
52 S C I E N T I F I C A M E R I C A N

Computer programs that function via Darwinian evolution are
creating inventions that are novel and useful enough to be patented
Computer programs that function via Darwinian evolution are
creating inventions that are novel and useful enough to be patented

E
volution is an immensely powerful

creative process. From the intricate

biochemistry of individual cells to the

elaborate structure of the human

brain, it has produced wonders of

unimaginable complexity. Evolution achieves these

feats with a few simple processes—mutation, sex-

ual recombination and natural selection—which it

iterates for many generations. Now computer pro-

grammers are harnessing software versions of these

same processes to achieve machine intelligence.

Called genetic programming, this technique has de-

signed computer programs and electronic circuits

that perform specified functions.

In the field of electronics, genetic programming

has duplicated 15 previously patented inventions,

including several that were hailed as seminal in

their respective fields when they were first an-

nounced [see box on page 57]. Six of these 15 ex-

isting inventions were patented after January 2000

by major research institutions, which indicates that

they represent current frontiers of research in do-

mains of scientific and practical importance. Some

of the automatically produced inventions infringe

squarely on the exact claims of the previously

patented inventions. Others

represent new inventions

by duplicating the

functionality of the

earlier device in a

novel way. One

of these inventions is

Inventions
By John R. Koza, Martin A. Keane and Matthew J. Streeter

Illustrations by Bryan Christie Design

COPYRIGHT 2003 SCIENTIFIC AMERICAN, INC.

S C I E N T I F I C A M E R I C A N 53

GENETIC PROGRAMMING, here represented
symbolically, can evolve complicated inventions

such as electronic circuits.

COPYRIGHT 2003 SCIENTIFIC AMERICAN, INC.

a clear improvement over its predecessor.
Genetic programming has also classi-

fied protein sequences and produced hu-
man-competitive results in a variety of ar-
eas, such as the design of antennas, math-
ematical algorithms and general-purpose
controllers [see box on page 59]. We have
recently filed for a patent for a genetical-
ly evolved general-purpose controller that
is superior to mathematically derived con-
trollers commonly used in industry.

The first practical commercial area
for genetic programming will probably
be design. In essence, design is what en-
gineers do eight hours a day and is what
evolution does. Design is especially well
suited to genetic programming because it
presents tough problems for which peo-
ple seek solutions that are very good but
not mathematically perfect. Generally
there are complex trade-offs between
competing considerations, and the best
balance among the various factors is dif-
ficult to foresee. Finally, design usually
involves discovering topological arrange-
ments of things (as opposed to merely op-
timizing a set of numbers), a task that ge-
netic programming is very good at.

Human engineers tend to look at prob-
lems in particular ways, often based on
ideal mathematical models. Genetic pro-
gramming offers the advantage of not be-
ing channeled down narrow paths of

thinking. Evolution does not know any-
thing about the underlying math; it sim-
ply tries to produce a sequence of im-
proved results. Thus, we frequently see
creative things come out of the evolu-
tionary process that would never occur to
human designers.

Out of the Primordial Ooze
WHATEVER THE FIELD of endeavor,
genetic programming begins with a pri-
mordial ooze of randomly generated trial
“organisms” and a high-level description
of what function the organisms are meant
to accomplish—the criteria for scoring
their fitness. As an example, consider a
case in which the organisms are elemen-
tary mathematical functions and we are
endeavoring to find a function whose
graph matches a given curve. The organ-
isms in this case are composed of numer-
ical constants and primitive operations
such as addition, subtraction, multiplica-
tion and division. The fitness of a function
is determined by how closely its graph fol-
lows the target curve.

The genetic program evaluates the fit-
ness of each mathematical function in the
population. The initial, randomly created
functions will, of course, match the target
curve quite poorly, but some will be bet-
ter than others. The genetic program
tends to discard the worst functions in the

population, and it applies genetic opera-
tions to the surviving functions to create
offspring. The most important genetic op-
eration is sexual reproduction, or cross-
over, which mates pairs of the better or-
ganisms to sire offspring composed of ge-
netic material from the two parents [see
top illustration on opposite page]. For in-
stance, mating the functions (a + 1) – 2
and 1 + (a × a) might result in the (a + 1)
part of the first function substituting for
one a of the second function, producing
offspring 1 + ((a + 1) × a). Recombining
the traits of two relatively fit organisms
in this fashion sometimes produces supe-
rior offspring.

In addition to sexual reproduction,
genetic programming copies about 9 per-
cent of the fittest individuals unaltered
into the next generation, which generally
ensures that the best organisms in each
generation are at least as fit as those of the
previous generation. Finally, about 1 per-
cent of the programs undergo mutation—

for instance, a + 2 might mutate into (3 ×
a) + 2—in the hope that a random modi-
fication of a relatively fit program will
lead to improvement.

These genetic operations progressive-
ly produce an improved population of
mathematical functions. The exploitation
of small differences in fitness yields major
improvements over many generations in
much the same way that a small interest
rate yields large growth when compound-
ed over decades.

One can visualize the evolutionary
process as being a search in the space of
all possible organisms. The crossover op-
eration conducts the most creative kind
of search, which is why we use it to pro-
duce around 90 percent of the offspring
in each generation [see bottom illustra-
tion on opposite page]. Mutation, in con-
trast, tends to conduct a local search for
advantage near the existing good indi-
viduals. We believe that too great a mu-
tation rate results in less efficient evolu-
tion except in the case of particularly sim-
ple problems.

A more sophisticated example than a
mathematical function is the evolution of

■ Genetic programming harnesses a computerized version of evolution to create
new inventions. Starting from thousands of randomly generated test objects,
the method selects the better individuals and applies processes such as
mutation and sexual recombination to generate successive generations.

■ Over the course of dozens of generations, the population of individuals
gradually fulfills the target criteria to a greater degree. At the end of the run,
the best individual is harvested as the solution to the posed problem.

■ In electronics, the technique has reproduced patented inventions, some of
which lie at the forefront of current research and development. Other
inventions include antennas, computer algorithms for recognizing proteins,
and general-purpose controllers. Some of these computer-evolved inventions
should themselves be patentable.

■ By the end of the decade, we envision that increased computer power will
enable genetic programming to be used as a routine desktop invention machine
competing on equal terms with human inventors.

Overview/Darwinian Invention

54 S C I E N T I F I C A M E R I C A N F E B R U A R Y 2 0 0 3

Genetic programming begins with a primordial ooze
of randomly generated “organisms.”

COPYRIGHT 2003 SCIENTIFIC AMERICAN, INC.

a computer program, such as one em-
ploying iterations and memory for clas-
sifying protein sequences. In this case, ge-
netic programming can carry out ana-
logues of the biological processes of gene
duplication and gene deletion, to create or
delete subroutines, iterations, loops and
recursions in the evolving population of
programs. The evolutionary process itself
determines the character and content of
the computer program needed to solve
the problem.

A low-pass filter circuit provides a
good illustration of how genetic pro-
gramming designs analog electronic cir-
cuits. A low-pass filter is used in a hi-fi sys-
tem to send only the lowest frequencies to
the woofer speaker. To create a low-pass
filter by using genetic programming, the
human user specifies which components
are available for building the circuit (say,
resistors, capacitors and inductors) and
defines the fitness of each candidate cir-
cuit to be the degree to which it passes fre-
quencies up to 1,000 hertz at full power
while filtering out all higher frequencies.

The circuits are generated in a way
that borrows mechanisms from develop-
mental biology. Each circuit begins as an
elementary “embryo” consisting of a sin-
gle wire running from the input to the
output. The embryonic circuit grows by
progressive application of circuit-con-
structing functions. Some of the circuit-
constructing functions insert particular
components. Others modify the pattern
of connections between components:
they might duplicate an existing wire or
component in series or parallel, or they
might create a connection from a partic-
ular point to a power supply, the ground
or a distant point in the growing circuit.
This developmental process yields both
the circuit topology and the numerical
component sizes. The system automati-
cally synthesizes circuits without using
any advanced know-how from the field
of electrical engineering concerning cir-
cuit synthesis.

Most of the initial population of
rudimentary circuits generated random-
ly in this way will behave nothing like a
low-pass filter. A few, however, will con-
tain an inductor between the circuit’s in-
put and output, thereby slightly imped-

w w w . s c i a m . c o m S C I E N T I F I C A M E R I C A N 55

UNNATURAL SELECTION
Evolutionary Processes
THREE PROCESSES propagate “organisms” (represented here by colored disks) from
one generation to the next in a genetic programming run. Some of the better
organisms are copied unaltered. Others are paired up for sexual reproduction, or
crossover, in which parts are swapped between the organisms to produce offspring.
A small percentage are changed randomly by mutation. Organisms not chosen for
propagation become extinct. The crossover operation is applied more frequently than
copying and mutation because of its ability to bring together new combinations of
favorable properties in individual organisms.

Crossover of Electronics
ACTING ON electronic circuits, the crossover operation takes two circuits and swaps
some of their components, producing two new circuits.

First-Generation Circuits Resistor

Inductor

Capacitor

Crossover versus Mutation
EVOLUTION ACTS like a search in the
space of all possible organisms,
represented here by the plane.
Crossover searches this space
creatively, occasionally
combining disparate good
features, leaping to a new
region of organism space
where much fitter individuals
reside (red arrows). Mutation,
in contrast, tends to find the
best organism that is “nearby”
(green arrows).

Mutation

Extinction
CrossoverCopying Crossover

Second-Generation Circuits

Crossover

Mutation

Organism

COPYRIGHT 2003 SCIENTIFIC AMERICAN, INC.

ing higher frequencies. Others will have
a capacitor running from the input to the
ground, thereby slightly draining the
power of higher frequencies [see illustra-
tion above]. Such circuits will be selected
to mate more frequently than others, and
eventually later generations will contain
offspring incorporating both features.
The crossover and mutation operations
acting on numerical expressions will ad-
just component values so that the cutoff
frequency approaches the desired 1,000
Hz. Other crossovers and mutations will
delete resistors that dissipate power. Ad-
ditional crossovers will double or triple
the inductor-capacitor combination,
yielding the ladder structure patented in
1917 by George A. Campbell of AT&T.

Other devices are designed with sim-
ilar combinations of evolutionary and
developmental processes. Antennas, for
instance, are automatically designed with
a “turtle” that deposits (or does not de-
posit) metal on a plane as it moves and
turns under the control of various oper-
ations (similar to those in the LOGO pro-
gramming language).

The primitive ingredients used to cre-
ate controllers automatically consist of
differentiators, integrators and ampli-
fiers. An example of a basic controller is
a cruise control on a car, which must re-
duce fuel intake if the speed rises too high
or increase it if the speed falls too low. A
good controller will allow for the delayed
response to fuel changes and will contin-
uously monitor how the speed is varying
to avoid excessive overshooting of the
target speed. Of great importance are

general-purpose controllers, which can
be customized to a variety of specific
tasks—such as the control of a home fur-
nace, manufacturing processes in facto-
ries or the reading arm of a computer’s
disk storage device. Small improvements
in the “tuning rules” used in customizing
a controller can result in large economic
savings.

A commonplace controller is the PID
controller invented in 1939 by Albert Cal-
lender and Allan Stevenson of Imperial

56 S C I E N T I F I C A M E R I C A N F E B R U A R Y 2 0 0 3

EVOLVING A LOW-PASS FILTER

JOHN R. KOZA, MARTIN A. KEANE and MATTHEW J. STREETER work closely with one another
studying genetic programming using a home-built, 1,000-Pentium parallel computer. Koza
received his Ph.D. in computer science from the University of Michigan in 1972. He co-found-
ed Scientific Games, Inc., in Atlanta in 1973, where he co-invented the rub-off instant lot-
tery ticket used by state lotteries. In 1987 Koza invented genetic programming. He is cur-
rently consulting professor in the Stanford Biomedical Informatics program in the depart-
ment of medicine and consulting professor in the university’s department of electrical
engineering. Keane received a Ph.D. in mathematics from Northwestern University in 1969.
From 1976 to 1986 he was vice president for engineering at Bally Manufacturing Corpora-
tion in Chicago. He is now chief scientist at Econometrics, Inc., also in Chicago. Streeter re-
ceived a master’s degree from Worcester Polytechnic Institute in 2001. His primary research
interest is applying genetic programming to problems of real-world scientific or practical
importance. He works at Genetic Programming, Inc., in Los Altos, Calif., as a systems pro-
grammer and researcher.

TH
E

 A
U

TH
O

R
S

TO EVOLVE a low-pass filter, which passes low frequencies and blocks high
frequencies, the genetic program would begin with random circuits (1).
Some would luckily have an inductor positioned to impede high frequencies or
a capacitor positioned to drain off high frequencies. These circuits would
combine by crossover (2) to produce rudimentary low-pass filter circuits (3).
Further crossovers between these circuits (4) would produce a ladder low-
pass filter (5). Mutations (6) would eliminate superfluous resistors and would
fine-tune the values of the components.

Resistor Inductor

Capacitor

•1

•2

•3

•4

•5

•6

COPYRIGHT 2003 SCIENTIFIC AMERICAN, INC.

Chemical Limited in Northwich, En-
gland. PID controllers (the initials stand
for the controller’s proportional, inte-
grative and derivative parts) are used in
myriad applications. Our genetic pro-
grams have evolved two distinct im-
provements in this field. First, they have
developed a new set of tuning rules for
PID controllers. A relatively simple and
effective set of PID tuning rules has been
in general use since 1942 and was im-
proved on in 1995; our rules outperform
the 1995 rules. Second, we evolved three
new controller circuit topologies that
also outperform PID controllers that use
the old tuning rules. We have filed a
patent application that covers both the
new rules and the new controller topolo-

gies. If (as we expect) the patent is grant-
ed, we believe that it will be the first one
granted for an invention created by ge-
netic programming.

Evolvable Hardware
DURING THE EVOLUTIONARY pro-
cess, we must efficiently evaluate the fit-
ness of thousands or millions of offspring
in each generation. For electronic circuits,
we usually use standard circuit-simulator
software to predict the behavior of each
circuit in the population. In an important
emerging area of technology called evolv-
able hardware, however, microchips can
be instantaneously configured to physi-
cally implement each circuit of a genetic
programming run.

Known as rapidly reconfigurable field-
programmable gate arrays, these chips
consist of thousands of identical cells, each
of which can perform numerous different
logical functions, depending on how it is
programmed. Sets of memory bits in the
“basement” of the chip customize each
cell so that it performs a particular logical
function. Other configuration bits pro-
gram interconnection routes on the chip,
permitting many different ways of con-
necting the cells to one another and to the
chip’s input and output pins. The “per-
sonality” of the chip (its logical functions
and interconnections) can be changed dy-
namically in nanoseconds merely by
changing its configuration bits.

These rapidly reconfigurable chips are

w w w . s c i a m . c o m S C I E N T I F I C A M E R I C A N 57

The first patent for an invention created by genetic
programming may soon be granted.

Patented Inventions Re-created by Computer
TO DATE, genetic programming has re-created 15 inventions that were previously patented by the inventors listed here.

INVENTION YEAR INVENTOR INSTITUTION
LADDER FILTER 1917 George A. Campbell AT&T, New York City

CROSSOVER FILTER 1925 Otto Julius Zobel AT&T

NEGATIVE FEEDBACK AMPLIFIER 1927 Harold S. Black AT&T

ELLIPTIC FILTER 1934–36 Wilhelm Cauer University of Göttingen, Germany

PID (proportional, integrative and 1939 Albert Callender and Imperial Chemical Limited,
derivative) CONTROLLER Allan Stevenson Northwich, England

SECOND-DERIVATIVE CONTROLLER 1942 Harry Jones Brown Instrument Company, Philadelphia

DARLINGTON EMITTER-FOLLOWER SECTION 1953 Sidney Darlington Bell Telephone Laboratories, New York City

PHILBRICK CIRCUIT 1956 George A. Philbrick George A. Philbrick Researches, Boston

SORTING NETWORK 1962 Daniel G. O’Connor and General Precision, Los Angeles
Raymond J. Nelson

MIXED ANALOG-DIGITAL INTEGRATED CIRCUIT 2000 Turgut Sefket Aytur Lucent Technologies, Murray Hill, N.J.
for producing variable capacitance

VOLTAGE-CURRENT CONVERTER 2000 Akira Ikeuchi and Mitsumi Electric, Tokyo
Naoshi Tokuda

CUBIC FUNCTION GENERATOR 2000 Stefano Cipriani and Conexant Systems, Newport Beach, Calif.
Anthony A. Takeshian

LOW-VOLTAGE, HIGH-CURRENT TRANSISTOR 2001 Timothy Daun-Lindberg IBM, Armonk, N.Y.
CIRCUIT for testing a voltage source and Michael Miller

LOW-VOLTAGE BALUN CIRCUIT 2001 Sang Gug Lee Information and Communications University,
Taejon, Korea

TUNABLE INTEGRATED ACTIVE FILTER 2001 Robert Irvine and Bernd Kolb Infineon Technologies, Munich, Germany

COPYRIGHT 2003 SCIENTIFIC AMERICAN, INC.

sold by about a dozen companies, but
they are primarily of use for digital cir-
cuits. Commercially available analog
chips are extremely limited in their abili-
ties. We used a reconfigurable digital chip
to create a sorting network with fewer
steps than the originally patented version.

Run Times
NATURAL EVOLUTION has had bil-
lions of years of “run time” to produce its
wonders. Artificial genetic programming
would not be of much use if it took as
long. A genetic programming run typi-
cally spawns a population of tens or hun-
dreds of thousands of individuals that
evolve over dozens or hundreds of gener-
ations. A weeklong run on a laptop com-
puter is sufficient to produce half of the

human-competitive results listed in the
box on the preceding page; however, all
six of the inventions patented after 2000
required more horsepower than that.

Evolution in nature thrives when or-
ganisms are distributed in semi-isolated
subpopulations. The same seems to be
true of genetic programming run on a
loosely connected network of computers.
Each computer can perform the time-
consuming step of evaluating the fitness
of individuals in its subpopulation. Then,
at the end of each generation, a small per-
centage of individuals (selected based on
fitness) migrates to adjacent computers in
the network so that each semi-isolated
subpopulation gets the benefit of the evo-
lutionary improvement that has occurred
elsewhere.

We have built a Beowulf-style com-
puter cluster consisting of 1,000 some-
what outdated 350-megahertz Pentium
computers [see “The Do-It-Yourself Su-
percomputer,” by William W. Hargrove,
Forrest M. Hoffman and Thomas Sterling;
Scientific American, August 2001].
For our most time-consuming problems,
evaluation of the fitness of a single candi-
date individual takes about a minute of
computer time. A run involving a popu-
lation of 100,000 individuals for 100 gen-
erations can be completed in about seven
days on our cluster.

The 1,000 computers together per-
form about 350 billion cycles a second.
Although this amount of computer time
may, at first blush, sound like a lot, it
pales in comparison to the amount of
computation performed by the trillion
cells of the human brain (each of which
is thought to have about 10,000 connec-
tions and operate at a rate of 1,000 op-
erations a second).

We expect that 50-gigahertz comput-
ers (performing 50 billion cycles a second)
will be commonly available toward the
end of this decade, putting the power to
evolve patent-worthy inventions using ge-
netic programming in the hands of any-
one owning a moderately priced desktop
workstation. We envision that genetic
programming will be regularly used as an
invention machine.

Passing an Intelligence Test
GENETIC PROGRAMMING is now
routinely reproducing human inven-
tions, just half a century after computer
pioneer Alan M. Turing predicted that
human-competitive machine intelligence
would be achieved in about 50 years.
During those 50 years, the two main aca-
demically fashionable approaches taken
by researchers striving to vindicate Tur-
ing’s prediction have used logical deduc-
tion or databases containing accumulated
human knowledge and expertise (so-
called expert systems). Those two ap-
proaches roughly correspond to two
broad methods outlined by Turing in
1950. The first (not surprising in light of
Turing’s work in the 1930s on the logi-
cal foundations of computing) was the
construction of programs designed to an-

58 S C I E N T I F I C A M E R I C A N F E B R U A R Y 2 0 0 3

HUMAN VERSUS COMPUTER

Final voltageMan-made circuit

Current to
voltage converter

TransistorVoltage to current converterGround

THE TWO CIRCUITS shown below are both cubic signal generators. The upper circuit is
a patented circuit designed by a human; the green and purple parts of the lower
circuit were evolved by genetic programming (the other parts are standard input and
output stages). The evolved circuit performs with better accuracy than the human-
designed one, but how it functions is not understood. The evolved circuit is clearly
more complicated but also contains redundant parts, such as the purple transistor,
that contribute nothing to its functioning.

Evolved circuit
Voltage source

2-volt supply
Input voltage

2-volt supply

COPYRIGHT 2003 SCIENTIFIC AMERICAN, INC.

alyze situations and problems logically
and to respond accordingly. The second,
which Turing called a cultural search, ap-
plied knowledge and expertise gathered
from experts.

The goal of artificial intelligence and
machine learning is to get computers to
solve problems from a high-level state-
ment of what needs to be done. Genetic
programming is delivering human-com-
petitive machine intelligence with a min-
imum of human involvement for each
new problem and without using either
logical deduction or a database of human
knowledge.

Turing also proposed a famous test
for machine intelligence. In one widely
used restatement of the Turing test, a
judge receives messages “over a wall” and
tries to decide whether the messages came
from a human or a machine. We do not
claim that genetic programming has
achieved the kind of general imitation of
human cognition associated with the Tur-
ing test. But it has passed a test of cre-
ativity and ingenuity that only a relative-
ly small number of humans pass. The U.S.
patent office has been administering this
test for more than 200 years.

The patent office receives written de-
scriptions of inventions and then judges
whether they are unobvious to a person
having ordinary skill in the relevant field.
Whenever an automated method dupli-
cates a previously patented human-de-
signed invention, the automated method
has passed the patent office’s intelligence
test. The fact that the original, human-de-
signed version satisfied the patent office’s
criteria of patent-worthiness means that

the computer-created duplicate would
also have satisfied the patent office.

This intelligence test does not deal
with inconsequential chitchat or the play-
ing of a game. When an institution or in-
dividual allocates time and money to in-
vent something and to embark on the
time-consuming and expensive process of
obtaining a patent, it has made a judg-
ment that the work is of scientific or prac-
tical importance. Moreover, the patent
office requires that the proposed inven-
tion be useful. Patented inventions repre-
sent nontrivial work by exceptionally cre-
ative humans.

Although some people may be sur-
prised that routine human-competitive
machine intelligence has been achieved
with a nondeterministic method and with-
out resorting to either logic or knowl-
edge, Alan Turing would not be. In his
1950 paper, Turing also identified this
third approach to machine intelligence:
“the genetical or evolutionary search by
which a combination of genes is looked

for, the criterion being the survival value.”
Turing did not specify how to conduct

a “genetical or evolutionary search” to
achieve machine intelligence, but he did
point out that:

We cannot expect to find a good child-
machine at the first attempt. One must
experiment with teaching one such
machine and see how well it learns.
One can then try another and see if it is
better or worse. There is an obvious
connection between this process and
evolution, by the identifications

Structure of the child machine
= Hereditary material

Changes of the child machine
= Mutations

Natural selection
= Judgment of the experimenter

Genetic programming has in many
ways fulfilled the promise of Turing’s third
way to achieve machine intelligence.

w w w . s c i a m . c o m S C I E N T I F I C A M E R I C A N 59

Computing Machinery and Intelligence. Alan M. Turing in Mind, Vol. 59, No. 236, pages 433–460;
October 1950. Available at www.abelard.org/turpap/turpap.htm by permission of Oxford
University Press.
Genetic Programming: On the Programming of Computers by Means of Natural Selection.
John R. Koza. MIT Press, 1992.
Genetic Programming: The Movie. John R. Koza and James P. Rice. MIT Press, 1992.
Genetic Programming III: Darwinian Invention and Problem Solving. John R. Koza, Forrest H
Bennett III, David Andre and Martin A. Keane. Morgan Kaufmann, 1999.
Genetic Programming III: Videotape: Human-Competitive Machine Intelligence. John R. Koza,
Forrest H Bennett III, David Andre, Martin A. Keane and Scott Brave. Morgan Kaufmann, 1999.
Genetic Programming IV: Routine Human-Competitive Machine Intelligence. John R. Koza,
Martin A. Keane, Matthew J. Streeter, William Mydlowec, Jessen Yu and Guido Lanza.
Kluwer Academic Publishers (in press).
More information can be obtained from Genetic Programming, Inc. (www.genetic-programming.com),
and the Genetic Programming Conference organization (www.genetic-programming.org)

M O R E T O E X P L O R E

More Human-Competitive Creations
AS WELL AS re-creating patented inventions, genetic programming has generated these results that a human would be proud of.

SOCCER-PLAYING PROGRAM that ranked in the middle of the field of 34 human-written programs in the RoboCup 1998 competition

REAL-TIME ANALOG CIRCUIT for time-optimal control of a robot

FOUR DIFFERENT ALGORITHMS for identifying transmembrane segments of proteins

DERIVING MOTIFS (highly conserved sequences of amino acids) to identify certain families of proteins

ALGORITHMS FOR QUANTUM COMPUTERS that in some cases solve problems better than any previously published result

NAND CIRCUIT for carrying out the NOT AND logical operation on two inputs

ANALOG COMPUTATIONAL CIRCUITS for the square, cube, square root, cube root, logarithm and Gaussian functions

DIGITAL-TO-ANALOG CONVERTER CIRCUIT

ANALOG-TO-DIGITAL CONVERTER CIRCUIT

COPYRIGHT 2003 SCIENTIFIC AMERICAN, INC.

