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We introduce a general framework for modeling functionally
diverse problem-solving agents. In this framework, problem-solving
agents possess representations of problems and algorithms that
they use to locate solutions. We use this framework to establish a
result relevant to group composition. We find that when selecting
a problem-solving team from a diverse population of intelligent
agents, a team of randomly selected agents outperforms a team
comprised of the best-performing agents. This result relies on the
intuition that, as the initial pool of problem solvers becomes large,
the best-performing agents necessarily become similar in the space
of problem solvers. Their relatively greater ability is more than
offset by their lack of problem-solving diversity.

A diverse society creates problems and opportunities. In the
past, much of the public interest in diversity has focused on

issues of fairness and representation. More recently, however,
there has been a rising interest in the benefits of diversity. In the
legal cases surrounding the University of Michigan’s admissions
policies and in efforts to curtail affirmative action in California,
Texas, and elsewhere, there have been claims that diverse
perspectives improve collective understanding and collective
problem solving. Coincident with this political and legal wran-
gling has been an effort on the part of scholars to identify how
to exploit this diversity both in solving hard computational
problems (1, 2) and in human organizations (3).

In the common understanding, diversity in a group of people
refers to differences in their demographic characteristics, cul-
tural identities and ethnicity, and training and expertise. Advo-
cates of diversity in problem-solving groups claim a linkage
among these sorts of diversity (which we will refer to as identity
diversity) and what we might call functional diversity, differences
in how people represent problems and how they go about solving
them. Given that linkage, they conclude that, because of their
greater functional diversity, identity-diverse groups can outper-
form homogeneous groups (4–6).

Building on earlier ideas from the psychology and artificial
intelligence literatures (7), we describe a mathematical frame-
work for modeling problem solvers that captures the functional
diversity that cognitive psychologists and organizational theo-
rists claim is correlated with identity diversity. In our framework,
agents possess internal representations of problems, which we
call perspectives, and algorithms that they use to locate solutions,
which we call heuristics. Together, a perspective-heuristic pair
creates a mapping from the space of possible solutions to itself.
A diverse group is one whose agents’ mappings are diverse. Our
perspective-heuristic framework is not minimal, because we
show in an earlier paper (8) that two problem solvers with
distinct perspectives and heuristics can act identically in the
space of solutions. However, the advantage of the full framework
is that it generalizes models in the computer science literature
that focus on diverse heuristics (1, 2), and models in the orga-
nizational behavior and psychology literature, which often em-
phasize diverse perspectives (3, 4, 6).

The conclusion that identity-diverse groups can outperform
homogeneous groups due to their greater functional diversity
rests upon a well accepted claim that if agents across groups have

equal ability, functionally diverse groups outperform homoge-
neous groups. It has also been shown that functionally diverse
groups tend to outperform the best individual agents, provided
that agents in the group are nearly as good (1). These results still
leave open an important question: Can a functionally diverse
group whose members have less ability outperform a group of
people with high ability who may themselves be diverse? The
main result of our paper addresses exactly this question.

Consider the following scenario: An organization wants to
hire people to solve a hard problem. To make a more informed
decision, the organization administers a test to 1,000 applicants
that is designed to reflect their individual abilities in solving such
a problem. Suppose the applicants receive scores ranging from
60% to 90%, so that they are all individually capable. Should the
organization hire (i) the person with the highest score, (ii) 20
people with the next 20 highest scores, or (iii) 20 people
randomly selected from the applicant pool? Ignoring possible
problems of communication within a group, the existing litera-
ture would suggest that ii is better than i, because more people
will search a larger space, but says little about ii vs. iii. The
intuition that agents with the highest scores are smarter suggests
that the organization should hire ii, the individually best-
performing agents. The intuition that the randomly selected
agents will be functionally diverse suggests that the organization
should hire iii, the randomly selected ones. In this paper, we
provide conditions under which iii is better than ii.

Thus, the focus of our analysis is on the tension between the
individual abilities in a group and its functional diversity. Under
the set of conditions we identify, as the initial pool of problem
solvers becomes large, the functional diversity of the group of
individually best-performing agents necessarily becomes very
small. Ultimately, the gain in individual abilities is more than
offset by the functional diversity of a group of randomly selected
people. It is in this sense that we might say diversity trumps
ability. This tension is established regardless of the precise
nature of group cooperation. Complementary to our study, a
computer science literature (2) has been addressing the ques-
tions of how to make the diverse group as effective as possible,
and how and when the algorithms should share hints, informa-
tion, and solutions, taking as a given that a diverse group does
better than an individual. Organizational theorists have also
focused on exploiting diversity. Their challenge has been how to
encourage people with diverse identities and backgrounds to
work together productively (3).

This paper focuses exclusively on functional diversity: differ-
ences in how people encode problems and attempt to solve them.
The claim that perspectives and heuristics may be influenced by
race, geography, gender, or age has much to recommend it, as
does the claim that perspectives and tools are shaped by expe-
riences, training, and preferences. However, even when applying
our result to those cases when identity diversity has been shown
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to correlate with functional diversity, we need to be acutely
aware that identity-diverse groups often have more conflict,
more problems with communication, and less mutual respect and
trust among members (3, 9–11).

The next section presents the basic model of diverse problem-
solving agents. A Computational Experiment reports simulation
results establishing that a diverse group can often outperform a
group of the best. A Mathematical Theorem explores the logic
behind the simulation results and provides conditions under
which diversity trumps ability. Some implications of our results
are discussed in Concluding Remarks.

A Model of Diverse Problem Solvers
Our model consists of a population of problem solvers of limited
ability who attempt to maximize a function V that maps a set of
solutions X into real numbers. For example, the set of solutions
could be the set of possible gasoline engine designs, with the
value function generating the efficiency of various designs.
Problem solvers have internal languages in which they encode
solutions. This internal language can be interpreted at the
neurological level, our brains perceive and store information, or
metaphorically, we interpret problems based on our experience
and training. The representation of solutions in the problem
solver’s internal language is called a perspective. Formally, a
perspective is a mapping M from the set of solutions into the
agent’s internal language. A problem solver’s heuristic is a
mapping, denoted by A, from solutions in her internal language
to subsets of solutions. It captures how she searches for solutions.
Given a particular solution, the subset generated by the mapping
A is the set of other solutions the agent considers.

In this way, the problem-solving ability of an agent is captured
by her perspective and heuristic pair (M, A). Two agents can
differ in either dimension or along both dimensions. Thus agents
can have diverse perspectives (as psychologists assume), diverse
heuristics (as computer scientists assume), or both. A solution is
a local optimum for an individual agent if and only if when that
agent encodes the problem and applies her heuristic, none of the
other solutions she considers has a higher value. The set of local
optima for an agent together with the size of their basins of
attraction determines the agent’s expected performance on the
problem, or what we might call the agent’s ability. It follows that
a group of agents can get stuck only at a solution that lies in the
intersection of the individual agents’ local optima. This obser-
vation is independent of the procedure by which agents work
together as a team. However, different procedures for interact-
ing among the agents will generally result in different basins of
attraction for those solutions that are local optima for all of the
agents. Thus, how the team works together will matter for team
performance (2).

A Computational Experiment
In a series of computational experiments we conducted based on
this framework, we find that a collection of diverse agents can be
highly effective collectively, locating good and often optimal
solutions, confirming the widely accepted belief. More interest-
ingly, we find that a random collection of agents drawn from a
large set of limited-ability agents typically outperforms a col-
lection of the very best agents from that same set. This result is
because, with a large population of agents, the first group,
although its members have more ability, is less diverse. To put
it succinctly, diversity trumps ability.

Here, we report one such set of computational experiments
where the second result is established and highlighted. We
describe in detail how the general framework is applied, how
individual and collective performances are measured, and how
diversity is defined. We consider a random value function
mapping the first n integers, {1, 2, . . . , n}, into real numbers.
The value of each of the n points is independently drawn

according to the uniform distribution on the interval [0, 100].
Agents try to find maximal values for this random function. In
this set of experiments, we consider only agents who have
identical perspectives but allow their heuristics to vary.# All
agents encode n solutions as n points on a circle from 1 to n
clockwise. The heuristic that an agent uses allows her to check
k positions that lie within l points to the right of the status quo
point on the circle. Here, 1 ! l ! n and 1 ! k ! l. For example,
consider n " 200, k " 3, and l " 12. A problem solver with the
heuristic (1, 4, 11) starting at point 194 would first evaluate point
195 (194 # 1) and compare it with 194. If point 194 had a higher
value, she would then evaluate point 198 (194 # 4). If point 198
had a higher value, she would then check point 9 (198 # 11–200).
If that point had a higher value, she then would evaluate point
10 (9 # 1). She would keep evaluating until none of her three
checks located a higher value. Therefore, a heuristic, denoted by
" " ("1, "2, . . . , "k), where each "i ! {1, 2, . . . , l} specifies
the position to check, naturally defines a stopping point for a
search started at any initial point. Denote by "(i) the stopping
point of " applied to initial point i. We measure the performance
of an agent with a heuristic " by the expected value of the
stopping points, assuming that each point is equally likely to be
the initial point,

E$V; "% #
1
n $

i"1

n

V$"&i'%.

Given k and l, the set of heuristics is well defined. Because the
order in which rules are applied matters, the total number of
unique heuristics equals l ( (l ) 1) ( ! ! ! ( (l ) k # 1). They
can be ranked according to their expected values.

In our experiments, we considered environments in which a
collection of agents attempt to find better solutions to the
problem either sequentially or simultaneously. Our findings do
not seem to depend on which structure was assumed. In the
results we report here, agents approach the problem sequen-
tially. The first agent searches until she attains a local optimum.
The second agent begins her search at that point. After all agents
have attempted to locate higher-valued solutions, the first agent
searches again. The search stops only when no agent can locate
an improvement, i.e., until the solution lies in the intersection of
all agents’ local optima. The collective performance of agents is
then defined as the expected value of the stopping points, similar
to the definition of performance of an individual agent.

The diversity of two heuristics "a and "b of the same size k,
*("a, "b), is defined by

*&"a, "b' #
k $ +i"1

k %&"i
a , "i

b'

k ,

where %("i
a, "i

b) " 1 if "i
a " "i

b and 0 else. For example, for "a "
(5, 6, 9) and "b " (9, 5, 6), *("a, "b) " 1, because for any i !
{1, 2, 3}, "i

a , "i
b.

In the result we report, we set l " 12 or 20, k " 3, and the
number of points on the circle n " 2,000. We experimented with
l varying between 6 and 20, k varying between 2 and 7, and n
varying between 200 and 10,000. Within these parameter ranges,
we found qualitatively similar phenomena. For a given class of
agents defined by k and l, we ranked all of the possible agents
by their expected values and created two groups, one consisting
of, say, the 10 best agents, the agents with the highest expected

#In another set of computational experiments where a different problem was being solved,
we consider agents with the same heuristics but whose perspectives vary. Similar results
were found {Hong, L. & Page, S. E. (2002) Working paper, Diversity and Optimality [Loyola
University (Chicago) and Univ. of Michigan (Ann Arbor)]}.
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values, and one consisting of 10 agents randomly chosen from the
given class. For l " 12, the results from a representative single
run were as follows: The best agent scored 87.3; the worst agent
scored 84.3; the average score of the 10 best agents was 87.1, and
the average score of the 10 randomly selected agents was 85.6.
The collective performance of the 10 best agents had a value of
93.2; their average diversity (averaged over all possible pairs) was
0.72. The collective performance of the 10 randomly selected
agents was 94.7; their average diversity was 0.92.** We present
(Table 1) the results averaged over 50 trials. The data show that,
on average, the collective performance of the randomly selected
agents significantly outperforms the group of the best agents.
Moreover, the diversity measures show a striking difference in
the constituency of the two groups. The best group does not have
nearly as much diversity as the random group. When we enlarged
the group size from 10 to 20, the random group still did better,
but with a less pronounced advantage. The group of the best
agents became more diverse. This occurred because the set of
heuristics was finite and fixed. Table 1 reports data with groups
of 20, again averaged over 50 trials.

Next, we increase the set of possible heuristics (or agents) by
setting l " 20. Agents can now look up to 20 spots ahead on the
circle, and the total number of agents equals 6,840. Intuitively,
we can make the following predictions. First, the diversity of the
random group should be greater as a result of the increase in the
number of heuristics. Second, this increased diversity should
improve the collective performance of the random group. And
third, the increase in the number of agents implies that the
collective performance of the best group should also improve.
The results of this set of experiments are presented in Table 1.
From the data, we see, in fact, that all three predictions occur.
Once again, diversity is the key to collective performance.

A Mathematical Theorem
In this section, we develop a mathematical theorem that explains
the logic behind our new result: that a random collection of
intelligent agents outperforms the collection consisting of only
the best agents. Following is a brief summary of the theorem. In
the mathematical model, agents want to maximize a value
function that is assumed to have a unique maximum. Consider
a population of agents, denoted by -, that satisfy the following
assumptions: (i) Agents are intelligent: given any starting point,
an agent finds a weakly better solution, and the set of local
optima can be enumerated. (ii) The problem is difficult: no agent
can always find the optimal solution. (iii) Agents are diverse: for
any potential solution that is not the optimum, there exists at
least one agent who can find an improvement. (iv) The best agent
is unique. Consider drawing agents independently from -
according to some distribution. The theorem states that with

probability one, there exist sample sizes N1 and N, N1 ! N, such
that the collective performance of N1 drawn agents exceeds the
collective performance of the N1 individually best agents in the
group of N drawn agents.

To formulate the theorem precisely, we begin with a set of
solutions X and a given value function V: X 3 [0, 1], which has
a unique maximum at x*, and V(x*) " 1. The problem solvers
try to locate the solution x*, but they have limited abilities. Each
problem solver uses a search rule to search for the maximum but
does not always end up there. Suppressing the distinction
between perspectives and heuristics, we characterize each prob-
lem solver by a mapping ": X3 X and a probability distribution
& on X. A problem solver randomly selects according to distri-
bution & an initial point where the search starts. For each x, "(x)
denotes the local optimum if the agent starts the search at x, that
is, "(x) is the stopping point of the search rule " applied to x.
In this interpretation, the search is deterministic: an initial point
uniquely determines a stopping point. The image of the mapping,
"(X), is the set of local optima for problem solver ". Mathe-
matically, the mapping " of a problem solver has to satisfy the
following assumption:

Assumption 0.

(i) @x ! X, V("(x)) ' V(x)
(ii) "("(x)) " "(x)

In general, the set of solutions X can be finite, denumerable,
or a continuum. However, to avoid measuring theoretical com-
plications, we present a simpler version of our result where X is
assumed to be finite. This finite version makes the insight more
straightforward, although it comes at the cost of trivializing some
intricate assumptions and arguments. For example, the group of
the best-performing agents is proven below to be comprised of
identical agents. This is an artifact of the finite version. In the
general version†† under reasonable conditions, the group of the
best-performing agents can be shown to be similar, not neces-
sarily the same. But this makes the proof more complicated.

For each problem solver (", &), we measure her performance
by the expected value of her search, which we denote as E(V; ",
&), i.e.,

E&V; ", &' # $
x!X

V&"&x''&&x'.

For the purpose of our analysis, we assume that all agents have
the same &, and that & has full support. This assumption does not
diminish the power of our result, because all the problem-solving
ability of an agent is supposedly captured by the mapping ". We
now define the set of problem solvers - we consider. First, the
problem is difficult for all agents under our consideration.

Assumption 1 (Difficulty). @" ! -, there exists x ! X, such that
"(x) , x*.

This assumption simply necessitates the group setting. Given
that & has full support, it implies that no single agent under our
consideration can always find the optimum. Second, we formu-
late the idea of a diverse group.

Assumption 2 (Diversity). @x ! X({x*}, ?" ! - such that "(x) , x.
This assumption is a simple way to capture the essence of

diverse problem-solving approaches. When one agent gets stuck,
there is always another agent that can find an improvement due
to a different approach. Our last assumption states that there is
a unique best performer in the set of agents we consider.

**Mathematically, the expected diversity of two randomly selected agents equals 11!12 "
0.9183333.

††Hong, L. & Page, S. E. (2002) Working paper, Diversity and Optimality [Loyola Univ.
(Chicago) and Univ. of Michigan (Ann Arbor)].

Table 1. Result of computational experiments

Group composition Performance Diversity, %

Ten agents and l " 12
Best agents 92.56 (0.020) 70.98 (0.798)
Random agents 94.53 (0.007) 90.99 (0.232)

Twenty agents and l " 12
Best agents 93.78 (0.015) 74.95 (0.425)
Random agents 94.72 (0.005) 91.46 (0.066)

Ten agents and l " 20
Best agents 93.52 (0.026) 73.69 (0.843)
Random agents 96.08 (0.006) 94.31 (0.089)

Numbers in parentheses are standard deviations.
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Assumption 3 (Uniqueness). argmax{E(V; ", &): " ! -} is unique.
Let & be the uniform distribution. If the value function V is one

to one, then the uniqueness assumption is satisfied. Therefore,
in the space of all value functions we consider, the uniqueness
assumption is generically satisfied.

We do not make specific assumptions about how a group of
problem solvers work together, other than requiring that search
by a group can get stuck only at a point that is a local optimum
for all agents in the group. An example of how this can be
achieved is that agents approach the problem sequentially:
wherever an agent gets stuck, the next person starts the search
at that point.

Let - be a set of problem solvers that satisfy Assumptions
1–3 above. Let ) be a probability distribution over - with full
support. From -, we draw a group of N agents; each agent is
drawn independently from - according to ). These N agents
are ordered by their individual performances, E(V; ", &).
Choose the best N1 agents. We compare the joint performance
of this group of N1 agents with that of another group of N1
agents that is formed by drawing each from - independently
according to ).

Theorem 1. Let - be a set of problem solvers that satisfy Assump-
tions 1–3 above. Let ) be a probability distribution over - with full
support. Then, with probability one, a sample path will have the
following property: there exist positive integers N and N1, N . N1,
such that the joint performance of the N1 independently drawn
problem solvers exceeds the joint performance of the N1 individually
best problem solvers among the group of N agents independently
drawn from - according to ).

Here, there are in fact two independent random events: one
is to independently draw a group of problem solvers, and the
other is to independently draw a group of problem solvers and
then select a subgroup according to their individual ability. The
sample path we speak of in the theorem is the joint sample path
of these two independent events.

The proof relies on two ideas. First we show (Lemma 1 below)
that the independently drawn collection of agents will, with
probability one, find the optimal solution as the group becomes
large. This lemma is intuitive, given that agents drawn indepen-
dently thus are very unlikely to have common local optima. As
the number of agents in the group grows, the probability of their
having common local optima converges to zero. The second idea
relies on the uniqueness assumption to show that, with proba-
bility one, as the number of agents becomes large, the best
problem solvers all become similar and therefore do not do
better than the single best problem solver, who by assumption
cannot always find the optimal solution.

Consider the first random event of forming a group of problem
solvers: each problem solver is independently drawn from -
according to ). Fix a sample path of this random event, *1. Let
"1&*1' , . . . , "n1&*1' denote the first n1 problem solvers. The
joint performance of these n1 problem solvers is the expected
value of V(ỹ), where ỹ is a common local optimum of all n1
agents. The distribution of ỹ is induced by the probability
distribution of the initial draw, &, and a precise model of how
agents work together. The proof of the lemma that follows does
not depend on what the specific model is. Without being explicit,
we assume that ỹ follows distribution +*1

n1 : X 3 [0, 1], i.e.,

, x ! X, Pr& ỹ # x' # +*1

+1&x' .

Lemma 1. Pr{*1: limn13/ +x!X V(x)+*1

n1 (x) " 1} " 1.
Proof: Fix any 0 ! - ! 1. Define An1 " {*1: 1 ) +x!X

V(x)+*1

n1 (x) . -}. Obviously, An1 " {*1: "1(*1), . . . , "n1(*1)
have common local maxima other than x*}. Thus,

Pr&An1
' ! Pr0*1: "1&*1' , . . . , "n1&*1'

have common local maxima other than x*1 .

Let m " min {)("): " ! -}. Because ) has full support, m .
0. By Assumption 2 (diversity), for any x ! X({x*}, we have
)({" ! -: "(x) " x}) ! 1 ) m. By independence,

Pr0*1: "1&*1' , . . . , "n1&*1'

have common local maxima other than x*1

! +x!X(0x*1 Pr0*1: x

is a common local maximum of "1&*1' , . . . , "n1&*1'1

! +x!X(0x*1 &1 $ m'n1

! &"X" $ 1'&1 $ m'n1.

Therefore,

$
n1"1

/

Pr&An1
' !

"X " $ 1
m . / .

By the Borel–Cantelli Lemma, we have

Pr% *1:1 $ $
x!X

V&x'+*1

n1 &x' / - infinitely often& # 0,

which implies

Pr% *1: lim
n13/

$
x!X

V&x'+*1

n1 &x' # 1& # 1.

We now prove Theorem 1.
Proof of Theorem 1: Consider the second random event, where

a group of n agents are drawn independently from - according
to ), and then a subgroup of the best is formed. By Assumption
3 (uniqueness), there is a unique problem solver in - with the
highest individual performance. Call that agent "*. By the law
of large numbers,

Pr% *2 : lim
n3/

#0 i ! 01, . . . , n1 : " i&*2' # "*1

n # )&"*'&
# 1.

The fraction in the above expression is the frequency of "* in the
draw. Let 2 be the set of sample paths * " (*1, *2) that have
both of the asymptotic properties above; i.e., define

2 # '* # &*1, *2':

limn13/ +x!X V&x'+*1

n1 &x' # 1

and limn3/

#0 i ! 01, . . . , n1 :" i&*2' # "*1

n # )&"*'( .

By Lemma 1,

Pr&2' # 1.

Fix any * ! 2. Let -1 " 1 ) E(V; "*, &), which is positive by
Assumption 1 (difficulty). From the first limit above, we know
there exists an integer n! 1 . 0, such that for any n1 ' n! 1,
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$
x!X

V&x'+*1

n1&x' / 1 $ -1 # E&V; "*, &'.

From the second limit above, there exists an integer n! . 0, such
that for any n ' n! ,

#0i ! 01, . . . , n1 : "i&*2' # "*1

n /
)&"*'

2 .

Let N1 " n! 1 and N " max{2n! 1/)("*), n! }. Then

$
x!X

V&x'+*1

N1&x' / E&V; "*, &'.

The left-hand side of the above inequality is the joint perfor-
mance of the group of N1 agents independently drawn according
to ). We now prove that the right-hand side term is the joint
performance of the group of N1 best agents from the group of
N agents. By construction, N ' n! . Therefore,

#0i ! 01, . . . , N1 : "i&*2' # "*1

N /
)&"*'

2 .

That is,

#0i ! 01, . . . , N1 : "i&*2' # "*1 /
)&"*'N

2 ' n! 1 # N1 ,

because N ' 2n! 1!)("*). This means there are more than N1
numbers of agents among the group of N agents that are the
highest performing agent "*. Thus, the best N1 agents among the
N agents are all "*. Therefore, their joint performance is exactly
the same as the performance of "*, which is E(V; "*, &). To
summarize, for each * ! 2, there exist N1 and N, N . N1, such
that the joint performance of the group of N1 agents indepen-
dently drawn according to ) is better than the joint performance
of the N1 best agents from the group of N agents independently
drawn according to ). Because the set 2 has probability 1, the
theorem is proven.

Concluding Remarks
The main result of this paper provides conditions under which,
in the limit, a random group of intelligent problem solvers will
outperform a group of the best problem solvers. Our result
provides insights into the trade-off between diversity and ability.
An ideal group would contain high-ability problem solvers who
are diverse. But, as we see in the proof of the result, as the pool
of problem solvers grows larger, the very best problem solvers
must become similar. In the limit, the highest-ability problem
solvers cannot be diverse. The result also relies on the size of the
random group becoming large. If not, the individual members of
the random group may still have substantial overlap in their local
optima and not perform well. At the same time, the group size

cannot be so large as to prevent the group of the best problem
solvers from becoming similar. This effect can also be seen by
comparing Table 1. As the group size becomes larger, the group
of the best problem solvers becomes more diverse and, not
surprisingly, the group performs relatively better.

A further implication of our result is that, in a problem-solving
context, a person’s value depends on her ability to improve the
collective decision (8). A person’s expected contribution is
contextual, depending on the perspectives and heuristics of
others who work on the problem. The diversity of an agent’s
problem-solving approach, as embedded in her perspective-
heuristic pair, relative to the other problem solvers is an impor-
tant predictor of her value and may be more relevant than her
ability to solve the problem on her own. Thus, even if we were
to accept the claim that IQ tests, Scholastic Aptitude Test scores,
and college grades predict individual problem-solving ability,
they may not be as important in determining a person’s potential
contribution as a problem solver as would be measures of how
differently that person thinks.

Our result has implications for organizational forms and
management styles, especially for problem-solving firms and
organizations. In an environment where competition depends on
continuous innovation and introduction of new products, firms
with organizational forms that take advantage of the power of
functional diversity should perform well. The research we cited
earlier by computer scientists and organizational theorists who
explore how to best exploit functional diversity becomes even
more relevant. Most importantly, though, our result suggests that
diversity in perspective and heuristic space should be encour-
aged. We should do more than just exploit our existing diversity.
We may want to encourage even greater functional diversity,
given its advantages.

The current model ignores several important features, in-
cluding communication and learning. Our perspective-
heuristic framework could be used to provide microfounda-
tions for communication costs. Problem solvers with nearly
identical perspectives but diverse heuristics should communi-
cate with one another easily. But problem solvers with diverse
perspectives may have trouble understanding solutions iden-
tified by other agents. Firms then may want to hire people with
similar perspectives yet maintain a diversity of heuristics. In
this way, the firm can exploit diversity while minimizing
communication costs. Finally, our model also does not allow
problem solvers to learn. Learning could be modeled as the
acquisition of new perspectives and heuristics. Clearly, in a
learning model, problem solvers would have incentives to
acquire diverse perspectives and heuristics.
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