giraffes get longer and
longer. NoFe.that the theory of inheritance of acquired characteristics is not La-
marck’s prlglpal, but an already established supplement to his theory of ‘organic
progrf:ssm.n’ in which spontaneous generation and a chain of beings (progression
from Inanimate to barely animate forms of life, through plants and invertebrates,
up to the higher forms) form the basis. Lamarck’s theory may also be viewed as

a transforn?ational theory, in which change is programmed into every member
of the species.

3.4.1. On the Theory of Evolution

Darwin’s stgdies of the natural world showed a striking diversity of observations
oﬁver the amrpal gnd vegetal kingdoms. His examples were very wide ranging,
om domestic pigeons, dogs, and horses, to some rare plants. His research that

resulteq in the book Origin of Species took literally decades to be concluded and
formalized.

. In contrast t.o.the Lamarckian theory, Darwin was certain that the direct ef-
ects of the conditions of life were unimportant for the variability of species.

) “SeCQIings from the same fruit, and the young of the same litter, some-
times differ considerably from each other, though both the young and the
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parents ... have apparently been exposed to exactly the same conditions of

life; and this shows how unimportant the direct effects of the conditions of

life are in comparison with the laws of reproduction, and of growth, and of
inheritance; for had the action of the conditions been direct, if any of the
young had varied, all would probably have varied in the same manner.”

(Darwin, 1859; p. 10)

Darwin starts his thesis of how species are formed free in nature by suggesting
that the most abundant species (those that range widely over the world) are the
most diffused and which often produce well-marked varieties of individuals over
the generations. He describes some basic rules that promote improvements in
organisms: reproduce, change and compete for survival.

Natural selection was the term used by Darwin to explain how new characters
arising from variations are preserved. He starts thus paving the ground to his
theory that slight differences in organisms accumulated over many successive
generations might result in the appearance of completely new and more adapted
species to their environment. As defended by himself

«... as a general rule, I cannot doubt that the continued selection of slight
variations ... will produce races differing from each other ...” (Darwin,
1859; p. 28) and “... T am convinced that the accumulative action of Selec-
tion, whether applied methodically and more quickly, or unconsciously and
more slowly, but more efficiently, is by far the predominant Power.” (Dar-
win, 1859; p. 35)

In summary, according to Darwin’s theory, evolution is a result of a popula-
tion of individuals that suffer:

e  Reproduction with inheritance.
e  Variation.

e Natural selection.

These very same processes constitute the core of all evolutionary algorithms.
Before going into the details as to how reproduction and variation happen within
individuals and species of individuals, some comments about why Darwin’s
theory was so revolutionary and ‘dangerous’ at that time (and, to some people,
until nowadays) will be made.

3.4.2. Darwin’s Dangerous Idea

Darwin’s theory of evolution is controversial and has been refuted by many be-
cause it presents a sound argument for how a “Nonintelligent Artificer” could
produce the wonderful forms and organisms we see in nature. To D. Dennett
(1991), Darwin’s dangerous idea is that evolution, thus life, can be explained as
the product of an algorithmic process, not of a superior being (God) creating
everything that might look wonderful to our eyes. But the reason there is a sec-
tion on Dennett’s book here is not to discuss particular beliefs. Instead, to dis-
course about some key interpretations of evolution, from a computational per-
spective, presented by D. Dennett in his book Darwin’s Dangerous Idea: Evo-
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lution and the Meanings of Life. These are not only interesting, but also useful
for the understanding of why the theory of evolution is suitable for the
comprehension and development of a class of search techniques known as
evolutionary algorithms.

Dennett defines an algorithm as a certain sort of formal process that can be
counted on (logically) to yield a certain sort of result whenever it is run or in-
stantiated. He emphasizes that evolution can be understood and represented in an
abstract and common terminology as an algorithmic process; it can be lifted out
of its home base in biology. Evolutionary algorithms are thus those that embody
the major processes involved in the theory of evolution: a population of indi-

viduals that reproduce with inheritance, and suffer variation and natural selec-
tion.

Dennett also discusses what can be the outcomes of evolution and its probable
implications when viewed as an engineering process. He stresses the importance
of genetic variation and selection, and quotes an interesting passage from M.
Eigen (1992).

“Selection is more like a particularly subtle demon that has operated on
the different steps up to life, and operates today at the different levels of
life, with a set of highly original tricks. Above all, it is highly active, driven
by an internal feedback mechanism that searches in a very discriminating
manner for the best route to optimal performance, not because it possesses
an inherent drive towards any predestined goal, but simply by virtue of its
inherent non-linear mechanism, which gives the appearance of goal-
directedness.” (Eigen, 1992; quoted by Dennett, 1991, p. 195)

Another important argument is that evolution requires adaptation (actually it
can also be seen as adaptation plus selection, as discussed in the previous chap-
ter). From an evolutionary perspective, adaptation is the reconstruction or pre-
diction of evolutionary events by assuming that all characters are established by
direct natural selection of the most adapted state, i.e. the state that is an ‘opti-
mum solution’ to a ‘problem’ posed by the environment. Another definition is
that under adaptation, organisms can be viewed as complex adaptive systems

whose parts have (adaptive) functions subsidiary to the fitness-promoting func-
tion of the whole.

The key issue to be kept in mind here is that evolution can be viewed as an al-
gorithmic process that allows - via reproduction with inheritance, variation and
natural selection - the most adapted organisms to survive and be driven to a state
of high adaptability (optimality) to their environment. These are the inspiring
principles of evolutionary algorithms; the possibility of modeling evolution as a
search process capable of producing individuals (candidate solutions to a prob-
lem) with increasingly better ‘performances’ in their environments.

3.4.3. Basic Principles of Genetics

The theory of evolution used in the development of most evolutionary algo-
rithms is based on the three main aspects raised by Darwin as being responsible
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for the evolution of species: reproduction with inheritance, variation, and selec-
tion. However, the origins of heredity along with variations, which were some of
the main ingredients for the natural selection theory, were unknown at that time.
This section explores the genetic basis of reproduction and variation in order to
provide the reader with the necessary biological background to develop aqd un-
derstand evolutionary algorithms, in particular genetic algorithms. The union of
genetics with some notions of the selection mechanisms, together with Darwin’s
hypotheses led to what is currently known as neo-Darwinism.

Gregor Mendel’s paper establishing the foundations of genetics (a missing bit
for a broader understanding of the theory of evolution) was published only in
1865 (Mendel, 1865), but it was publicly ignored until about the 1900. He per-
formed a series of careful breeding experiments with garden peas. In summary,
Mendel selected strains of peas that differed in particular #raits (characteristics).
As these differences were clearly distinguishable, their phenotypes (measurable
attributes, or observable physical or biochemical characteristics of an organism)
were identified and scored. For instance, the pea seeds were either smooth or
wrinkled, the pod shape was either inflated or constricted, and the seed color
was either yellow or green. Then, Mendel methodically performed crosses
among the many pea plants, counted the progeny, and interpreted the results.
From this kind of data, Mendel concluded that phenotypic traits were controlled
by factors, later called Mendelian factors, and now called genes. Gengtype is the
term currently used to describe the genetic makeup of a cell or organism, as dis-
tinguished from its physical or biochemical characteristics (the phenotype).
Figure 3.4 summarizes the first experiment performed by Mendel.

The basic structural element of all organisms is the cell. Those organisms
whose genetic material is located in the nucleus (a discrete structure within the
cell that is bounded by a nuclear membrane) of the cells are named eukaryotes.
Prokaryotes are the organisms that do not possess a nuclear membrane sur-
rounding their genetic material. The description presented here focuses on eu-
karyotic organisms.

Parents gametes: eE x eE

Parent peas

Gametes
Offspring M
pea
Ee ee
Generation 1 Generation 2

Figure 3.4: First experiment of Mendel. When crossing a normal pea with a wrinkled
pea, a normal pea was generated (generation 1). By crossing two daughters _from genera-
tion 1, three normal peas were generated plus one wrinkled pea. Thus, there is a recessive
gene (e) that only manifests itself when there is no dominant gene tggether. Furthermore,
there is a genetic inheritance from parents to offspring; those offspring that carry a factor
that expresses a certain characteristic may have offspring with this characteristic.
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(a) (b) (©) (d (®

Flgure 3.5: Enlargement of an organism to focus the genetic material. (a) Human organ-
ism. (b) Cells composing the organism. (c) Each cell nucleus contains chromosomes, (d)
Eacl} chromosome is composed of a long DNA segment, and the genes are the functional
portions of DNA. (e) The double helix of DNA. (Modified with permission from [Grif-
fiths et al., 1996], © W. H. Freeman and Company.)

Ir} the .cell nucleus, the genetic material is complexed with protein and is or-
igamzed into a number of linear structures called chromosomes, which means
colored body’, and is so named because these threadlike structures are visiblej
under the light microscope only after they are stained with dyes. A gene is a
segment of a helix molecule called deoxyribonucleic acid, or DNA for short
Each eukaryotic chromosome has a single molecule of DNA going from one en(i
to the other. Each cell nucleus contains one or two sets of the basic DNA com-
plement, called genome. The genome itself is made of one or more chromo-
somes. The genes are the functional regions of DNA. F igure 3.5 depicts a series
of enlargements of an organism to focus on the genetic material.

. It is now known that the DNA is the basis for all processes and structures of
life. The DNA molecule has a structure that contributes to the two most funda-
mental properties of life: reproduction and development. DNA is a double helix
structure with the inherent feature of being capable of replicating itself before
the cell multiplication, allowing the chromosomes to duplicate into chromatids,

Chromosome

Offspring
chromosomes

Figure 3..6: When new cells are formed, the DNA replication allows a chromosome to
have a pair of offspring chromosomes and be passed onto the offspring cells.

Diagrammatic chromosome Locus

~ Alleles: {A, B, C}
A|B|A|C|B|A|B|C|A .B
™~ Gene

Figure 3.7: Diagrammatic chromosome depicting the locus, genes and three alleles {A,
B, C}.

which eventually become offspring chromosomes that are transmitted to the off-
spring cells. The DNA replication process is essentially the same for sexual and
asexual reproduction and is depicted in Figure 3.6.

It is the DNA replication property that allows the replication of cells and or-
ganisms during generations. Therefore, the DNA can be viewed as the ‘string’
that connects any organism to its descendants (Griffiths et al., 1996).

Genetics is a science named after its main object of study, namely, the genes.
Studies in genetics demonstrated that many differences among organisms are
results of differences in the genes they carry. Therefore, a gene can also be de-
fined as the genetic factor that controls one trait or one characteristic of the or-
ganism. Together with the environmental influences, the genotype determines
the phenotype of an organism. The different forms of a gene that determine al-
ternate traits or characteristics are called alleles. The specific place on a chro-
mosome where a gene is located is termed locus. Figure 3.7 presents a dia-
grammatic chromosome depicting the locus, genes, and alleles.

The genetic material of eukaryotes is distributed among multiple chromo-
somes, whose number usually varies according to the characteristics of the spe-
cies. Many eukaryotes have two copies of each type of chromosome in their
nuclei, so their chromosome complement is said to be diploid. In diploids, the
members of a chromosome pair are called homologous chromosomes. Diploid
eukaryotes are produced by the fusion of two gametes (mature reproductive cell
specialized for sexual fusion), one from the female parent and another from the
male parent. The fusion produces a diploid cell called zygote, which then under-
goes embryological development. Each gamete has only one set of chromo-
somes and is said to be haploid.

Eukaryotes can reproduce by asexual or sexual reproduction. In asexual re-
production, a new individual develops from either a single cell or from a group
of cells in the absence of any sexual process. It is found in multicellular and uni-
cellular organisms. Single-celled eukaryotes grow, double their genetic material,
and generate two progeny cells, each of which contains an exact copy (some-
times subjected to a small variation) of the genetic material found in the parent
cell. The process of asexual reproduction in haploids is illustrated in Figure 3.8.
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Mitosis
Replication /
_— Division and
cleavage
Haploid \
chromosome

Figure 3?.8: .A.sexual reproduction in haploids. The chromosome replicates itself, the cell
nucleus is divided through a process named mitosis, and then the cell is divided into two
identical progeny.

Sexual reproduction is the fusion of two haploid gametes (sex cells) to pro-
duce a single diploid zygote cell. An important aspect of sexual reproduction is
that it involves genetic recombination; that is, it generates gene combinations in
the offspring that are distinct from those in the parents. Sexually reproducing
organisms have two sorts of cells: somatic (body) cells, and germ (sex) cells. All
somatic cells reproduce by a process called mitosis that is a process of nuclear

division followed by cell division. Figure 3.9 illustrates the process of sexual
reproduction.

Egg
Meiosis
Replication Separation

- of

homologues { E

~.

Diploid Diploid
chromosome \ zygote
perm

Haploid gametes

Figure 3.9: Sexual reproduction. A diploid chromosome replicates itself, then the homo-

logues are separated generating haploid gametes. The gametes from each parent are fused
to generate a diploid zygote.
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Figure 3.10: Crossing over between two loci in a cell undergoing the first meiotic divi-
sion. Of the four chromatids, two will have new combinations and two will retain the
parental combination of alleles.

In the classical view of the meiosis process in sexual reproduction, homolo-
gous chromosomes first undergo the formation of a very tight association of
homologues, and then the reciprocal physical exchange of chromosome seg-
ments at corresponding positions along pairs of homologous chromosomes, a
process termed crossover (Russel, 1996). Crossing-over is a mechanism that can
give rise to genetic recombination, a process by which parents with different
genetic characters give birth to progeny so that genes are associated in new
combinations. Figure 3.10 depicts the crossing-over process.

The differences among organisms are outcomes of the evolutionary processes
of mutation (a change or deviation in the genetic material), recombination or
crossover (exchange of genetic material between chromosomes; see Figure
3.10), and selection (the favoring of particular combinations of genes in a given
environment). With the exception of gametes, most cells of the same eukaryotic
organism characteristically have the same number of chromosomes. Further, the
organization and number of genes on the chromosomes of an organism are the
same from cell to cell. These characteristics of chromosome number and gene
organization are the same for all members of the same species. Deviations are
known as mutations; these can arise spontaneously or be induced by chemical or
radiation mutagens. Several types of mutation exist, for instance point mutation,
deletion, translocation, and inversion. Point mutation, deletion and inversion are
illustrated in Figure 3.11.

CILE

Point mutation

lost

Inversion

Figure 3.11: Some types of chromosomal mutation, namely, point mutation, deletion,
and inversion.
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3.4.4. Evolution as an Outcome of Genetic Variation Plus Selection

So far we have seen the two types of reproduction, sexual and asexual, and some
of the main mechanisms that alter the genetic makeup of a population of indi-
viduals, emphasizing crossover and mutation. It still remains to discuss the
process by which these altered individuals survive over the generations.

Populations of individuals change over time. The number of individuals may
increase or decrease, depending on food resources, climate, weather, availability
of breeding areas, predators, and so forth. At the genetic level, a population may
change due to a number of factors, such as mutation and selection. These proc-
esses not only alter allele frequencies, but also result in changes in the adapta-
tion and diversity of populations, thus leading to the evolution of a species
(Gardner et al., 1991).

The viability and fertility of an individual are associated with fitness, a term
that is used to describe the overall ability of an organism to survive and repro-
duce. In many populations, survival and reproductive ability are variable traits.
Some individuals die before they have a chance to reproduce, whereas others
leave many progeny. In a population of stable size, the average number of off-
spring produced by an individual is one.

Variation in fitness is partially explained by the underlying genetic differences
of individuals. The crossing-over of parental genetic material and mutation can
increase or decrease fitness, depending on their effects on the survival and re-
productive capabilities of the individuals. Thus, genetic recombination and mu-
tation can create phenotypes with different fitness values. Among these, the
most fit will leave the largest number of offspring. This differential contribution
of progeny implies that alleles associated with superior fitness will increase in
frequency in the population. When this happens, the population is said to be
undergoing selection.

As Darwin made a series of observations of domestic animals and plants, and
also those existing free in nature, he used the term natural selection to describe
the latter in contrast to men’s selection capabilities of domestic breeds. To our
purposes, the more general term selection is assumed in all cases, bearing in
mind that selection under nature has been originally termed natural selection,
and selection made by men has been sometimes termed artificial selection.

Under the evolutionary biology perspective, adaptation is the process by
which traits evolve making organisms more suited to their immediate environ-
ment; these traits increase the organisms’ chances of survival and reproduction.
Adaptation is thus responsible for the many extraordinary traits seen in nature,
such as eyes that allow us to see, and the sonar in bats that allow their guidance
through the darkness. Note however, that, more accurately speaking, adaptation
is a result of the action of both, variation and selection. Variation by itself does
not result in adaptation; there must be a way (i.e., selection) of promoting the
maintenance of those advantageous variations.

S. Wright (1968-1978) introduced the concept of adaptive landscapes or fit-
ness landscapes, largely used in evolutionary biology. In his model, each po-

pulation of a species (reproductively isolated group) is symbolized by a point on
a topographic map, or landscape. The contours of the map represent different
levels of adaptation to the environment (fitness). Populations at high levels
(peaks) are more adapted to the environment, and populations at low levels (val-
leys) are less adapted. At any one time, the position of a population will depend
on its genetic makeup. Populations with alleles that improve fitness will be ata
higher peak than populations without these alleles. Consequently, as the genetic
makeup of a population changes, so will its position on the adaptive landscape.
Figure 3.12 depicts a landscape representing the different levels of adaptation of
the populations in relation to the environment.

The adaptive (fitness) landscape corresponds to the response surface discussed
in Section 3.2.1 in the context of problem solving via search in a search space.
Note that, under the evolutionary perspective, the search performed is for indi-
viduals with increased survival and reproductive capabilities (fitness) in a given
environment (fitness landscape).

A niche can thus be defined as the region consisting of the set of possible en-
vironments in which a species can persist; members of one species occupy the
same ecological niche. In natural ecosystems, there are many different ways in
which animals may survive (grazing, hunting, on water, etc.), and each survival
strategy is called an ecological niche. However, it is generally recognized that
the niche of a single species may vary widely over its geographical range. The
other fundamental concept of niche was proposed by Elton (1927) “The niche of
an animal means its place in the biotic environment, its relations to food and
enemies;” where the term biotic refers to life, living organisms. Thus, niche in
this case is being used to describe the role of an animal in its community (Krebs,
1994).

Species/Populations
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Figure 3.12: An example of an adaptive landscape. The topographic map (landscgpe or
surface) corresponds to the different levels of adaptation of the populations (points in the
landscape) to the environment. The populations or individuals at each peak are assumed
to be reproductively isolated, i.e., they only breed with individuals in the same peak, thus
forming species inhabiting distinct niches.
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It has been discussed that evolution is an outcome of genetic variation plus se-
lection. In order for continuing evolution to occur, there must be mechanisms
that increase or create genetic variation and mechanisms that decrease it. We
have also seen that recombination and mutation cause differences among (varia-
tions in) organisms. Other two important mechanisms of evolution are the so-
called genetic drift (chance fluctuations that result in changes in allele frequen-
cies) and gene flow (spread of genes among populations via migration). It is
known that selection and genetic drift decrease variation, while mutation, re-
combination, and gene flow increase genetic variation (Colby, 1997).

Natural selection sifts through the genetic variations in the population, pre-
serving the beneficial ones and eliminating the harmful ones. As it does this,
selection tends to drive the population uphill in the adaptive or fitness landscape.
By contrast, the random genetic drift will move the population in an unpredict-
able fashion. The effect of all these mechanisms (mutation, recombination, ge-
netic drift, gene flow, plus selection) will bring the population to a state of ‘ge-
netic’ equilibrium, corresponding to a point near or at a peak on the adaptive
landscape. Actually, the population will hover around a peak because of fluctua-
tions caused by genetic drift. Note also, that, under nature, the environment is
constantly changing, hence the population is also adapting to the new landscape
resultant from the new environment, in a never-ending process of variation and
selection.

3.4.5. A Classic Example of Evolution

A classic example of evolution comes from species that live in disturbed habi-
tats. In the particular example of the evolution of melanic (dark) forms of moths,
human activity has altered the environment and there has been a corresponding
change in the species that inhabit this environment. The peppered moth, Biston
betularia, is found in wooded areas in Great Britain, where it exists in two color
forms, light and dark; light being the typical phenotype of this species. The dif-
ference between the two forms is believed to involve a single gene. Since 1850,
the frequency of the dark form has increased in certain areas in England, in par-
ticular in industrialized parts of the country. Around heavily industrialized cities,
such as Manchester and Birmingham, the frequency of the dark form has in-
creased drastically from 1 to 90% in less than 100 years. In other areas of Eng-
land, where there is little industrial activity, the dark form has remained very
rare (Gardner et al., 1991).

The rapid spread of the dark form in industrialized areas has been attributed
to natural selection. Both, light and dark forms are active at night. During the
day, the moths remain still, resting on tree trunks and other objects in the wood-
lands. Since birds may find the moths and eat them during their resting period,
camouflage is their only defense against predation. On white or gray tree bark,
the light moths are protectively colored, especially if the bark is overgrown with
lichens. However, in industrialized areas most of the lichens have been killed by
pollution and the tree bark is oftenest darkened by soot. Such conditions offer
little or no cover for the light moths, but make ideal resting spots for the dark

ones. Predatory birds have difficulties in seeing the dark moths on the darkened
barks, similarly to what happens with light moths on light barks. The spread of
the dark moths in industrialized areas thus appears to be a result of its selective
advantage on a sooty background. Because the dark moth survived more in pol-
luted woods, the gene responsible for the dark color increased in frequency over
industrialized regions.

3.4.6. A Summary of Evolutionary Biology

The three basic principles of Darwin’s theory of evolution, together with the
genetics introduced by Mendel and some ideas about the natural selection proc-
ess, form what is currently known as neo-Darwinism; for Darwin had no knowl-
edge of genetics, a missing bit of his theory.

We have seen that evolution is a result of a reproducing population(s) of indi-
viduals, which suffer genetic variation followed by selection. The variation af-
fects the genetic makeup of individuals (genotype), which will present a selec-
tive advantage over the others if their phenotypes confer them a better adaptabil-
ity to the environment they inhabit. This degree of adaptability to the environ-
ment (capability of surviving and reproducing) is broadly termed fitness.

The genetic entities that suffer variation are located within the cell nucleus
and are named chromosomes, whose basic functional units are the genes. In both
types of reproduction, asexual and sexual, there may occur a deviation (muta-
tion) in one or more alleles of a chromosome, allowing the appearance of a new
character in the phenotype (physical and chemical characteristics) of the off-
spring individual. In sexual reproduction, in addition to mutation, there is the
recombination (crossing-over) of parental genetic material, resulting in offspring
that present features in common with both parents.

The survival and reproductive advantage of an individual organism, its fitness,
endows it with a selective advantage over the others, less fit individuals. Those
individuals whose genetic makeup result in a phenotype more adapted to the
environment have higher probabilities of surviving and propagating their geno-
types. It can thus be seen that there is a competition for survival among the
many offspring generated. As argued by Darwin

“Every being, which during its natural lifetime produces several eggs or
seeds, must suffer destruction during some period of its life, and during
some season or occasional year, otherwise, on the principle of geometrical
increase, its numbers would quickly become so inordinately great that no
country could support the product. Hence, as more individuals are produced
than can possibly survive, there must in every case be a struggle for exis-
tence, either one individual with another of the same species, or with the in-
dividuals of distinct species, or with the physical conditions of life.” (Dar-
win, 1859; p. 50)

An adaptive landscape (or surface) is a topographic map used to represent the
degree of adaptation of individuals in a given environment. Individuals that only
reproduce with each other are part of the same species, which occupies one or



86 Evolutionary Computing

more biological niche. As the fittest individuals of the population have higher
.chance§ of surviving and reproducing, the outcome of evolution is a population
increasingly more fit to its environment.

Viewed in this manner, evolution is clearly a search and optimization problem
solving process (Mayr, 1988). Selection drives phenotypes as close as possible
to the optimum of a fitness landscape, given initial conditions and environmental
constraints. Evolution thus, allows the discovery of functional solutions to par-
ticular problems posed by the environment in which some organisms live (e.g., a
more appropriate color for moths living in a sooty area). This is the perspective
assumed when using evolutionary biology as a source of inspiration for the de-
velopment of evolutionary computation. In such a case, an evaluation function
will define a fitness landscape for the problem, and finding the best solution to
the problem (most adapted population or individual in a given environment) will
correspond to the search for a peak (assuming a maximization problem) of this
landscape by subjecting individuals to genetic variation (e.g., crossover and mu-
tation) operators.

3.5 EVOLUTIONARY COMPUTING

Evolution can be viewed as a search process capable of locating solutions to
problems offered by an environment. Therefore, it is quite natural to look for an
algorithmic description of evolution that can be used for problem solving. Such
an algorithmic view has been discussed even in philosophy (Section 3.4.2).
Those iterative (search and optimization) algorithms developed with the inspira-
tion of the biological process of evolution are termed evolutionary algorithms
(EAs). They are aimed basically at problem solving and can be applied to a wide
range of domains, from planning to control. Evolutionary computation (EC) is

the name used to describe the field of research that embraces all evolutionary
algorithms.

The basic idea of the field of evolutionary computation, which came onto the
scene about the 1950s to 1960s, has been to make use of the powerful process of
natural evolution as a problem-solving paradigm, usually by simulating it on a
computer. The original three mainstreams of EC are genetic algorithms (GAs),
evolution strategies (ES), and evolutionary programming (EP) (Bick et al.,
2000a,b). Another mainstream of evolutionary computation that has been receiv-
ing increasingly more attention is genefic programming (Koza, 1992; Koza,
1994a). Despite some differences among these approaches, all of them present

the basic features of an evolutionary process as proposed by the Darwinian the-
ory of evolution.

3.5.1. Standard Evolutionary Algorithm

A standard evolutionary algorithm can be proposed as follows:
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e A population of individuals that reproduce with inheritance. Each indi-
vidual represents or encodes a point in a search space of potential solu-
tions to a problem. These individuals are allowed to reproduce (sexually
or asexually), generating offspring that inherit some features (traits) from
their parents. These inherited traits cause the offspring to present resem-
blance with their progenitors.

o  Genetic variation. Offspring are prone to genetic variation through muta-
tion, which alters their genetic makeup. Mutation allows the appearance
of new traits in the offspring and, thus, the exploration of new regions of
the search space.

e  Natural selection. The evaluation of individuals in their environment re-
sults in a measure of adaptability, quality, or fitness value to be assigned
to them. A comparison of individual fitnesses will lead to a competition
for survival and reproduction in the environment, and there will be a se-
lective advantage for those individuals of higher fitness.

The standard evolutionary algorithm is a generic, iterative, and probabilistic
algorithm that maintains a population P of N individuals, P = {x, x5, ... , Xy}, at
each iteration ¢ (for simplicity of notation the iteration index 7 is suppressed).
Each individual corresponds to (represents or encodes) a potential solution to a
problem that has to be solved. An individual is represented using a data struc-
ture. The individuals x;, i=1, ... ,N, are evaluated to give their measures of
adaptability to the environment, or fifness. Then, a new population, at iteration
i+ 1, is generated by selecting some (usually the most fit) individuals from the
current population and reproducing them, sexually or asexually. If employing
sexual reproduction, a genetic recombination (crossover) operator may be used.
Genetic variations through mutation may also affect some individuals of the
population, and the process iterates. The completion of all these steps: reproduc-
tion, genetic variation, and selection, constitutes what is called a generation. An
initialization procedure is used to generate the initial population of individuals.
Two parameters pc and pm correspond to the genetic recombination and varia-
tion probabilities, as will be further discussed.

Algorithm 3.6 depicts the basic structure of a standard evolutionary algorithm.
Most evolutionary algorithms can be implemented using this standard algorithm,
with some differences lying on the representation, selection, reproduction, varia-
tion operators, and in the order these processes are applied. The stopping crite-
rion is usually a maximum number of generations, or the achievement of a pre-
specified objective.

Note that all evolutionary algorithms involve the basic concepts common to
every algorithmic approach to problem solving discussed in Section 3.1: 1) rep-
resentation (data structures), 2) definition of an objective, and 3) specification of
an evaluation function (fitness function). Although the objective depends on the
problem to be solved, the representation and the evaluation function may depend
on the designers’ experience or expertise.
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procedure [P] = standard EA(pc, pm)
initialize P
f « eval (P)
P < select (P, f)

t « 1
while not stopping criterion do,

<« reproduce (P, £,pc)
« variate (P,pm)

<« eval (P)

« select (P, £f)

«~— t + 1
end while
end procedure

[ - I T B

Algorithm 3.6: A standard evolutionary algorithm.

3.5.2. Genetic Algorithms

All evolutionary algorithms embody the basic processes of the Darwinian theory
of evolution, as described in Algorithm 3.6. However, the genetic algorithms
(GAs) are those that use a vocabulary borrowed from natural genetics. This
method has been offered by a number of researchers (e.g., Fraser, 1959; Fried-
berg, 1958; Anderson, 1953; Bremermann, 1962), but its most popular version
was presented by J. Holland (1975). This is the one to be introduced here.

The data structures representing the individuals (genotypes) of the population
are often called chromosomes; these are one-chromosome individuals, i.e., hap-
loid chromosomes. In standard genetic algorithms the individuals are repre-
sented as strings of binary digits {0,1}, or bitstrings. In accordance with its bio-
logical source of inspiration (i.e. genetics) each unit of a chromosome is a gene,
located in a certain place in the chromosome called locus. The different forms a
gene can assume are the alleles. Figure 3.13 illustrates a bitstring of length

=10 corresponding to a chromosome in a genetic algorithm. Note the similar-
ity of this representation with the one used for the diagrammatic chromosome of
Figure 3.7.

Chromosome in a GA Locus

~ | Alleles: {0,1}
I Gene

Figure 3.13: Bitstring of length /= 10 representing a chromosome in a standard genetic
algorithm. Each position (locus) in the chromosome can assume one of the two possible
alleles, O or 1.
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As discussed in Section 3.1, the problem to be solved is defined and captured
in an objective function that allows to evaluate the fitness (procedure eval of
Algorithm 3.6) of any potential solution. Each genotype, in this case a single
chromosome, represents a potential solution to a problem. The meaning of a
particular chromosome, its phenotype, is defined according to the problem under
study. A genetic algorithm run on a population of chromosomes (bitstrings) cor-
responds to a search through a space of potential solutions.

As each chromosome x;, i, ... , N, often corresponds to the encoded value of'a
candidate solution, it often has to be decoded into a form appropriate for evalua-
tion and is then assigned a fitness value according to the objective. Each chro-
mosome is assigned a probability of reproduction, p;, i, ... , N, so that its likeli-
hood of being selected is proportional to its fitness relative to the other chromo-
somes in the population; the higher the fitness, the higher the probability of re-
production, and vice-versa. If the fitness of each chromosome is a strictly posi-
tive number to be maximized, selection (procedure select of Algorithm 3.6)
is traditionally performed via an algorithm called fitness proportional selection
or Roulette Wheel selection (Fogel, 2000a).

The assigned probabilities of reproduction result in the generation of a popula-
tion of chromosomes probabilistically selected from the current population. The
selected chromosomes will generate offspring via the use of specific genetic
operators, such as crossover, and bit mutation might be used to introduce ge-
netic variation in the individuals. Crossover is the genetic recombination opera-
tor embodied in the procedure reproduce of Algorithm 3.6. Mutation is the
genetic variation mechanism of procedure variate of Algorithm 3.6. The it-
erative procedure stops when a fixed number of iterations (generations) has been
performed, or a suitable solution has been found.

Roulette Wheel Selection

In the fitness proportional or Roulette Wheel (RW) selection method, the prob-
ability of selecting a chromosome (individual of the population) is directly pro-
portional to its fitness value. Each chromosome x;, i=1, ... , N, of the popula-
tion is assigned to a part of the wheel whose size is proportional to its fitness
value. The wheel is then tossed as many times as parents (N) are needed to cre-
ate the next generation, and each winning individual is selected and copied into
the parent population. Note that this method allows an individual to be selected
more than once and the ‘death’ of some individuals as well.

Figure 3.14 depicts the RW applied to a population composed of four indi-
viduals. To play the roulette might correspond to obtaining a value from a ran-
dom number generator with uniform distribution in the interval [0,1] (see Sec-
tion 3.5.3 for another form of implementing the RW selection). The value ob-
tained is going to define the chromosome to be chosen, as depicted in Figure
3.14. The higher the fitness of an individual, the larger the portion of the roulette
to be assigned to this individual, thus the higher its probability of being selected.
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Ind. Chromosome  Fitness Degrees
1 0001100101010 16 240

2 0101001010101 4 60

3 1011110100101 2 30

4 1010010101001 2 30

F?gurg 3.14: Roulette Wheel selection. (reproduced with permission from [de Castro and
Timmis, 2002]. © L. N. de Castro and J. Timmis, 2002).

Crossover

In biological systems, crossing-over is a process that yields the recombination of
alleles via the exchange of segments between pairs of chromosomes (see Figure
3.10). As discussed in Section 3.4.3, it occurs only in sexually reproducing spe-
cies. This process can be abstracted as a general operator to the level of the data

structures discussed, i.e., bitstrings. Crossing-over proceeds basically in three
steps (Holland, 1975):

e Two strings X =xyx; ... x;and y = yy, ... y; are selected from the current
population P.

e A number r indicating the crossover point is randomly selected from
{1,2,...,[-1}.

e Two new strings are formed from x and y by exchanging the set of attrib-
utes to the right of position r, yielding x’=x;...x;yi...y, and
y’ =Vie--YViXi ..o XL

The two new chromosomes (strings), x’ and y’, are the offspring of x and y.

This single-point crossover is illustrated in Figure 3.15 for two strings of length
[=38.

Crossover point, (r = 5)

’1|0| 0|0|0|0|I|1|Single-poim

Parent “ i
chromosome 1 :> Sﬁi‘fﬁ?fome 1

crossover

Offspring

chromosome 2 chromosome 2

Figure 3.15: Single-point crossover for a pair of chromosomes of length / = 8.
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l Bits to be mutated

Original
chromosome

Mutated
chromosome

Figure 3.16: Point mutations for a chromosome of length /= 8 (three points are selected
for being mutated).

Mutation

In genetics (Section 3.4.3), point mutation is a process wherein one allele of a
gene is randomly replaced by (or modified to) another to yield a new chromo-
some (structure). Generally, there is a small probability of mutation at each gene
in the structure (in the GA context, a bitstring). It means that, each bitstring in
the population P is operated upon as follows (Holland, 1975):

e The numbers r,...,u indicating the positions to undergo mutation are de-
termined by a random process where each position has a small probability
pm of undergoing mutation, independently of the other positions.

e A new string X’ =Xx...X...X,...x; is generated where x,...x, are drawn at
random from the set of alleles for each gene. In the case of bitstrings, if a
position has an allele ‘0’ then it becomes ‘1°, else if it is originally “1”,
then it becomes ‘0°.

The parameter pm is the mutation probability at each position. Figure 3.16 il-
lustrates the process of point or bit mutation.

3.5.3. Examples of Application

Algorithm 3.6 shows the standard evolutionary algorithm, which is the same as a
standard genetic algorithm, and follows the Darwinian theory of evolution. In
the standard GA, selection - select - is performed via Roulette Wheel, repro-
duction - reproduce - is performed by crossing-over pairs of the selected in-
dividuals, and genetic variation - variate - is performed via mutation. Fitness
evaluation - eval - depends on the problem under study.

To illustrate how to put all these procedures together in practical problems,
consider the following examples. The first example - pattern recognition - is
aimed at illustrating the basic steps and implementation of a standard genetic
algorithm. In this particular case, the GA capability of learning a known pattern
will be tested. The second example - numeric function optimization - the GA
potential of determining the (unknown) global optimal (maximum) to a numeric
function will be assessed. The focus of this latter example is in the encoding
(representation) scheme used; the basic selection and genetic operators are the
same as those used in the first example.
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Figure 3.17: Character to be recognized using a standard genetic algorithm. (a) Pictorial
view. (b) Matrix representation.

A Step by Step Example: Pattern Recognition (Learning)

As a first example of how the standard GA works, consider the problem of
evolving a population of individuals toward recognizing a single character; the
number ‘1 depicted in Figure 3.17(a). The resolution of this picture is rows = 4
and columns = 3. This character is drawn by using two colors, light and dark
gray, and can be represented by a matrix of ‘Os’ and ‘1s’, where each ‘0’ corre-
sponds to the dark gray, while each ‘1° corresponds to the light gray (Figure
3.17(b)).

In the genetic algorithm a small population P with only N=8 individual
chromosomes will be chosen to be evolved toward recognizing the character ‘1°.
This population P will correspond to a matrix with N = 8 rows (the individuals)
of /=12 columns. To generate a single individual we simply place one row of
the character after the other downward. For example, the target individual of
Figure 3.17 is represented by the vector x; = [010010010010]. (Compare Figure
3.17(b) with x;.)

The standard evolutionary algorithm presented in Algorithm 3.6 also corre-
sponds to the standard genetic algorithm. What differs the standard GA from the
other evolutionary algorithms (evolution strategies and evolutionary program-
ming) is basically the data representation, the operators, the selection method,
and the order in which these operators are applied; the basic idea remains. The
standard GA has the following main features:

e  Binary representation of the data structures.
e  Fixed population size.

e  Single-point crossover.

e  Point mutation.

e Roulette Wheel selection.

Initialization

Figure 3.18 depicts a randomly initialized population P to be evolved by
Algorithm 3.6. The matrix P corresponding to the individuals of Figure 3.18 is:

i

0000 1 01 1 1 10 1]
P 00111111011

100001100101

1 00100010000
Pl T o1 0100001 0

1101100010710

100101010110

11101 100010 1]

Figure 3.18: Randomly initialized population P for the standard GA.

Fitness Evaluation

After initializing the population of candidate solutions, the next step in the.algo—
rithm (Algorithm 3.6) is to evaluate the quality of each individua.l in relation to
the problem to be solved, i.e., to calculate the fitness of each individual. A§ the
goal is to generate individuals that are as similar as possible to the target 1gd1—
vidual (Figure 3.17), a straightforward way of determining fitness is by counting
the number of similar bits between each individual of the population and the
target individual. The number of different bits between two bitstrings is termed
Hamming distance. For instance, the vector h of Hamming distances between
the individuals of P and the target individual is h =[6,7,9,5,5,4,6,7].

The fitness of the population can be measured by subtracting the length l =12
of each individual by its respective Hamming distance to the target individual.
Therefore, the vector of fitness becomes f=[f, ... , ] = [6,5,3,7,7,8,6,5].

The ideal individual is the one whose fitness is = 12. Therefore, the‘ air.niof
the search to be performed by the GA is to maximize the fitness of each individ-
ual, until (at least) one individual of P has fitness f= 12.
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Roulette Wheel Selection

To perform selection via Roulette Wheel, each individual will be assigned a
portion of the Roulette proportional to its fitness; the higher the fitness, the
higher the slice of the roulette, and vice-versa. Roulette Wheel can be imple-
mented as follows:

e Sum up the fitness of all individuals, /=2, £, i=1, ..., N.

e  Multiply the ﬁtness of each individual by 360 and divide it by the total
fitness: f’= (360. f)/fr, i=1, ..., N, determining the portion of the wheel
to be assigned for each individual.

e Sort a random number in the interval (0,360] and compare it with the in-
terval belonging to each individual. Select the individual whose interval
contains the sorted number and place it in the new population P.

' The Whole process is illustrated in Figure 3.19, including the size of each por-
tion and its i.nterval (Portion). (Note that the Roulette Wheel can also be imple-
mented within the interval [0,1] instead of (0,360], as discussed previously.)

Individual  Chromosome Fitness Degree Portion of the Roulette

1 000010111101 6 46 (0,46]

2 100111111011 5 38 (46,84]

3 100001100101 3 23 (84,107]
4 100100010000 7 54 (107,161]
5 110101000010 7 54 (161,215]
6 110110001010 8 61 (215,276]
7 100101010110 6 46 (276,322]
8 111011000101 5 38 (322,360]

270

(b)
Figure 3.19: Roulette Wheel selection. (a) Descriptive table. (b) Roulette Wheel. (Note:
the degrees were rounded for didactic purposes.)
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Assuming that s = [230,46,175,325,275,300,74,108] were the sorted random
numbers, the population P will be composed of the individuals P =[x, X1, Xs,
Xg, Xg, X7, X2, x4]T, where corresponds to the matrix transposition operator (Ap-
pendix B.1.4).

It can be noticed that the less fit individual of the population (x;) went extinct,
while the most fit individual (x) was selected twice. This can be interpreted as
individual x¢ having had a higher probability of leaving progenies, while x3 hav-
ing left no progeny at all.

Reproduction

In the standard GA, reproduction is accomplished by selecting pairs of individu-
als and performing the crossing-over of their genetic material with a crossover
probability pc. Basically, two approaches can be taken. In the first one, both
offspring replace the parents, and in the second one a single offspring replace a
single parent and the process is repeated N times. Let us assume the first case in
which both offspring will replace both parents. Thus, for the matrix P, N/2 ran-
dom numbers r over the interval [0,1] will be chosen and if » < pc, then the
crossing-over is performed according to the procedure described in Section 0;
else, the original parents are repeated in the next generation.

To illustrate this procedure, let r=[0.5,0.7,0.3,0.9] be the four values ran-
domly chosen for r, and pc = 0.6. There are four pairs of parents in the popula-
tion P: x4 and x;; X5 and Xg; X¢ and x7; X, and x4. In this case, the first and third
pairs were selected for crossing over. Thus, x¢ will be crossed over with x;, and
x¢ will again be crossed over with x;. What remains to be done is to define the
crossover point between the strings in both cases. Assume that the randomly
chosen crossover points, cp, from the interval [1,/-1] are cp =5 and ¢p =9, re-
spectively, for each pair. Figure 3.20 illustrates the crossing-over between X and
x;, and X and x5, for cp = 5 and cp = 9, respectively.

Crossover point, cp = 5 L Crossover point, cp = 9
110110001010 Parent chromosome 1 (xs) 110110001010 Parent chromosome 1 (Xs)
000010111101 Parent chromosome 2 (x+) 100101010110 Parent chromosome 2 (x7)

110110111101 Offspring chromosome 1 110110001110 Offspring chromosome 1
000010001010 Offspring chromosome 2 000011010010 Offspring chromosome 2

Figure 3.20: Crossing-over between x¢ and x;, and x, and x;.

The new population P is thus:
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M 1011011 110 1]
00 0O0T1TO0OO0OO0OTLTO0OTL1OWO
1101 0100O0O0T10O0

P 1110110001 0 1}
110110001110
000O0T1T1TO0OT1TO0OO0OTI1O
1 001 1 1 111011
(1 001000100 0 0]

Mutation (Genetic Variation)

Assume a mutation probability pm = 0.02. For each position in matrix P, a ran-
dom number r is generated and compared with pm. If » < pm, then the corre-
sponding bit is selected for being mutated. For the bits selected, as depicted in P'
below (underlined and boldface numbers), the population P before and after
mutation is:

[T 101 101 1110 1]
00001 00O0TI1O0T10
1 10101000010
1):111011000101.
11011000111 0f
000011010010
100111111011
10010001000 0]
(1T 101 1011110 1]
0000100UO0T1O0T1O0O0
1 101110000T1°0
l):111011000101
110110001110
0000110100710
100111011011
1 0010001000 0]

Evaluation

The last step in Algorithm 3.6 before selection is applied again is to evaluate the
fitness of the population at the end of each generation. This will result in the
following vector of fitnesses: f=[5,9,7,5,7,10,6,6], and f; = 55.

If the total fitness is divided by the number of individuals in the population,
the average fitness can be obtained f,, = fi/N. The average fitness at the previous

generation is f,, = 47/8 = 5.875, while the average fitness at the present genera-
tion is £, = 55/8 = 6.875. If one looks at the Hamming distance instead of the
fitness, it can be noticed that the average Hamming distance is being reduced
towards zero. It can thus be noticed that by simply performing selection, cross-
over, and mutation, the population of individuals becomes increasingly more
capable of recognizing the desired pattern. Note that in this particular example,
minimizing the h is equivalent to maximizing the evaluation function chosen
(fi=1-hy.

Figure 3.21(a) depicts the final population evolved by the GA after 171 gen-
erations. Figure 3.21(b) depicts the average Hamming distance, and the Ham-
ming distance of the best individual of the population (individual x;) at the end
of the evolutionary search process.

(a)

Dashed: Best Solid: Average

)
'
'
'
'
1
'
v

0 I I I I | . 1 ;
0 20 40 60 80 100 120 140 160 180

(b)

Figure 3.21: Final population and evolution of the population over the generations.
(a) Final population. (b) Evolution of the population. Dashed line: Hamming distance of
the best individual in relation to the target one. Solid line: Average Hamming distance of
the whole population.
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Figure 3.22: Graph of the function g(x) =272V’ 09" (sin(572x))° to be maximized
with a standard GA.

Numerical Function Optimization

The second problem to be explored is the one of maximizing a simple uni-
dimensional function presented in Section 3.3.3. The function is defined as

g(x) — 2—2((;:—041)/0.9)z (Sin(57zx))6 )

and is depicted in Figure 3.22 (Goldberg, 1989). The problem is to find x from
the range [0..1] which maximizes g(x), i.e., to find x* such that

g(x*) 2 g(x), Vx € [0..1].

The first aspect that has to be accounted for is the representation. How to rep-
resent the real value x using a binary string? Although it is not necessary to use a
binary representation for x, it is our intent to employ the standard GA and its
basic operators, as described in the previous example. Actually, some authors
(e.g., Michalewicz, 1996), argue that a float-point representation is usually the
most suitable one for numeric function optimization problems. Evolution strate-

gies (Section 3.6.1) have also been very successful in solving numeric function
optimization problems.

The length / of the bitstring depends on the numeric precision required. As-
suming a bitstring of length /, the mapping from a binary string x = (x,..., X2, X1)
into a real number z is completed in two steps (Michalewicz, 1996):

e Convert the binary string x=(x,..., X3, x;) from base 2 to base 10:

/-1 ;
((x,,...,xz,xl>)2 =@i=0xi.2’ o =z';and

e
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e Find the corresponding real value for z: ; =, 4 Z',_Zrﬂl___ZmJ; where
min 2 _1

Zmax 18 the upper bound of the interval in which the variable is defined,
Zmin 1S the lower bound of this interval, and / is the string length.

To evaluate each individual of the population one has to decode the binary
chromosomes x into their real values and then evaluate the function for these
values. The remaining steps of the algorithm (selection, recombination, and mu-
tation) are the same as the ones described for the previous example.

——

-
\_3.5.4.  Hill-Climbing, Simulated Annealing, and Genetic Algorithms

All the algorithms discussed so far, hill-climbing (HC), simulated annealing
(SAN), and genetic algorithms (GAs), have a number of versions. The focus of
this text was on the standard versions of all of them. The major difference
| among these three approaches is that the evolutionary algorithms are population-
based search techniques, while HC and SAN work with a single individual.

In the case of the standard hill-climbing search (Algorithm 3.1), its success or
failure in determining the global optimum of a given function (problem) de-
pends on its starting point. It is clear that if the starting point is not on a hill that
will lead to the global optimum, the algorithm will never be able to reach this
peak in a single run. Additional runs, with different starting conditions, will
have to be performed. This is automatically performed in the iterated hill-
climbing procedure (Algorithm 3.2). The stochastic hill-climbing algorithm
(Algorithm 3.3) incorporates random variation into the search for optimal solu-
tions, just as the simulated annealing (Algorithm 3.4) and genetic algorithm
(Algorithm 3.6). In these algorithms, no two trials could be expected to take
exactly the same course (sequence of steps), i.e., to do the same search in the
search space.

The stochastic hill-climber, simulated annealing, and genetic algorithms are
capable of escaping local optima solutions due to their stochastic nature. The
simulated annealing algorithm allows the acceptance of a new point, given a
Boltzmann probability, which might result in the exploration of a different re-
gion of the search space. The broader exploration of the search space in evolu-
tionary algorithms is accomplished by the use of multiple individuals and ge-
netic operators, which allow the creation of individuals with new features and
also the sharing of features with their parents.

In the genetic algorithms, which are population-based approaches, there is the
concept of competition (via a selective mechanism that privileges better — more
fit — individuals) between candidate solutions to a given problem. It is also inter-
esting to note that while hill-climbing and simulated annealing algorithms gen-
erate new candidate points in the neighborhood of the current point, evolution-
ary algorithms allow the examination of points in the neighborhood of two (or
even more) candidate solutions via the use of genetic operators such as cross-
over.



100 The Other Main Evolutionary Algorithms

To conclude this section, let us cite a passage quoted by Michalewicz (1996),
which serves as a metaphor for comparing hill-climbing, simulated annealing,
and genetic algorithms:

“Notice that in all [hill-climbing] methods discussed so far, the kanga-
roos can hope at best to find the top of a mountain close to where he starts.
There’s no guarantee that this mountain will be Everest, or even a very high
mountain. Various methods are used to try to find the actual global opti-
mum.

In simulated annealing, the kangaroo is drunk and hops around randomly
for a long time. However, he gradually sobers up and tends to hop up hill.

In genetic algorithms, there are lots of kangaroos that are parachuted into
the Himalayas (if the pilot didn’t get lost) at random places. These kanga-
roos do not know that they are supposed to be looking for the top of MLt.
Everest. However, every few years, you shoot the kangaroos at low alti-
tudes and hope the ones that are left will be fruitful and multiply.” (Sarle,
1993; quoted by Michalewicz, 1996; p. 30)

3.6 THE OTHER MAIN EVOLUTIONARY ALGORITHMS

This section provides a brief overview of the other three main types of evolu-
tionary algorithms: evolution strategies (ES), evolutionary programming (EP)
and genetic programming (GP).

3.6.1. Evolution Strategies

The evolution strategies (ES) are a class of evolutionary algorithms, developed
by Rechenberg (1965), Schwefel (1965), and Bienert, employed mainly to solve
parameter optimization problems (Schwefel, 1995; Beyer, 2001). They were
initially used to tackle problems on fluid mechanics and later generalized to
solve function optimization problems, focusing the case of real-valued func-
tions. The first ESs operated with a single individual in the population subjected
only to mutation.

The data structure of an ES corresponds to real-valued vectors of candidate
solutions in the search space. Let us consider the most general case of an ES. An
individual v = (x,56,0) may be composed of the attribute vector x, and the sets of
the strategy parameters ¢ and 0. The adaptation procedure is usually imple-
mented performing first (the recombination and) the mutation - according to
some probability density function - of the parameter vectors ¢ and 6, resulting in
o' and 0, and then using the updated vectors of the strategy parameters to (re-
combine and) mutate the attribute vector x, resulting in x'. The pseudocode to
implement an ES is the same as the one described in Algorithm 3.6, with the
difference that the strategy parameters suffer genetic variation before the attrib-
ute vector.
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, Note that this new type of representation incorporates the strategy parameters

7 into the encoding of the individuals of the population. This is a very powerful

" idea, because it allows the evolutionary search process to adapt the strategy pa-
rameters together with the attribute vector. This process is known as self-
adaptation. Despite self-adaptation, recombination operators are not always
used. Recombination was placed within parenthesis in the paragraph above be-
cause most ESs only use mutation; no crossover between individuals is per-
formed. Assuming this simpler case where there is no recombination, it remains
to the designer only to define how the mutation and selection operators are per-
formed.

Selection

There are basically two types of selection mechanisms in the standard ES:
(n+ ) selection and (u, &) selection. In the (u + A)-ES, p parents generate A
offspring and the whole population (i + A) is then reduced to p individuals.
Thus, selection operates in the set formed by parents and offspring. In this case,
the parents survive until the offspring become better adapted to the environment
(with higher fitness) than their parents. In the (u, A)-ES, p parents generate A
offspring (A > p) from which p will be selected. Thus, selection only operates on
the offspring set.

Both (u + A)-ES and (u, A)-ES have the same general structure. Consider thus
the most general case of a (u, A)-ES. An individual v = (x, &, 0) is composed of
three elements: x € R, 6 € R, and O (0, 271‘]1 ¢ where [ is the dimension of x,
Ioc e {l,..,0},and 10 € {0, (2] - Io)(lo — 1)/2} (Béck et al., 2000b). The vector
x is the attribute vector, o is the vector of standard deviations, and 0 is the vector
of rotating angles (see further explanation).

Crossover

There are a number of recombination operators that can be used in evolution
strategies, either in their usual form, producing one new individual from two
randomly selected parents, or in their global form, allowing attributes to be
taken for one new individual potentially from all individuals available in the
population. Furthermore, recombination is performed on strategy parameters as
well as on the attribute vector. Usually, recombination types are different for the
attribute vector and the strategy parameters. In the following, assume b and b’ to
stand for the actual parts of v. In a generalized manner, the recombination opera-
tors can take the following forms:

b, @
by, orb,, (2)

b,'=1 by, +“(br,i _bS,i) 3) G4
ij,I. or bm 4

ij,i +u(b7j,i _ij,i) (5)
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where S and 7 denote two arbitrary parents, u is a uniform random variable over
[0,1], and i and j index the components of a vector and the vector itself, respec-
tively. In a top-down manner we have (1) no recombination, (2) discrete recom-
bination (or uniform crossover), (3) intermediate recombination, (4) global dis-
crete recombination, and (4) global intermediate recombination.

Mutation

The mutation operator in ESs works by adding a realization of an /-dimensional
random variable with uniform distribution X ~ N(0,C), 0 as the expectation vec-
tor and co-variance matrix given by

C:(cy.)z{

C is symmetric and positive definite, and has the probability density function
given by

cov(X,, X)) i#]

3.5
var(X,) i=j @)

det(C 1
S (X X,) = (;(Z)[) exp(g xTC‘x] (3.6)

where the matrix C is the co-variance matrix described by the mutated values o'
and ' of the strategy parameters. Depending on the number of parameters in-
corporated in the representation of an individual, the following types of self-
adaptation procedures are possible.

A Single Standard Deviation for all Attributes of X
lo=1,10=0,X~ c N(0,I).

In this case, the standard deviation of all attributes of x are identical, and all
attributes are mutated as follows:

"= & exp(10.N(0,1))
xi=x+ " .N(0,1)

where 1o oc I"* and Ny(0,1) indicates that the random variable is sampled inde-
pendently for each i. The lines of equal probability density of the normal distri-
bution are hyperspheres in an /-dimensional space.

(3.7

Individual Standard Deviations for each Attribute of x
lo=1,10=0,X~N(0, 0.1).

Each attribute of x has its own standard deviation o; that determines its muta-
tion as follows:

o= ot exp(t’.N(0,1) + T.N/0,1))
x = x4+ o NK0,1)
where ©’ oc (2.1)""* and t o< (2.1

The lines of equal probability density of the normal distribution are hyperel-
lipsoids.

(3.8)
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Individual Standard Deviations for each Attribute of x and Correlated Mutation
Io=110=1({-1)2,X~N(0,C).
The vectors o and O represent the complete covariance matrix of an I-
dimensional normal distribution, where the co-variances ¢; (i € {1, ..., -1}, and
j e {i+l,..,1}) are represented by a vector of rotation angles 0 that describe

the coordinate rotations necessary to transform an uncorrelated mutation vector
into a correlated mutation vector. Thus, the mutation is performed as follows:

a'''= o exp(t.N(0,1) + T.N,0,1))
6= 6!+ B.N(0.1) (3.9
x1=x'+ N(0,C(c"".0")
where N0, C(c""", 8"")) corresponds to the vector of correlated mutations and
B =0.0873 (5°).
This way, the mutation corresponds to hyper-ellipsoids capable of rotating ar-

bitrarily, and 0, characterizes the rotation angles in relation to the coordinate
axes.

The last step to implement the (p, L)-ES or (p + 2)-ES with correlated muta-
tion is to determine C(c"", 0"). Rudolph (1992) demonstrated that a symmetric
matrix is positive definite if, and only if, it can be decomposed as C = (ST)'ST,
where S is a diagonal matrix with positive values corresponding to the standard
deviations (s; = o;) and

/-1
T=

/
IR, (3.10)

i=l j=i+l

Matrix T is orthogonal and is built by a product of /(/ — 1)/2 rotation matrices
R; with angles 6, € (0,2n]. An elementary rotation matrix R;(0) is the identity
matrix where four specific entries replaced by r;=1;=cosb and
ry = —1; = —send.

3.6.2. Evolutionary Programming

Fogel and collaborators (Fogel et al., 1966) introduced evolutionary program-
ming (EP) as an evolutionary technique to develop an alternative form of artifi-
cial intelligence. An intelligent behavior was believed to require two capabili-
ties: 1) the prediction of a certain environment, and 2) an appropriate response
according to this prediction. The environment was considered as being described
by a finite sequence of symbols taken from a finite alphabet. The evolutionary
task was then defined as the evolution of an algorithm capable of operating in
the sequence of symbols generated by the environment in order to produce ang
output symbol that maximizes the performance of the algorithm in relation to the/
next input symbol, given a well-defined cost function. Finite state machines
(FSM) were considered suitable to perform such task.

Although the first evolutionary programming techniques were proposed to
evolve finite state machines, they were later extended by D. Fogel (1992) to
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operate with real-valued vectors subject to Gaussian mutation, in a form similar
to the one used in evolution strategies.

In a later development of evolutionary programming, called meta-
evolutionary programming (meta-EP), an individual of the population is repre-
sented by v = (x,var), where x € R’ is the attribute vector, var € RV is the
variance vector (var = 6°) of the mutation variables, / is the dimension of x, and
Ivar € {1, ..., [}. The variance is also going to suffer mutation in a self-adaptive
manner, similarly to the evolution strategies. In another approach, Fogel (1992,
pp. 287-289) introduced the Rmeta-PE, which incorporates the vector of the
correlation coefficients into the set of parameters that will suffer mutation. It
was implemented in a form essentially identical to the evolution strategies, but
few experiments were performed with this version of EP.

Selection

The selection mechanism used in evolutionary programming is essentially simi-
lar to the tournament selection sometimes used in genetic algorithms. After gen-
erating | offspring from p parents and mutating them (see next section), a sto-
chastic tournament will select u individuals from the set formed by the parents
plus offspring. It thus corresponds to a stochastic (i + A) selection in evolution
strategies.

For each individual v; € P U P', where P denotes the whole population and P'
denotes the offspring population, ¢ individuals are randomly selected from the
set P U P’ and compared with v; in relation to their fitness values. Given v;, we
count how many individuals have a fitness value less than v;, resulting in a score
w; (i € {1,...,2u}), and the p individuals with greater score w; are selected to
form the population for the next generation:

a if fir(v,) < ,
o1 A S A G
‘= (0 otherwise
where 7 € {1,...,2p} is an integer and uniform random variable sampled for

each comparison.

Mutation

In the standard EP, a Gaussian mutation with independent standard deviation for
every element x; of x is obtained as the square root of a linear transformation
applied to the fitness value of x (Béck and Schwefel, 1993):

x'=x! + 6.N (0,1)

0, =B, . fit(x)+y, 3.12)

where the parameters /3 and y must be adjusted according to the problem under
study.

To solve the parameter adjustment problems of EP, the meta-EP self-adapts /
variances by individual, similarly to what is performed with the ES:
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X,‘”l: X,'[ + \ [va}"i N,(O,l)
var,m: var} + Jo.var, .N{0,1)

where o is a parameter that guarantees that var; is nonnegative, and N,(0,1) indi-
cates that the random variable is sampled independently for each i. Fogel (1992)
proposed the simple rule Vvar; <0, var; < &, where & is a value close to zero,
but not zero.

(3.13)

Although this idea is similar to the one used in the ES, the stochastic process
behind the meta-EP is fundamentally different from the one behind ES (Béck,
1994). The procedure to implement EP is the same as the one used to implement
ES, but with L =y, and is just a slight variation of the standard evolutionary
algorithm procedure (Algorithm 3.6).

3.6.3. Genetic Programming

Genetic programming (GP), proposed by Cramer (1985) and further developed
and formalized by Koza (1992, 1994a), constitutes a type of evolutionary algo-
rithm developed as an extension of genetic algorithms. In GP, the data structures
that suffer adaptation are representations of computer programs, and thus the
fitness evaluation involves the execution of the programs. Therefore, GP in-
volves a search based upon the evolution of the space of possible computer pro-
grams such that, when run, they will produce a suitable output, which is usually
related to solving a given problem.

The main question that motivated the proposal of genetic programming was
“How can computers learn to solve problems without being explicitly pro-
grammed to do so?” In its original form, a computer program is basically the
application of a sequence of functions to arguments: functional paradigm. Im-
plementing GP is conceptually straightforward when associated with program-
ming languages that allow the manipulation of a computer program in the form
of data structures, such as the LISP programming language. However, it is pos-
sible to implement GP using virtually any programming language that can ma-
nipulate computer programs as data structures and that can then compile, link
and execute the new data structures (programs) that arise. As LISP was the
original language used to study and apply GP and is easily understandable, it
will be briefly reviewed in the following.

In LISP there are only two types of entities: afoms (constants and variables)
and lists (ordered set of items delimited by parentheses). A symbolic expression,
or S-expression, is defined as an atom or a list, and it constitutes the only syntac-
tic form in LISP; that is, all programs in LISP are S-expressions. In order to
evaluate a list, its first element is taken as a function to be applied to the other
elements on the list. This implies that the other elements from the list must be
evaluated before they can be used as arguments for the function, represented by
the first element of the list. For example, the S-expression (— 4 1)

requires function ‘=’ to be applied to two arguments represented by the atoms
‘4’ and ‘1. The value returned by evaluating this expression is ‘3’.
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A list may also contain other lists as arguments, and these are evaluated in a
recursive, depth-first way; for instance, the S-expression (— (x 2 4) 6) returns 2
when evaluated. Therefore, the programs in LISP can be seen as compositions of
functions. It is also important to note that these functions must not be restricted
to simple arithmetic operators. It is possible to implement all types of constructs
that can be used in a computer program (sequence, selection, and repetition). An
important feature of LISP is that all LISP programs have a single S-expression
that corresponds to the parse tree of the program. Figure 3.23 illustrates the
parse tree representations of both S-expressions exemplified above.

As with all other evolutionary algorithms, in GP a problem is defined by its
representation and the specification of an objective function that will allow the
definition of a fitness function. The representation in GP consists of choosing an
appropriate function set F and an appropriate terminal set T. The functions cho-
sen are those that are a priori believed to be useful and sufficient for the prob-
lem at hand, and the terminals are usually variables or constants. The computer
programs in the specified language are then the individuals of the population
that can be represented in a data structure such as a tree. These individuals have
to be executed so that the phenotype of the individual is obtained. While defin-
ing the representation in GP, two important aspects must be taken into account:

e Syntactic closure: it is necessary to examine the values returned by all
functions and terminals such that all of them will accept as argument any
value and data type that may be returned by a function from F or a termi-
nal from 7.

e Sufficiency: defining the search space corresponds to defining F and 7. It
is intuitive thus that the search space has to be large enough to contain the
desired solution. Besides, the functions and terminals chosen have to be
adequate to the problem domain.

Several types of functions and terminals can be used, such as arithmetic func-
tions (e.g., +, x, —, /), logic functions (e.g., AND, OR, NAND), and standard
programming functions. The terminals may be variables, constants, or functions
that do not receive arguments.

(a) (b)

Figure 3.23: Parse tree representation of S-expressions in LISP. (a) (-41).

(b) (- (x24)6).
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Parent 2

Parent 1

Figure 3.24: Crossover of S-expressions in GP. The crossover points are indicated by the
arrows. (a) (+ (x 2 ) (/ x 4)). (b) (= (x 24) 6). () (+ 6 (/ x 4)). (d) (= (x 24) (x 2 ¥)).

Crossover

One interesting feature of genetic programming is that the individuals of the
population may have different sizes. The recombination operator (crossover) is
used to generate individuals (computer programs) for the next generation from
parent programs chosen according to their fitness value. The offspring programs
are composed of sub-trees from the parent programs, and may have different
sizes and shapes from those of their parents. Similarly to the genetic algorithms,
the application of crossover in GP requires two S-expressions as inputs. How-
ever, recombination cannot be random in this case, for it has to respect the syn-
tax of the programs. This means that different crossover points may be chosen
for each of the parent S-expressions. The crossover point isolates a sub-tree from
each parent S-expression that will be exchanged to produce the offspring. Cross-
over in GP is illustrated in Figure 3.24. In this example, F = {+, —, x,/} and
T=1{1,2,3,4,56xy}.

Mutation

Mutation in GP may be useful but is not always used. Mutation may be impor-
tant for the maintenance and introduction of diversity and also to maintain a
dynamic variability of the programs being evolved. Mutation in GP is illustrated
in Figure 3.25.
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° Mutated

(b)

Figure 3.25: Mutation of an S-expression in GP. The mutation point is indicated by the
arrow. (a) (+ 6 (/ x 4)). (b) (+ 6 (+x 4)).

3.6.4. Selected Applications from the Literature: A Brief Description

This section illustrates the application of these three types of evolutionary algo-
rithms (ES, EP, and GP) to three different problems. In the first example, a sim-
ple evolution strategy is applied to an engineering design problem. The second
example illustrates the application of evolutionary programming to optimize the
parameters of a voltage circuit, and the third example is a pattern classification
task realized using a genetic programming technique. All descriptions are brief
and aimed at illustrating the application potential of the approaches and the use
of the three design principles: representation, objective, and function evaluation.
Further details can be founded in the cited literature.

ES: Engineering Design

Engineering design is the process of developing a plan (e.g., a model, a system,
a drawing) for a functional engineeing object (e.g., a building, a computer, a
toaster). It often requires substantial research, knowledge, modelling and
interactive adjustment and redesign until a useful and efficient plan is proposed.
In (Hingston et al., 2002), the authors applied a simple evolution strategy to
determine the geometry and operating settings for a crusher in a comminution
circuit for ore processing. The task was to find combinations of design variables
(including geometric shapes and machine settings) in order to maximize the
capacity of a comminution circuit while minimizing the size of the crushed
material.

The authors used a crusher with the shape of an upside down cone in which
material is introduced from above and is crushed as it flows downward through
the machine, as illustrated in Figure 3.26(a). Crushing is performed by an inner
crushing surface, called mantle, mounted on the device and driven in an
eccentric motion swivelling around the axis of the machine. The material is
poured onto the top of the crushing chamber and is crushed between the mantle
and the bowl liner when it passes through them. The area through which the
material passes is called closed-side setting, and can be made wider or narrower
depending on the desired size of the crushed material.

Evolutionary Computing 109

Mantle Bowl liner

Closed-side

setting Eccentric angle

(a) (b)

Figure 3.26: (a) Simplified diagram of the crusher used in Hingston et al., 2002.
(b) Shape representation of each liner.

Evolutionary algorithms are particularly suitable for solving such types of
problems because they are too complex to be solved analytically; a well-defined
evaluation function for the designs can be proposed; there is little information a
priori to guide an engineer in the determination of near-optimal designs; the
search space is too large to be searched exhaustively; and once a candidate
design has been proposed, it is possible to use a simulation tool to evaluate it.
These are some of the features that make specific problems suitable for natural
computing approaches, as discussed in Section 1.5.

The authors proposed the following representation, objective, and fitness
function.

Representation: The representation of the individuals of the population
corresponds to real-valued vectors in specific domains representing the closed-
side settings, eccentric angle and rotational speed. This is a straightforward
representation, for all parameters assume real values. The geometric shapes of
the bowl liners were represented as a series of line segments using a variable-
length list of points, each represented by its x-y coordinates on the plane (Figure
3.26(b)). Mutation was performed using individual standard deviations for each
attribute of the chromosome representation (Equation (3.7)) and with varying
strategy parameters following Equation (3.8). The selection method was the
(u+ A)-ES, where p =X = 1. Note that not only the device parameters are being
optimized, but also the shape (geometry) of the bowl liners.

Objective: The objective for this problem is to maximize a function g, which
corresponds to maximizing the capacity of the comminution circuit while
minimizing the size of the product.

Evaluation: The fitness function used is directly proportional to the crushing
capacity C of the circuit in terms of tons per hour, and to the size measure of the
crushed product P:

2g(C,P)=0.05xC + 0.95xP,
As one of the goals is to minimize the size of the crushed product, P refers to
a size s in mm such that 80% of the product is smaller than s mm. Therefore, the

fitness function g(C,P) to be maximized takes into account the capacity of the
circuit and the percentage of material crushed within a given specification.
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The constants multiplying each factor were chosen by the authors so as to
equalize their variability, quantifying the importance of each component. Note
that, in this case, after a plant has been designed by the evolutionary algorithm, a
simulation tool is used to evaluate and compare alternative designs (candidate
solutions), thus automating the process.

EP: Parameter Optimization

The process of engineering design involves mainly two levels: topology design
and parameter optimization. In the previous example we discussed the use of an
evolution strategy to perform both, topology design (bowl liner shape) and pa-
rameter design (combination of appropriate eccentric angle, closed-side setting,
and rotation speed, which will influence C and P).

In (Nam et al., 2001), the authors applied an evolutionary programming ap-
proach to the problem of optimizing a set of parameters for a voltage reference
circuit. Similarly to the engineering design problem mentioned above, in order
to design an electronic circuit, several parameters of each part of the circuit have
to be determined, but, in the present example, the topology of the circuit was
already defined. The authors argued that such problems are highly multi-modal,
making it difficult to apply more traditional techniques, such as gradient-based
search and justifying the use of alternative approaches like EAs. Besides, the
parameters of the circuit to be optimized are real-valued vectors, one reason why
the authors chose to use evolutionary programming, though an evolution strat-
egy could have been used instead or a genetic algorithm with float-point encod-
ing.

The circuit whose parameters they wanted to optimize was an on-chip voltage
reference circuit; that is, a circuit from semiconductor technology that generates
a reference voltage independent of power fluctuation and temperature variation.
Given the power voltage V; and the temperature T, it is possible to write the
reference voltage V,.requation for the circuit as a function of several parameters,
such as resistors, transistors, etc. The goal is to find appropriate parameter val-
ues that maintain the reference voltage stable when the temperature and power
voltage vary within given ranges. A simplified equation for the reference voltage
can be written as a function of only Vrand T:

Vier=K{Vr+ KT 3.14)
where K; and K, are two constants, V7 is the power voltage and 7 is the tempera-
ture.

Representation: The representation used was real-valued vectors and each
candidate solution corresponded to a combination of parameter values. The
authors used a (p+A) selection scheme and a simplified mutation scheme.
Equation (3.15) below describes how the authors evolved the attribute values of
the vector to be optimized x and the strategy parameters as well.

X =xt+ 0N (0,1)

ot = Bf(x) @19
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where x;' is the i-th parameter of one chromosome at iteration #, o; its associated
variance, N(0,1) is a normal distribution of zero mean and standard deviation 1,
B is a positive constant, and f{(x) is the fitness of chromosome x. To determine

fit(x), a cost function was proposed taking into account a set of parameters to be

optimized.

Objective: The objective is to minimize a function f{x) that takes into account
a reference voltage, temperature compensation and an active voltage constraint.

Evaluation: Based on this objective, the proposed fitness function was:
Ax) =K |[Vas(x) = 2.5] + Ko([Vo(X) = Vas(X)| + [Vas(X) = Vigo(X)]) +
+ K}IVaCIO(X) - 08|7

where V, Vas, and Vg represent reference voltages at 0°C, 25°C, and 100°C,
respectively, and Vo is an active bias voltage.

In this approach a simulation tool is also used to evaluate the performance of
the evolved parameters.

GP: Pattern Classification

Adaptation problems often present themselves as problems of classification or
function approximation. In classification problems, the objective is to discern a
pattern from others and to develop a procedure capable of successfully perform-
ing the classification. The procedure is usually developed using a set of input
data with known classification and new, previously unseen, data is used to
evaluate the suitability of the adaptation (classification) process. The generaliza-
tion capability of the classifier is assessed on these novel data. Learning rela-
tionships that successfully discriminate among examples associated with prob-
lem solving choices is a typical application of natural computing.

One possible application of genetic programming is in the design of classifiers
(Koza, 1992, 1994b). Consider the input data set illustrated in Figure 3.27.

Figure 3.27: Input data set used to test the performance of many classifiers.
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This is a typical data set used to test some classification techniques, including
neural networks (Chapter 4), whose difficulty lies in the fact that data are pre-
sented using Cartesian coordinates making them nonlinearly separable.

This problem can be solved using a genetic programming approach (Koza,
1992). In this case, the GP will have to provide as output a computer program
(S-expression) that determines to which spiral a given point belongs. Assume
that the points belonging to one of the spirals correspond to class +1 and the
points belonging to the other spiral correspond to class —1.

Representation: It is important to remember that the representation in GP cor-
responds to a function set F and a terminal set T believed to be sufficient for
solving the problem. Due to the nature of the spirals problem, the terminal set 7
consists of the x and y coordinates of all given points (190 in the picture shown).
As some numerical constants ¢ € R may be needed to process all these data,
some constants, ¢ € [-1,+1], can be added to the terminal set. Thus, the terminal
set is 7= {X,Y, R}, where X and Y are the sets of coordinates for the x and y
variables of the data set and R is the set of real numbers belonging to the inter-
val [=1,+1]. To determine the function set for this problem, we must have in
mind that the resultant computer program has to determine to which of the spi-
rals a given point belongs. Thus, the programs to be evolved may include the
four arithmetic operations, a conditional comparative function for decision mak-
ing, and the trigonometric sine and cosine functions. The function set for this
problem is then F = {+,—x,/,IFLTE,sin,cos}, in which these functions take 2, 2,
2,2,4, 1, and 1 arguments, respectively. Function IFLTE (If-Less-Than-Or-
Equal-To) is a four argument conditional comparative operator that executes its
third argument if its first argument is less than its second argument and, other-
wise, executes the fourth (else) argument. The conditional IFLTE is used so as
to allow the classification of points into one of the classes, and functions sine
and cosine are included so as to increase nonlinearity. In order to have a binary
classification in the output, a wrapper must be employed mapping any positive
value returned by the evolved program when executed to class +1, and to class
—1 otherwise.

Objective: The objective is to maximize the number of points correctly classi-
fied or, equivalently, minimize the number of points misclassified.

Evaluation: Assuming the objective is to maximize the correct classification
rate of the S-expression, fitness can be calculated by taking the total number of
correctly classified points.

3.7 FROM EVOLUTIONARY BIOLOGY TO COMPUTING

This chapter described the standard evolutionary algorithms with particular em-
phasis on the genetic algorithms. Table 3.2 suggests an interpretation of the bio-
logical terminology into the evolutionary algorithms.

/',/
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Table 3.2: Interpretation of the biological terminology into the computational world for
genetic algorithms.

Biology (Genetics) Evolutionary Algorithms

Chromosome Data structure

Genotype Encoding of a potential candidate solution to a problem (equiva-
lent to a chromosome)

Phenotype Decoded value of one or more chromosomes

Gene Element occupying a given position in a data structure

Locus Position occupied by a gene in a data structure

Alleles Variations of an element (gene) that can occupy a locus

Crossover Exchange of portions between data structures

Mutation Replacement of a given gene by a different one

Fitness Value that indicates the quality of an individual in relation to the
problem being solved

Selection Process that allows the survival and reproduction of the fittest

individuals in detriment of the less fit ones

3.8 SCOPE OF EVOLUTIONARY COMPUTING

Given a problem, how do we know if an evolutionary algorithm can solve it
effectively? Brief discussions about it have been made throughout this chapter
and Chapter 1, but there is no rigorous answer to this question, though some key
intuitive aspects can be highlighted (Mitchell, 1998):

e If the search space is large, neither perfectly smooth nor unimodal, is un-

k known, or if the fitness function is noisy, then an EA will have a good

chance of being a competitive approach.

e If the search space is smooth or unimodal, then gradient or hill-climbing
methods perform much better than evolutionary algorithms.

e If the search space is well understood (such as in the traveling salesman
problem — TSP), heuristics can be introduced in specific methods, includ-
ing the EAs, such that they present good performances.

Beasley (2000) divided the possible application areas of evolutionary algo-
rithms into five broad categories: planning (e.g., routing, scheduling and pack-
ing); design (e.g., signal processing); simulation, identification, control (general
plant control); and classification (e.g., machine learning, pattern recognition and
classification). More specifically, evolutionary algorithms have been applied in
fields like art and music composition (Bentley, 1999; Bentley and Corne, 2001),
electronics (Zebulum et al., 2001), language (O’Neill and Ryan, 2003), robotics
(Nolfi and Floreano, 2000), engineering (Dasgupta, and Michalewicz, 1997),
data mining and knowledge discovery (Freitas and Rozenberg, 2002), industry
(Karr and Freeman, 1998), signal processing (Fogel, 2000b), and many others.
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to allow the classification of points into one of the classes, and functions sine
and cosine are included so as to increase nonlinearity. In order to have a binary
classification in the output, a wrapper must be employed mapping any positive
value returned by the evolved program when executed to class +1, and to class
—1 otherwise.

Objective: The objective is to maximize the number of points correctly classi-
fied or, equivalently, minimize the number of points misclassified.

Evaluation: Assuming the objective is to maximize the correct classification
rate of the S-expression, fitness can be calculated by taking the total number of
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This chapter described the standard evolutionary algorithms with particular em-
phasis on the genetic algorithms. Table 3.2 suggests an interpretation of the bio-
logical terminology into the evolutionary algorithms.
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individuals in detriment of the less fit ones

3.8 SCOPE OF EVOLUTIONARY COMPUTING

Given a problem, how do we know if an evolutionary algorithm can solve it
effectively? Brief discussions about it have been made throughout this chapter
and Chapter 1, but there is no rigorous answer to this question, though some key
intuitive aspects can be highlighted (Mitchell, 1998):

e If the search space is large, neither perfectly smooth nor unimodal, is un-
known, or if the fitness function is noisy, then an EA will have a good
chance of being a competitive approach.

e If the search space is smooth or unimodal, then gradient or hill-climbing
methods perform much better than evolutionary algorithms.

e If the search space is well understood (such as in the traveling salesman
problem — TSP), heuristics can be introduced in specific methods, includ-
ing the EAs, such that they present good performances.

Beasley (2000) divided the possible application areas of evolutionary algo-
rithms into five broad categories: planning (e.g., routing, scheduling and pack-
ing); design (e.g., signal processing); simulation, identification, control (general
plant control); and classification (e.g., machine learning, pattern recognition and
classification). More specifically, evolutionary algorithms have been applied in
fields like art and music composition (Bentley, 1999; Bentley and Corne, 2001),
electronics (Zebulum et al., 2001), language (O’Neill and Ryan, 2003), robotics -
(Nolfi and Floreano, 2000), engineering (Dasgupta, and Michalewicz, 1997),
data mining and knowledge discovery (Freitas and Rozenberg, 2002), industry
(Karr and Freeman, 1998), signal processing (Fogel, 2000b), and many others.
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3.9 SUMMARY

This text introduced some basic concepts for problem solving, focusing optimi-
zation problems. Several versions of the hill-climbing procedure were presented
for comparison with simulated annealing and evolutionary algorithms. The em-
phasis was always on how the standard algorithms were developed, their respec-
tive sources of inspiration, and how to interpret the natural motivation into the
computational domain. It was discussed that simulated annealing was developed
using ideas gleaned from statistical thermodynamics, while evolutionary algo-
rithms were inspired by the neo-Darwinian theory of evolution. All strategies
reviewed are conceptually very simple and constitute general-purpose search
techniques.

Basic principles of genetics were reviewed so as to prepare the reader for an
appropriate understanding of evolutionary algorithms, in particular genetic algo-
rithms and their functioning. Some discussion about the philosophy of the theory
of evolution and what types of outcomes can be expected from EAs was also
provided. The focus of the chapter was on a description of evolutionary algo-
rithms - those inspired by evolutionary biology - as a problem-solving approach.
Any algorithm based upon a population of individuals (data structures) that re-
produce, and suffer variation followed by selection, can be characterized as an
EA. The standard evolutionary algorithm was presented in Algorithm 3.6, and a
set of elementary genetic operators (crossover and mutation) was described for
the standard genetic algorithm and the other traditional evolutionary algorithms.

Particular attention was also given to a perspective of evolution as an algo-
rithmic process applied in problem solving. Under this perspective, the problem
to be solved plays the role of the environment, and each individual of the popu-
lation is associated with a candidate solution to the problem. Thus, an individual
will be more adapted to the environment (will have a higher fitness value)
whenever it corresponds to a ‘better’ solution to the problem. At each evolution-
ary generation, improved candidate solutions should be produced, though there
is no guarantee that an optimal solution can be found. The evolutionary algo-
rithm thus constitutes a useful iterative and parallel search procedure, suitable
for solving search and optimization problems that involve a vast search space.

3.9.1. The Blind Watchmaker

To conclude this chapter on evolutionary biology and algorithms, it is important
to say a few words about the type of search being performed by evolution and
thus evolutionary algorithms.

Until Darwin’s proposal, almost everyone embraced the idea that living sys-
tems were designed by some God-like entity. Even scientists were convinced by
the so-called watchmaker argument; that is, the argument from design, proposed
by theologian William Paley in his 1802 book Natural Theology. Paley noted
that watches are very complex and precise objects. If you found a watch on the
ground, you could not possibly believe that such a complex object had been cre-
ated by random chance. Instead, you would naturally conclude that the watch

must have had a maker; that there must have existed sometime, somewhere, an
artificer, who designed and built it for the purpose which we find it actually to
answer. For Paley, the same logic argument applies to living systems. Therefore,
living systems, like watches, must have a maker, concluded Paley.

The point to be raised here is the one discussed by Richard Dawkins in his
1986 awarded book The Blind Watchmaker, namely, that evolution by means of
natural selection might be seen as a blind watchmaker (see Chapter 8).

“In the case of living machinery, the ‘designer’ is unconscious natural se-
lection, the blind watchmaker.” (Dawkins, 1986, p. 45)

The philosophical discussions presented so far have already focused on the al-
gorithmic (designer’s) potentiality of evolution. What has to be emphasized now
is that it is a blind (i.e., unsupervised) process.

While studying the example given in Section 3.5.3, one might be inclined to
think that evolutionary algorithms are employed when the solution to a problem
is known. However, this is not usually the case and deserves some comments.
While in the first example, provided for the GA, the solution was indeed known,
in the second example no assumption about the optimum of the problem had to
be made so that the GA could be applied. The first example demonstrated that
GAs are capable of generating an increasingly more fit population of individu-
als, thus being capable of evolving (adapting to the environment). The second
example showed that GAs are capable of finding optimal solutions to problems.
And both examples showed that though GAs might sometimes use information
about the solution of a problem, they are never told how to find the solution, i.e.,
they perform a blind search. By simply initializing a population of chromo-
somes (represented using some type of data structure), creating copies of them
(reproduction) and applying random genetic operators (performing variation and
selection), it is possible to determine (unknown) solutions to complex problems.
The same holds true for the other evolutionary algorithms presented: evolution
strategies, evolutionary programming and genetic programming. All of them
follow the same standard evolutionary procedure (Algorithm 3.6).

3.10 EXERCISES

3.10.1. Questions

1. This text introduced three versions of hill-climbing. The last version,
namely stochastic hill-climbing, has many features in common with the
simulated annealing algorithm. Do you find it necessary to know the inspi-
ration taken from statistical thermodynamics in order to understand simu-
lated annealing? Justify your answer.

2. Based upon the discussion presented concerning the evolution of species,
provide an answer for the following classical question. What came first, the
egg or the chicken? What arguments would you use to support your an-
swer?
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It is known that the eyes evolved more than once, in different times, and for
different species. What do you think would be a good “fitness measure’ for
a working ‘eye’? Take the particular case of human eyes for example.

If evolution is considered to be a never-ending process, do humans present
any sign of evolution from the last few thousand years? Justify your answer.

In addition to the classic example of the evolution of the moths in Great
Britain (Section 3.4.5), can you provide any other example of an organism

whose evolution can be (has been) clearly accompanied over the last years
(or centuries, or thousands of years)?

Name at least three difficulties for the theory of evolution. Can you think of
some arguments that could be used to refute these difficulties?

How would you explain the many similarities among living organisms? For
instance, consider the case of whales and fishes. They belong to different
species, but are similar in structure and habitat. Why would that be so?

If biology (e.g., evolution) can be seen as engineering, suggest another bio-
logical phenomenon or process that can be abstracted to an algorithmic
level. Write down a procedure to implement it and propose two practical
applications for this procedure.

3.10.2. Computational Exercises

L.

Implement the various hill-climbing procedures and the simulated annealing

algorithm to solve the problem exemplified in Section 3.3.3. Use a real-
valued representation scheme for the candidate solutions (variable x).

By comparing the performance of the algorithms, what can you conclude?

For the simple hill-climbing, try different initial configurations as attempts
at finding the global optimum. Was this algorithm successful?

Discuss the sensitivity of all the algorithms in relation to their input parame-
ters.

Implement and apply the hill-climbing, simulated annealing, and genetic
algorithms to maximize function g(x) used in the previous exercise assum-
ing a bitstring representation.

Tip: the perturbation to be introduced in the candidate solutions for the hill-
climbing and simulated annealing algorithms may be implemented similarly
to the point mutation in genetic algorithms. Note that in this case, no con-
cern is required about the domain of x, because the binary representation al-
ready accounts for it.

Discuss the performance of the algorithms and assess their sensitivity in re-
lation to the input parameters.

Implement a standard genetic algorithm for the example of Section 3.5.3.
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8.

The algorithms presented in Section 3.3 were all devised assuming maximi-
zation problems. How would you modify the procedures in case minimiza-
tion was desired? Rewrite the codes if necessary.

Apply an evolution strategy (ES) with no correlated mutation to the func-
tion maximization problem of Exercise 1.

Repeat the previous exercise with an evolutionary programming (EP) tech-
nique. Compare the results with those obtained in Exercises 1 and 5.

Determine, using genetic programming (GP), the computer program (S-
expression) that produces exactly the outputs presented in Table 3.3 for
each value of x. The following hypotheses are given:

e  Use only functions with two arguments (binary trees).
e Largest depth allowed for each tree: 4.

e  Function set: F'= {+, *}.

e Terminal set: 7= {0, 1,2,3,4,5,x}.

Table 3.3: Input data for the GP.

x Program output
-10 153
-9 120
-8 91
-7 66
-6 45
-5 28
-4 15
-3 6
-2
-1
0 3
1 10
2 21
3 36
4 55
5 78
6 105
7 136
8 171
9 210
10 253

Solve the SPIR pattern recognition task of Section 3.6.4 using genetic pro-
gramming. Assume the same hypotheses given in the example.
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3.10.3. Thought Exercises

1.

Evolutionary algorithms were introduced as general-purpose search algo-
rithms developed with inspiration in evolutionary biology and applied for
problem solving. Most of their applications are of an optimization type, but
they can also be applied for design, arts, and so forth. For instance, one can
use an EA to design tires for racing cars. In such a case, the tires would
have to be encoded using some suitable representation, the evaluation func-
tion would have to take into account the endurance, shape, adherence to the
ground in normal and wet conditions, etc., and the evaluation function
would have to allow the distinction between candidate solutions (individual
chromosomes) to your problem.

Suggest a novel application for an evolutionary algorithm. This can be from
your domain of expertise or any field of your interest. Provide a suitable
representation, objective, and evaluation function. If you are using a binary
representation, then the crossover and mutation operators described may be
suitable for evolving a population of candidate solutions. However, if the
representation chosen is not binary, suggest new crossover and mutation
operators suitable for the proposed representation.

How would you implement a GA for a two variable numeric function?
What would change: the representation, evaluation function, or genetic op-
erators?

How would you hybridize a local search procedure, such as the standard
hill-climbing, with a genetic algorithm? Provide a detailed discussion, in-
cluding a discussion about the benefits of this hybridization.

3.10.4. Projects and Challenges

1.

The traveling salesman problem (TSP) is a popular problem in combinato-
rial optimization with applications in various domains, from fast-food de-
livery to the design of VLSI circuits. In its simplest form, the traveling
salesman must visit every city in a given territory exactly once, and then re-
turn to the starting city. Given the cost of travel between all cities (e.g., dis-
tance or cost in money), the question posed by the TSP is related to what
should be the itinerary for the minimal cost of the whole tour.

Implement an evolutionary algorithm to solve the pictorial TSP illustrated
in Figure 3.28. The cities were placed on a regular grid to facilitate analysis
and are labeled by a number on their top left corner. Three main aspects de-
serve careful examination: representation, evaluation function, and genetic
operators.

First, one has to define a representation for the chromosomes. Is a binary
representation, such as the one used in standard genetic algorithms, suit-
able? If not, explain why, and suggest a new representation.

Second, the definition of an evaluation function requires the knowledge of
the objective. In this case, assume that the objective is simply to minimize
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the distance traveled by the salesman. The coordinates of each city on the x-
v plane can be extracted from Figure 3.28.

Lastly, if the representation you chose is not binary, what should be the
crossover and mutation operators employed? Can you see any relationship
between these operators and the biological crossover and mutation?
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Figure 3.28: Simple TSP with 32 cities. The cities are placed on a regular grid on the x-y
plane, in which each point (e) represents a city, the number next to each city corresponds
to its index, and each square on the grid corresponds to one unit of distance (uod - e.g.,
Km).
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(2]
(3]
(4]

(3]

In the evolutionary algorithm developed in the previous exercise, add a
standard hill-climbing procedure as a means of performing local search in
the individuals of the population.

Maximize function g(x) = 272(~0/09” (sin(57))°, x € [0,1], using an evolu-
tion strategy with correlated mutation.
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CHAPTER 4

NEUROCOMPUTING

“Inside our heads is a magnificent structure that controls our actions and somehow
evokes an awareness of the world around ... It is hard to see how an object of such un-
promising appearance can achieve the miracles that we know it to be capable of.”

(R. Penrose, The Emperor’s New Mind, Vintage, 1990, p. 483)

“Of course, something about the tissue in the human brain is necessary for our intelli-
gence, but the physical properties are not sufficient ... Something in the patterning of
neural tissue is crucial.”

(S. Pinker, How the Mind Works, The Sofiback Preview, 1998; p. 65)

4.1 INTRODUCTION

How does the brain process information? How is it organized? What are the
biological mechanisms involved in brain functioning? These form just a
sample of some of the most challenging questions in science. Brains are espe-
cially good at performing functions like pattern recognition, (motor) control,
perception, flexible inference, intuition, and guessing. But brains are also slow,
imprecise, make erroneous generalizations, are prejudiced, and are incapable of
explaining their own actions.

Neurocomputing, sometimes called brain-like computation or neurocomputa-
tion, but most often referred to as artificial neural networks (ANN)', can be de-
fined as information processing systems (computing devices) designed with in-
spiration taken from the nervous system, more specifically the brain, and with
particular emphasis on problem solving. S. Haykin (1999) provides the follow-
ing definition:

“A[n artificial] neural network is a massively parallel distributed proces-
sor made up of simple processing units, which has a natural propensity for
storing experiential knowledge and making it available for use.” (Haykin
1999; p. 2)

Many other definitions are available, such as

>

“Aln artificial] neural network is a circuit composed of a very large num-
ber of simple processing elements that are neurally based.” (Nigrin, 1993; p.
11)

“... neurocomputing is the technological discipline concerned with paral-
lel, distributed, adaptive information processing systems that develop infor-

! Although neurocomputing can be viewed as a field of research dedicated to the design
of brain-like computers, this chapter uses the word neurocomputing as a synonym to
artificial neural networks.
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