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Abstract— It is generally challenging to design decentralized
controllers for swarms of robots because there is often no
obvious relation between the individual robot behaviors and the
final behavior of the swarm. As a solution, we use artificial evo-
lution to automatically discover neural controllers for swarming
robots. Artificial evolution has the potential to find simple and
efficient strategies which might otherwise have been overlooked
by a human designer. However, evolved controllers are often
unadapted when used in scenarios that differ even slightly
from those encountered during the evolutionary process. By
reverse-engineering evolved controllers we aim towards hand-
designed controllers which capture the simplicity and efficiency
of evolved neural controllers while being easy to optimize for
a variety of scenarios.

I. INTRODUCTION

Artificial Evolution has been extensively used for
the development of robot controllers due to its capacity to
automatically engineer solutions displaying complex abilities
using simple and efficient behaviors [1], [2]. Systems of
interest generally can not be solved using conventional
programming techniques because they are highly non-linear,
stochastic or poorly understood [3]. Subsequently, artificial
evolution is particularly well suited for the design of
controllers for swarms of robots. Indeed, there currently
exists no conventional methodology to deterministically
design decentralized controllers which are capable of giving
rise to a desired emergent swarm behavior. Overcoming
this limitation, genetic algorithms and genetic programming
have successfully been used to design controllers for swarms
of ground [4], [5] and aerial vehicles [6]–[10] in simulation
or on-board physical robots in research environments.

However, evolved controllers are often unable to adapt
across different scenarios without being re-evolved. This
process takes time and is unrealistic for robot swarms
which are intended to be used out-of-the-box in critical
applications. Instead we propose to reverse-engineer
evolved controllers so as to capture the simplicity and
efficiency found through evolution in hand-designed robot
controllers whose parameters can easily be optimized for
various scenarios. In this paper, the entire process for
the design of swarm controllers includes 1) the evolution
of neural controllers for robots 2) the analysis of the
behaviors performed by the robots to achieve swarming 3)
the hand-design of robot controllers inspired from these
behaviors 4) the optimization of robot controllers for various
environments.
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Our endeavor is motivated by an application, whereby
a swarm of fixed-wing micro air vehicles (MAVs) must
cooperate to serve as a wireless relay for rescuers and
victims in disaster areas. In a typical scenario, rescuers
rapidly arrive at a disaster site and set up a base which is
equipped with a wireless device of limited range. MAVs are
launched from this base by hand, one after the other, and
must then self-organize to find other rescuers or victims in
the environment while maintaining a communication link
to the base. Once a user is found, the communication can
be established between the base and the user via the MAVs
which serve as relay nodes. The MAVs must maintain this
communication link active until it is no longer needed.

Flying robots are interesting for such applications because
they can easily deploy and spread out over difficult
terrain such as flooded areas or debris while providing
line-of-sight communication. Our MAVs are not equipped
with sensors such as Global Positioning Systems (GPS),
cameras, laser range finders or radars because we aim at
minimal platforms which are cheap, safe and light-weight.
The positioning information derived from these sensors is
typically primordial in current research on swarms of flying
robots [11]–[23]. Instead of relying on position information,
our MAV controllers use only local communication with
immediate neighbors and proprioceptive sensors which
provide heading, speed and altitude [6], [24].

The following section presents the evolution of controllers
for swarms of flying robots and the analysis of the robot
behaviors. Sect. III presents the hand-designed controllers
inspired from evolution and the optimization of their
parameters for various scenarios. In Sect. IV, we test the
controller optimization on different scenarios and choose one
to show the performance and behavior of the hand-designed
swarm in a specific network deployment application. Finally,
in Sect. V we summarize the work done so far and discuss
future developments.

II. EVOLVED CONTROLLER

As presented in [6] we use artificial evolution as a means
of automatically designing neural controllers for a swarm of
simulated fixed-wing MAVs. We hereby briefly summarize
this work, namely the scenario used to evolve the controllers,
the robot neural architecture and the behaviors displayed by
the individual MAVs.



Fig. 1. Trajectories of all the MAVs with the best evolved controllers during a 30 min trial. In this trial, the user has been placed to the North-East with
respect to the base in order to show the full extent of the sweeping behavior of the swarm. The trajectory of the first launched MAV is shown by a light
grey line.

A. Scenario

The aim is to deploy and maintain an ad-hoc wireless
network composed of swarming MAVs to enable commu-
nication between a base (BS) from which 20 MAVs are
launched every 15 ± 7.5 s and a user (US) positioned in
the environment within a ±30o angle from North and within
550 m of the base. The deployment and maintenance of
the network lasts 30 min and the communication range of
the MAVs, base and user is approximately 100 m. These
values are based on our acquired experience so far with real
platforms designed for our network of swarming MAVs [25].

B. Controller

Each MAV is equipped with identical controllers (ho-
mogenous swarm) to allow for scalable swarms composed
of interchangeable agents. In our system, MAVs maintain a
constant speed and altitude while modulating their turn rate.
Constant speed is justified given that fixed wing platforms
must always maintain forward motion so as not to stall, as
opposed to aircrafts capable of hovering or ground robots
which can stop moving when needed. A neural controller
with three inputs and four hidden neurons is used to output
the turn rate the MAVs should adopt. A low-level flight
controller is assumed to make sure the turn rate is achieved
within a certain time. Since no positioning information is
available, the inputs to the neural controller are exclusively
derived from an absolute heading sensor and the messages
received from neighboring MAVs every 50 ms. Inputs to the
neural controller are defined as follows:

• The heading of the MAV as computed using a magnetic
compass.

• The minimum number of network hops that sepa-
rate the base from the MAV (BSHopCount). MAVs
which are disconnected from the base are assigned a
BSHopCount of N where, N is the maximum number

of hops which can be obtained in a given network. For
our application, N corresponds to the number of MAVs
in the swarm (N=20).

• The minimum number of network hops that separate the
user from the MAV. When disconnected from the user,
MAVs are assigned a value of N .

A genetic algorithm is used to evolve the weights of the neu-
ral controllers based on a fitness which aims at maximizing
the quality of the connections between the base and user
over time. Colony level selection is used to favor inter-agent
cooperation [26].

C. Behavior analysis

An example showing the behavior of the best evolved
controllers can be seen in Fig. 1. The strategy adopted by
the swarm consists of forming a tight chain of MAVs which
grows as long as additional MAVs are launched. Once all
MAVs have been launched, the MAV chain shifts along the
communication range of the base, sweeping the area from
West to East until the user is found. The communication
link between the base and the user is maintained by having
all MAVs turn on the spot with the smallest possible radius
given the dynamics of the aircraft.

Fig. 2. Effect of the number of hops which separate the base from an
MAV (BSHopCount) on its trajectory. Here the trajectories of the best
evolved MAV controllers are plotted over 30 s. MAVs were disconnected
from the user during these experiments.



Through a qualitative analysis of the best evolved controllers,
the following simple behaviors were extracted to account
for the chain formation, sweeping and communication
maintenance performed by the swarm [6]:

1) MAVs continuously turn in the same direction, modulating
their turn rate based on their heading measurements and
their desired advancement direction and speed.

2) MAVs which are connected to the base (BSHopCount <
20) proceed following the trajectories shown in Fig. 2. The
typical number of hops separating an MAV from the base is
generally lower than 10, meaning that the MAVs move to
the North, away from the base.

3) MAVs which are disconnected from the base
(BSHopCount = 20) backtrack in the direction of
the base to tentatively reconnect (Fig. 2).

4) MAVs which are connected to the base turn with a
different average turn rate than when disconnected (Fig. 2).

5) MAVs which are connected to both the base and
the user turn on the spot following the smallest possible
turn radius given by the dynamics of the platform (Fig. 1,
right).

The first behavior allows the MAVs to simply modify
the global advancement speed and direction of their
trajectories by slightly modulating their turn rate with
respect to their current heading measurements. The second
and third behaviors allow for the formation of an MAV chain
with agents moving away from the base as long as they
are connected to it and backtracking when disconnected.
During the chain formation phase, MAVs are sequentially
launched to further extend the MAV chain. Once all
MAVs are launched, the swarm periodically disconnects
and reconnects to the base, alternating behaviors 2 and 3.
Given that the turn rates are different when connected and
disconnected (behavior 4), the MAVs are able to sweep
the area from one side to the other. Because of the slight
difference in trajectory depending on the hop information
of the MAVs (Fig. 2), the sweeping is radial and agents
closer to the base sweep slightly slower than agents further
away. Once the user is found, behavior 5 ensures a minimal
maintenance of the communication link between the base
and the user by having all MAVs turn on the spot.

These five simple behaviors are responsible for the
deployment and maintenance of a swarming MAV network
between a base and a user.

III. HAND DESIGNED CONTROLLER

Our interest lies in taking inspiration from behaviors
found through evolution to design novel swarm controllers
which capture their simplicity and efficiency. We do not

however exactly copy the evolved solution, in particular, our
proposed hand-designed controller contains a simplification
which makes it suitable for applications whereby a chain of
MAVs is able to sweep in parallel (i.e. not radially like in
the evolved solution). We then show that this controller can
be rapidly adapted to a variety of different scenarios.

A. Controller

We hereby show how the five behaviors discovered
through evolution (Sect. II) can be implemented as
parameterized controllers.

1) Similar to the evolved controllers, MAVs with speed v
can perform trajectories which follow a global direction ψ
by adopting different turn rates depending on their heading
measurements ψMAV . As shown in Fig. 3 this is achieved
by having an MAV perform a small turn radius r1 when
its heading forms an obtuse angle with ψ and a large turn
radius r2 when the angle is acute. Intuitively, if r1 and r2

are identical, the MAV will perform circular trajectories and
remain on the spot. Finally, for a trajectory described by
ψ, r1 and r2, the turn rate ωr1,r2,ψ of an MAV is set as
follows:

ωr1,r2,ψ(ψMAV ) =

{

−
v
r1

if obtuse(ψMAV ,ψ)
−

v
r2

if acute(ψMAV ,ψ)

Fig. 3. Example of an MAV trajectory formed by the alternation of
circular trajectories of radius r1 and r2 based on the heading of the MAV
ψMAV and the global advancement direction of the trajectory ψ. When the
angle between the MAV’s heading and the direction ψ is obtuse, the MAV
performs a circle of radius r1 while an acute angle yields a circle of radius
r2.

2) MAVs which are connected (even indirectly) to the
base adopt turn rate ωr1,r2,ψUS

(ψMAV ) where ψUS reflects
the approximate direction in which a user might be found.
This parameter is given by the scenario specifications (Fig.
4 A).

3) MAVs which are disconnected from the base adopt
turn rate ωr3,r4,ψBS

(ψMAV ) where ψBS is the direction
opposite to ψUS which will allow the MAVs to advance in
the direction of the base (Fig. 4 B).

4) Given the difference between an MAV’s average
turn radius when connected (r1, r2) or disconnected from
the base (r3, r4), the MAV chain will translate along the



communication range of the base (sweeping) (Fig. 4 C).

5) MAVs which are connected to both the base and
the user adopt turn rate ωrmin,rmin,null so as to turn on
the spot following the smallest possible turn radius rmin.
This allows the swarm to maintain a communication link
between the base and the user (Fig. 4 D).

As a summary, each MAV will adopt a turn rate
ω(ψMAV , BS, US) based on information concerning
its connection to the base (BS = 1 if the MAV is connected
to the base and 0 otherwise) or the user (US = 1 if the
MAV is connected to the user and 0 otherwise) and its
heading ψMAV following equations

ω(ψMAV , BS, US) =







ωrmin,rmin,null(ψMAV ) if BS ∧ US

ωr1,r2,ψUS
(ψMAV ) if BS ∧ !US

ωr3,r4,ψBS
(ψMAV ) otherwise

An example of possible trajectories obtained by an
MAV controller with parameters chosen as rmin = 10,
r1 = 10, r2 = 30, r3 = 20, r4 = 30, ψUS = North
and ψBS = South can be seen in Fig. 4. When using
this controller, the swarm can perform behaviors similar to
those discovered through evolution to deploy and maintain
a wireless network, namely chain formation, sweeping and
communication maintenance.

Fig. 4. MAV trajectories depending their heading and connectivity to the
base (BS) and user (US).

B. Scenario

We aim at showing that our controller can quickly be
adapted to a number of different scenarios. In particular, we
look at a scenario where rescuers, when arriving by road,
deposit several wireless beacons along the way at a small
enough interval for the beacons to be directly or indirectly
interconnected. Here, beacons with a communication range
of 100 m are dropped from a rescue vehicle, every 50 m,
along a straight road which extends from West to East.
The result is an enlarged base as can be seen in (Fig. 5).
A rescuer will then sequentially launch 20 MAVs every

15±7.5 s by simply throwing them into the air from the West-
most beacon. The swarm must establish a communication
link between the base and a single user positioned to the
North of the base and within a d x w area. Once the user
is found, the communication relay must be maintained until
the end of the mission duration which is of 30 min.

Fig. 5. The swarm composed of 20 MAVs must be able to find any user
positioned to the North of the base and within a d x w area. The beacons
forming the base have a communication range of 100 m and are positioned
every 50 m along a straight road. MAVs are launched from the West-most
beacon.

C. Parameter optimization

For real world applications, it is interesting to be able to
rapidly optimize the parameters of a robot controller given
the requirements of a scenario. For the scenario described in
Sect. III-B we look to optimize the parameters r1, r2, r3 and
r4 of the robot controllers (Sect. III-A) for a desired area
coverage d x w. The remainder of the parameters are set by
the scenario specifications (ψUS = North, ψBS = South
and rmin is defined by the limitations of the platform).

Thanks to the simple geometry of the MAV trajectories, we
are able to design a model which can be used to predict
the area coverage of the swarm given by the distance dpred

reached by an MAV chain and the translation wpred of this
chain sweeping along the communication range of the base
(Fig. 5). The values dpred and wpred are computed using
Eq. 1 and Eq. 2 in the Appendix.

To optimize the parameters, we compute the summed
square error e = (d − dpred)2 + (w − wpred)2 for each
combination of r1, r2, r3, r4 in the range of natural
numbers from rmin to rmax with the constraint that r1 < r2

and r3 < r4. The combination with the smallest error e is
selected as the optimized parameter set. To ensure that the
turn radius of the MAV remains small with respect to the
communication range rcomm we define the maximum turn
radius rmax as equal to a quarter of rcomm.



IV. RESULTS

Experiments are run in a realistic event-based simulator
which implements 802.11b communication models, physics-
based wave propagation and a first order model of an MAV
platform which flies at 10 m/s, has a minimum turn radius of
10 m and is affected by sensor and actuator noise as described
in [24].

A. Parameter Optimization

Using the approach presented in Sect. III-C we are able
to determine the parameters r1, r2, r3 and r4 of the robot
controllers described in Sect. III-A for a desired area cover-
age d x w. We test our approach on five different coverages
with the corresponding parameters listed in Table I. For each
desired area coverage, 100 deployments are done with no
user present in the environment to allow the swarm to reach
out as far as possible. Fig. 6 shows the distances dsim and
wsim reached in simulation for each desired area coverage.
As can be seen, the optimized robot controllers are successful
since the simulated swarms are able to achieve the desired
area coverages. For the remainder of this paper we will
consider the robot controller optimized for an area coverage
of 500 m x 500 m.

TABLE I

OPTIMIZED PARAMETERS FOR VARYING AREA COVERAGES d X w

d x w r1 r2 r3 r4

[m x m] [m] [m] [m] [m]
250 x 500 11 13 12 15
500 x 750 14 22 23 24
500 x 500 16 25 23 25
750 x 500 10 21 10 25
500 x 250 14 22 16 22

Fig. 6. Chain length dsim and sweep translation wsim along the
communication range of the base (Fig. 5) reached by the swarm over 100
trials for desired area coverages of 250 m x 500 m, 500 m x 500 m, 750 m
x 500 m, 500 m x 250 m and 500 m x 750 m. No users are positioned in the
environment to determine the full extent of the swarm coverage. For each
of the five desired area coverage, we plot the mean coverage obtained in
simulation with a point and the standard deviations as bars extending from
this point.

B. Behavior

The trajectories of all the MAVs during a 30 min trial
can be seen in Fig. 7. As in the evolved system, the MAVs
are able to form a tight chain which reaches out from
their initial launching site. The MAVs in the chain are
then able to translate along the communication range of the
base, sweeping the area from West to East. Once an initial
connection between the base and the user in the environment
is created, it is maintained by having all MAVs turn following
the smallest possible turn radius.

C. Performance

All the users positioned within the desired search area of
500 m x 500 m are found by the swarm. Once a connection
between the base and a user is established, the probability of
receiving a data packet, sent every second from the base, at
the user end is given in Fig. 8. Results show that the median
probability is of 81%, this is sufficient to achieve usable
communication networks. The probability is not maximal
because the MAVs generally navigate at the edge of the
communication range of the base where they are subject to
noise and disconnections. Finally, although intermittent, the
communication links are maintained in 100% of the cases to
the end of the trial durations.

Fig. 8. Probability of receiving a data packet, sent every second from
the base, at the user end, when tested over 100 trials with users randomly
positioned in a 500 m x 500 m as shown in Fig. 5. Data packets are only
sent after the swarm has created a first connection from the base to the user.
The box has lines at the lower quartile, median, and upper quartile values.
The whiskers extend to the farthest data points that are within 1.5 times the
interquartile range. + symbols denote outliers.

V. CONCLUSION

Artificial evolution has proven to be a powerful
mechanism for the development of simple and yet efficient
controllers for robot swarms [4]–[10]. In order to extend
the applicability of these controllers to a wider range of
scenarios than those used during evolutionary experiments, it
is possible to reverse-engineer the simple evolved strategies.
Reverse-engineered controllers have the advantage of being
easy to parameterize for various scenarios.

Our aimed application envisions the deployment of a
swarm of fixed wing robots to serve as communication
relay between a base from which the robots are launched



Fig. 7. Trajectories of all the MAVs during a 30 min trial. The user is located in (400, 400). The trajectory of the first launched MAV is shown by a
light grey line. Notice the chain formation, sweeping and maintenance of the communication link between the base and the user.

and a single user present on the ground. Artificial evolution
was used to automatically design MAV controllers,
resulting in swarm strategies to create chains which can
sweep over a given area while maintaining a connection
with the base. After the swarm is able to establish a
communication link between the base and the user in the
environment, it is efficiently maintained throughout the
duration of the experiment [6]. We then reverse-engineer
these three strategies, namely chain formation sweeping and
maintenance. The resulting MAV controllers are very simple
and the value of their parameters can be rapidly optimized
given a desired area coverage.

In the future, we aim at taking advantage of our
understanding of reverse-engineered robot controllers
to provide the basis for a safeness and liveness analysis
of the swarm system [27], [28]. Furthermore, we are
investigating the effect of wind and its mitigation on
the flying robots as described in [24]. Finally, current
developments are aimed towards the implementation of the
robot controllers presented in this paper on actual MAV
platforms.

APPENDIX

A. Area coverage model

We aim at predicting the distance dpred reached by an
MAV chain and the translation wpred of the swarm sweeping
along the communication range of the base in Fig. 5.

During chain formation, n MAVs with a communication
range rcomm are launched on average every tlaunch seconds
and advance at speed v m/s. As long as MAVs are connected
to the base, they continue to advance as shown in Fig. 4
A. Once disconnected, they backtrack as shown in Fig. 4

B. As a result, the maximum distance reached by the chain
is equal to nrcomm. When MAVs are launched before the
chain has had time to advance sufficiently to disconnect
from the base, the overall distance d reached by the MAVs
is dependent on the average advancement speed of an MAV

v′ = 2v(r2−r1)
π(r1+r2)

when performing ωr1,r2,ψUS
(ψMAV ) (Sec.

III). Assuming r1 < r2, MAVs turn clockwise and the chain
is given sufficient time to entirely deploy, the maximum
distance dpred reached by the chain is given by

dpred = min(nrcomm, (n − 1)tlaunchv′ + rcomm) (1)

As shown in Fig. 4 C, MAV chains sweep by alternating
between turn radii r1, r2, r3 and r4 based on their heading
and connection status to the base. It typically takes tdis

seconds for an MAV to realize that it is disconnected from
the base (time-out or update time). Because the MAVs move
together, we consider the advancement speed v′′ of the
sweeping chain as being identical to that of a single MAV.
The geometry of the trajectories gives us the maximum
translation wpred along the communication range of the base,
reached during a deployment of duration ttrial seconds:

wpred = (ttrial −
rcomm

v′
− ntlaunch)v′′ (2)



where

γ =
vtdis

r2

ydis = r2sin(γ)

α = cos−1(
2r1r4 − r1r3 − r2r4 − ydisr1 + ydisr4

r1r3 − r2r4
)

β = cos−1(
2r2r3 − r1r3 − r2r4 + ydisr2 − ydisr3

r1r3 − r2r4
)

s = r1(π − β) + r2α+ r3(π − α) + r4β

t =
s

v
s′ = −r1sin(π − β) − r2sin(α)

+r3sin(π − α) + r4sin(β)

v′′ =
s′

t
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