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Abstract—This is the second of a two-part paper, inves-
tigating the stability properties of a system of multiple
mobile agents with double integrator dynamics. In this
second part, we allow the topology of the control inter-
connections between the agents in the group to vary with
time. Specifically, the control law of an agent depends
on the state of a set of agents that are within a certain
neighborhood around it. As the agents move around this
set changes, giving rise to a dynamic control interconnec-
tion topology and a switching control law. This control
law consists of a a combination of attractive/repulsive
and alignment forces. The former ensure collision avoid-
ance and cohesion of the group and the latter result to
all agents attaining a common heading angle, exhibit-
ing flocking motion. Despite the use of only local in-
formation and the time varying nature of agent interac-
tion which affects the local controllers, flocking motion
is established, as long as connectivity in the neighboring
graph is maintained.

I. Introduction

Over the past decade a considerable amount of atten-
tion has been focused on the problem of coordinated
motion of multiple autonomous agents. Related prob-
lems have been studied in ecology and theoretical bi-
ology, in the context of animal aggregation and social
cohesion in animal groups, statistical physics and com-
plexity theory, non-equilibrium phenomena in many-
degree-of-freedom dynamical systems, as well as in dis-
tributed control of multiple vehicles and formation con-
trol (see Part I of this paper [10] and the references
within). Researchers from many different communities
have been trying to develop an understanding of how a
group of moving agents can move in a formation only
using local interactions and without a global supervisor.

In 1986 Craig Reynolds [8] developed a computer ani-
mation model for coordinated motion of groups of an-
imals such as bird flocks and fish schools. A similar
model was proposed in 1995 by Vicsek et al. [11]. In
Vicsek model, each agent heading is updated as the av-
erage of the headings of agent itself with its nearest
neighbors plus some additive noise. Numerical simula-
tions in [11] indicate the spontaneous development of
coherent collective motion, resulting in the headings of
all agents to converge to a common value. The first rig-
orous proof of convergence for Vicsek’s model (in the
noise-free case) was given in [6]. Reynolds’ model sug-
gests that flocking is the combined result of three simple
steering rules, which each agent independently follows:
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o Separation: steer to avoid crowding local flock-
mates.

o Alignment: steer towards the average heading of
local flockmates.

¢ Cohesion: steer to move toward the average po-
sition of local flockmates.

In Reynolds’ model, each agent can access the whole
scene’s geometric description, but flocking requires that
it reacts only to flockmates within a certain small neigh-
borhood around itself. The superposition of these three
rules results in all agents moving in a formation, while
avoiding collision.

In the first part of the paper, we demonstrated how
flocking occurs when each agent is steered using state
information from a fixed set of interconnected neigh-
bors. The topology of the control interconnections was
fixed and time invariant. In this paper we show that
this can also be achieved in the case where the topology
is dynamic. Distance-based dynamic agent interactions
can now guarantee collision avoidance, regardless of the
structure of the interconnection graph. Another distin-
guishing characteristic of range-dependent agent inter-
actions is that the control laws may be switching. Con-
trol discontinuities require a stability analysis within
the framework of Filippov solutions and nonsmooth sta-
bility. Our stability analysis and control design com-
bines results from classical control theory, mechanics,
algebraic graph theory, nonsmooth analysis and Lya-
punov stability for nonsmooth systems. We show that
whenever the the graph representing the nearest neigh-
bor relations is connected, all agent velocities converge
to the same vector and pairwise distances are stabilized.

This paper is organized as follows: in Section II we
define the problem addressed in this paper and sketch
the solution approach. Some basic facts from algebraic
graph theory are presented in Section III. Section IV
introduces the control scheme. A brief introduction to
nonsmooth stability is given in section IV, to pave the
way for the stability analysis of Section VI. The results
of Section VI are verified in Section VII via numerical
simulations. Section VIII summarizes the results and
highlights our key points.



II. Problem Description

Consider N agents, moving on the plane with the fol-
lowing dynamics:

T = (la)
bizui i=1,...,N, (1b)
where r; = (x;,y;)7 is the position of agent i, v; =

(5,9:)7 is its velocity and u; = (ug,,u,,)? its control

inputs. The heading angle of agent 4, 6;, is defined as:
0; = arctan(y;, ;) . (2)
Relative position vectors are denoted r;; = 7; — r;.

The control objective is to generate coordinated motion
in the same direction with constant pairwise distances
using local, decentralized control action. The control
input consists of two components (Figure 1):

U; = a; + o . (3)

The first component, a;, is attributed to an artificial po-
tential field generated by a function V;, which encodes
relative position information between agent i and its
neighbors. This term ensures collision avoidance and
cohesion in the group. The second component, «; reg-
ulates the velocity vectors agent i to the average of that
of its neighbors.

Fig. 1. Control forces acting on agent i.

The problem is to determine the input components so
that the group exhibits a stable, collision free flock-
ing motion. This is being understood technically as a
convergence property on the agent velocity vectors and
their relative distances.

ITI. Graph Theory Preliminaries
This section presents briefly the main graph theoretic

terminology used in the paper. The interested reader
is referred to [5].

An (undirected) graph G consists of a vertex set, V,
and an edge set £, where an edge is an unordered pair
of distinct vertices in G. If z,y € V, and (z,y) € €&,
then x and y are said to be adjacent, or neighbors and
we denote this by writing x ~ y. A path of length r
from vertex x to vertex y is a sequence of r + 1 distinct
vertices starting with « and ending with y such that
consecutive vertices are adjacent. If there is a path
between any two vertices of a graph G, then G is said
to be connected. An orientation of a graph G is the
assignment of a direction to each edge, so that the edge
(i,7) is now an arc from vertex ¢ to vertex j. We denote
by G° the graph G with orientation o. The incidence
matrix B(G7) of an oriented graph G is the matrix
whose rows and columns are indexed by the vertices
and edges of G respectively, such that the 4, j entry of
B(G) is equal to 1 if the edge j is incoming to vertex i,
—1if edge j is outcoming from vertex i, and 0 otherwise.

The symmetric matrix defined as:
L(G) = B(¢7)B(G7)"

is called the Laplacian of G and is independent of the
choice of orientation ¢. It is known that the Lapla-
cian matrix captures many topological properties of the
graph. Among those, is the fact that L is always posi-
tive semidefinite, it has zero as a single eigenvalue when-
ever the graph is connected and the associated eigen-
vector is the n-dimensional vector of ones, 1,, . The
second largest eigenvalue, Ao is known to convey a lot
of information about the structure of the graph and its
connectivity, hence its name “algebraic connectivity”.

IV. Control Law with Dynamic Topology

In this section we present a realization of the control
law (3) that achieves the control objective. The steer-
ing policy of each agent is based only on local state
information from its nearest neighbors. The graph G,
represents the nearest neighboring relations:

Definition IV.1 (Neighboring graph) The neigh-
boring graph, G = {V,E}, is an undirected graph con-
sisting of:

e a set of vertices (nodes), V = {n1,...,nn}, indezed
by the agents in the group, and

e a set of edges, € = {(ni,n;) € VXV |n; ~n;}, con-

taining unordered pairs of nodes that represent neigh-
boring relations.

Let A; denote the index set of neighbors of 4,
Ni 2 {j | llryll <R} € {L,...,N}.

Since the agents are in motion, their relative distances
can change with time, affecting their neighboring sets.



The time dependence of the neighboring relations gives
rise to a switching graph. For each edge incident to
agent i, we define an inter-agent potential function, U,
which should satisfy:

Definition IV.2 (Potential function) The poten-
tial function U is a nonnegative function of the
distance ||ri;|| between agents i and j, such that

1. Uij([lrijll) — oo as [lr|| — 0,

2. U;; attains its unique minimum when agents i
and j are located at a desired distance.

3. U,j 1is increasing near ||ri;|| = R.

Function U;; can be nonsmooth at distance ||ri;|| = R,
and constant U;; = Vg for ||r;j|| > R, to capture the
fact that beyond this distance there is no agent inter-
action. One example of such a nonsmooth potential
function is the following, depicted in Figure 2:
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Fig. 2. A nonsmooth inter-agent potential function.

For agent i the (total) potential U; is formed by sum-
ming the potentials due to each of its neighbors:

Ui 2 (N = NiDVe+ > Us(llri )
JEN;

where N; = |NV;|. The control law u; is defined as:

ui=— ) (vi—v;) = > V.U (4)

JEN; JEN;

Qg a;

Changes in the neighboring set A, introduce discon-
tinuities in the control law (4). The stability of the
discontinuous dynamics should be analyzed using dif-
ferential inclusions [4] and nonsmooth analysis [3].

V. Nonsmooth Analysis Preliminaries

This section introduces briefly concepts from nons-
mooth analysis and stability of nonsmooth systems.

Definition V.1 ([7]) Consider the following differen-
tial equation in which the right hand side can be discon-
tinuous:

&= f(x) (5)

where f : R™ — R"™ is measurable and essentially locally
bounded and n is finite. A vector function x(-) is called
a solution of (5) on [to,t1], where if x(-) is absolutely
continuous on [to, t1] and for almost all t € [to, t1]

i = KIf)(@) £ cof lm_f(z:) | 2 ¢ My UM}

where My C R™, p(My) =0 and M C R™, u(M) = 0.

The above definition of solutions, along with the as-
sumption that the vector field f is measurable, guaran-
tees the uniqueness of solutions of (5) [4].

Lyapunov stability has been extended to nonsmooth
systems [9, 1]. Establishing stability results in this
framework requires working with generalized deriva-
tives, in all cases where classical derivatives cannot be
defined.

Definition V.2 ([3]) Let f be Lipschitz near a given
point x and let w be any vector in a Banach space X.
The generalized directional derivative of f at x in the
direction w, denoted f°(x;w) is defined as follows:

fo(x; ’LU) A lim sup f(y + t’U)) — f(y)

y—x t
t|0

The generalized gradient, on the other hand, is gener-
ally a set of vectors, which reduces to the single classical
gradient in the case where the function is differentiable:

Definition V.3 ([3]) The generalized gradient of f at
x, denoted Of(x), is the subset of X* given by:

0f(z) ={C € X7 | f*(z3w) = (G w), Yw € X}

In the special case where X is finite dimensional, we
have the following convenient characterization of the
generalized gradient:

Theorem V.4 ([2]) Let x € R" and let f: R" — R
be Lipschitz near x. Let Q be any subset of zero measure
in R™, and let Q5 be the set of points in R™ at which f
fails to be differentiable. Then

of(z) = co{xliiglx Vi(z) |z & Quai & Qp}



Calculus based on generalized derivatives usually in-
volves set inclusions. When functions are regular, these
inclusions can be turned to equalities.

Definition V.5 ([3]) A function f is said to be regu-
lar at x provided,

1. For all w, the wusual one-sided directional
derivative f'(z;w) exists, and

2. for all w, f'(z;w) = f°(z;w).

The time (generalized) derivative of a function that is
either nonsmooth or the dynamics of its arguments is
discontinuous, is given by this special case of the nons-
mooth case of the chain rule:

Theorem V.6 ([9]) Let z(-) be a Filippov solution to
& = f(x) on an interval containing t and V : R — R
be a Lipschitz and in addition, reqular function. Then
V(x(t)) is absolutely continuous, LV (x(t)) exists al-
most everywhere and
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It can easily be shown that the (global) Lipschitz conti-
nuity requirement for V(z) can be relaxed to local. In
what follows, we are going to use the following nons-
mooth version of LaSalle’s invariant principle:

Theorem V.7 ([9]) Let Q be a compact set such that
every Filippov solution to the autonomous system & =
f(z), z(0) = z(to) starting in Q is unique and remains
n Q for allt > tg. Let V : @ — R be a time indq-
pendent regular function such that v <0 for all v € 1%
(if V is the empty set then this is trivially satisfied).
Define S = {x € Q| 0 € V}. Then every trajectory
in £ converges to the largest invariant set, M, in the
closure of S.

VI. Stability Analysis

In this section we show how the decentralized control
laws (4) give rise to a coordinated flocking behavior.
Specifically, we prove that all agents of the closed loop
system (1)- (4) asymptotically attain a common veloc-
ity vector, minimize their artificial potential and avoid
collisions with their flockmates. This happens regard-
less of switching in the neighboring graph, as long as
the graph remains connected at all times:

Assumption VI.1 The neighboring graph G remains
connected.

Our main result is formally stated as follows:

Theorem VI.2 (Flocking in switching networks)
Consider a system of N mobile agents with dynamics
(1), each steered by control law (4) and assume that
the neighboring graph is connected. Then all pairwise
velocity differences converge asymptotically to zero,
collisions between the agents are avoided, and the
system approaches a configuration that minimizes all
agent potentials.

Proof: Consider the following function:

1 N N
_ y T,
Q= 5 E (E Uij +v; ;). (6)

i=1 j=1

Function @ is continuous everywhere but nonsmooth
whenever ||r;;|| = R for some (i, j) € N x N. Whenever
the neighboring graph is connected, the level sets of @
define compact sets in the space of agent velocities and
relative distances. The set {r;;, v;} such that Q < ¢, for
¢ > 0 is closed by continuity. Boundedness follows from
connectivity: from @ < ¢ we have that U;; < c. Con-
nectivity ensures that a path connecting nodes 7 and j
has length at most N —1. Thus ||r;;|| < Ugl (c(N-1)).
Similarly, v} v; < ¢ yielding ||v||; < v/c. Thus, the set

Q= {(vi,rij) | @ < ¢} (7)

is compact. The restriction of @ in € ensures, besides
collision avoidance, the differentiability of ||r; —r;j]|,
Vi,j € {1,...,N}. Since U;; is continuous at R, it
is locally Lipschitz. It is shown that U;; is regular [3]:

Lemma VI.3 The function U;; is reqular everywhere
in its domain.

Proof: 1t suffices to show regularity at of U;; at R.
To simplify notation we will drop the subscripts ij and
denote U;;(R) = Vg. It is reasonable to assume that the
desired distance between two agents is smaller than the
neighborhood range, R. By Definition IV.2 therefore,
U;; will be increasing at R. For the classical directional
derivative we have: U’'(R;w) = limy o w,
and for the derivative to make sense, let w # 0. If w > 0
then, U'(R; w) = limy o w = limy | VR;VR =
0.Ifw < 0 then U'(R; w) = limy o w =c<0,
where ¢ is used to denote the directional derivative of
Vi; at R, in a negative direction (w < 0).

For the generalized directional derivative, we
distinguish the same two cases: If w > 0,

then U° (R, U}) = lim SUPy—R M S
tl0
lim Supy/HR M - limth VR;VR - 0.
t|0
Ifw< 0, then7 UO(R’ w) = lim Supy—R M —
t10
lim supy— g M = limy o w —e m

t10



Regularity of each potential function U;; is required to
ensure the regularity of U;, as a linear combination of
a finite number of regular functions [3]. The latter is
a necessary condition for all nonsmooth stability theo-
rems. The following Corollary is an immediate conse-
quence of Lemma VI.3.

Corollary VI.4 The generalized gradient of U;; at R
15 empty:

OUi;(R) = 0. (8)

Thus, @ is regular as a sum of regular functions. An-
other interesting fact that results from U;; being in-
creasing at R is the following, which is useful in com-
puting the generalized time derivative of Q:

Lemma V1.5 The (partial) generalized gradient of U
with respect to r; at R is empty:

Proof: of Lemma VI.5b The generalized derivative
of Uj; at R along w, namely Uj(R), is determined
by the expression: UZ(R;w) £ max{(C,w) | ¢ €
O0U;;(R)}. Depending on the sign of w we distinguish
the two cases:

1. if w > 0 then 0 > (w, which means that all ¢ €
O0U;;(R) have to be non positive;

2. if w < 0 then (w < ¢ < 0 which means that all
¢ € 0U;;(R) have to be positive.

Since the direction of w is arbitrary, oU,;(R) = 0.

Function U;; is a composition of a continuous function
Ui;(s) from the positive reals to the positive reals with
|7i;|l. The norm ||7;;|| is a smooth (hence strictly differ-
entiable) function of both position vectors r;,7; when
r; # r;. Note that r; = r; corresponds to collision
configurations in the exterior of 2, which are naturally
excluded. Function, U;;(s) is locally Lipschitz and reg-
ular for all s > 0. Therefore [3]:

O |ri |

O Uij (i ll) = 0ri; Uss ([lraz 1) - a—rj
At R where Uy; is not differentiable, 0,,,Us;(R) = 0,
and thus, 9,,U;;(d) = 0. ]

Regularity of @) and the property of finite sums of gen-
eralized gradients ensures that:

T
E 87'N z]avl7"'>UN

Then for the generalized time derivative of @,

T

aQ C [Za UL,
Jj=

o :
2 | Nl | ="K (Lo Lo+ | Vi

where & € Zjvzl 0y, Uij, Ly is the (time-dependent)
Laplacian of the neighboring graph and V., U; =
Z]EN V., Usj. Both Ly and V., U; are switching over
time, depending on the nelghborlng set \V; of each agent
i. Recalling that OU;;(R) = 0 (Lemma VL5) and us-
ing some differential inclusion algebra for sums, (finite)
Cartesian products and multiplications with continuous
matrices [7], we obtain

) N

Q CZ(VHUZ')TUZ TK[(Li ® I)v Z’U V.U
i=1

= —eo{v] Livy + v} Lyvy}. (10)

For any graph, the right hand of (10) will be an interval
of the form [e, 0], with e < 0. Therefore it is always

q <0, for all ¢ € Q. If the graph is connected, then
this interval contains 0 only when v,, v, € span{1}.

Applying the nonsmooth version of LaSalle’s principle
proposed by [9], it follows that for initial conditions
in €, the Filippov trajectories of the system converge
to a subset of {v | vy,v, € span{1}} in which 7;; =
v; —v; =0, V(4,j) € N x N. In this set, the system
dynamics reduces to o = —(B; ® Ip) [ (Vr, Vip)” ]
which implies that both ¥, and v, belong in the range
of the switching incidence matrix B;. For a connected
graph, range(B;) = span{1}* and therefore

by, 0y € span{1} Nspan{1}* = {0}. (11)
From the above we conclude that

1. v does not change in steady state (and thus switch-
ing eventually stops), and
2. the potential V; of each agent is minimized.

VII. Simulations

In the simulation example, the group consists of ten mo-
bile agents with identical second order dynamics. Ini-
tial positions were generated randomly within a ball of
radius Ry = 2.5[m] centered at the origin. Initial veloc-
ities were also selected randomly with arbitrary direc-
tions and magnitude in the (0,1)[m/s] range. The in-
terconnection graph was also generated in random and
the neighborhood radius was set to R = 2[m]. Figures
3-7 depict snapshots of the system’s evolution within
a time frame of 100 simulation seconds. The corre-
sponding time instant is given below each Figure. The
position of each agent is represented by a small dot and
the neighboring relations by line segments connecting
them. Velocity vectors are depicted as arrows, with
their base point being the position of the correspond-
ing agent. Dotted lines show the trajectory trails for
each agent. The system converges to an invariant set



that corresponds to a tight formation and a common
heading direction, while avoiding collisions. The shape
of the formation which the group converges to, is de-
termined by the artificial potential functions.

1.08636

Fig. 4. Cohesion forces in-

Fig. 3. Initial configura- crease connectivity.

tion.

50.0985

511199

Fig. 5. A tight formation

is created. Fig. 6. The group moves

in the same direction.

Fig. 7. Steady state.

VIII. Conclusions

In this paper we showed that a group of autonomous
mobile agents, in which each agent is steered using lo-
cal state information from its nearest neighbors, can
asymptotically exhibit stable flocking behavior. Flock-
ing is being understood as a collision free uniform mo-
tion in a tight formation with a common velocity vec-
tor. We introduced a set of control laws that guaran-
tees flocking asymptotically, under the assumption that

the graph representing agent interconnections remains
connected at all times. Agent interconnections can be
established and lost arbitrarily without affecting stabil-
ity, although convergence is shown to be closely related
to the algebraic connectivity properties of the graph.
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