
insight review articles

268 NATURE | VOL 410 | 8 MARCH 2001 | www.nature.com

Networks are on our minds nowadays.
Sometimes we fear their power — and with
good reason. On 10 August 1996, a fault in
two power lines in Oregon led, through a
cascading series of failures, to blackouts in 11

US states and two Canadian provinces, leaving about 7
million customers without power for up to 16 hours1. The
Love Bug worm, the worst computer attack to date, spread
over the Internet on 4 May 2000 and inflicted billions of
dollars of damage worldwide.

In our lighter moments we play parlour games about
connectivity. ‘Six degrees of Marlon Brando’ broke out as a
nationwide fad in Germany, as readers of Die Zeit tried to
connect a falafel vendor in Berlin with his favourite actor
through the shortest possible chain of acquaintances2. And
during the height of the Lewinsky scandal, the New York
Times printed a diagram3 of the famous people within ‘six
degrees of Monica’.

Meanwhile scientists have been thinking about 
networks too. Empirical studies have shed light on the
topology of food webs4,5, electrical power grids, cellular and 
metabolic networks6–9, the World-Wide Web10, the Internet
backbone11, the neural network of the nematode worm
Caenorhabditis elegans12, telephone call graphs13, coauthor-
ship and citation networks of scientists14–16, and the 
quintessential ‘old-boy’ network, the overlapping boards of
directors of the largest companies in the United States17

(Fig. 1). These databases are now easily accessible, courtesy
of the Internet. Moreover, the availability of powerful 
computers has made it feasible to probe their structure;
until recently, computations involving million-node 
networks would have been impossible without specialized
facilities.

Why is network anatomy so important to characterize?
Because structure always affects function. For instance, the
topology of social networks affects the spread of informa-
tion and disease, and the topology of the power grid affects
the robustness and stability of power transmission.

From this perspective, the current interest in networks is
part of a broader movement towards research on complex
systems. In the words of E. O. Wilson18, “The greatest 
challenge today, not just in cell biology and ecology but in all
of science, is the accurate and complete description of 
complex systems. Scientists have broken down many kinds
of systems. They think they know most of the elements 
and forces. The next task is to reassemble them, at least 
in mathematical models that capture the key properties of
the entire ensembles.”

But networks are inherently difficult to understand, as
the following list of possible complications illustrates.
1. Structural complexity: the wiring diagram could be an

intricate tangle (Fig. 1).
2. Network evolution: the wiring diagram could change

over time. On the World-Wide Web, pages and links are
created and lost every minute.

3. Connection diversity: the links between nodes could
have different weights, directions and signs. Synapses in
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The study of networks pervades all of science, from neurobiology to statistical physics. The most basic
issues are structural: how does one characterize the wiring diagram of a food web or the Internet or the
metabolic network of the bacterium Escherichia coli? Are there any unifying principles underlying their
topology? From the perspective of nonlinear dynamics, we would also like to understand how an enormous
network of interacting dynamical systems — be they neurons, power stations or lasers — will behave
collectively, given their individual dynamics and coupling architecture. Researchers are only now beginning
to unravel the structure and dynamics of complex networks.

Dynamical systems can often be modelled by differential
equations dx/dt!v(x), where x(t)!(x1(t), …, xn(t)) is a
vector of state variables, t is time, and v(x)!(v1(x), …,
vn(x)) is a vector of functions that encode the dynamics.
For example, in a chemical reaction, the state variables
represent concentrations. The differential equations
represent the kinetic rate laws, which usually involve
nonlinear functions of the concentrations.

Such nonlinear equations are typically impossible to
solve analytically, but one can gain qualitative insight by
imagining an abstract n-dimensional state space with
axes x1, …, xn. As the system evolves, x(t) flows through
state space, guided by the ‘velocity’ field dx/dt!v(x) like
a speck carried along in a steady, viscous fluid.

Suppose x(t) eventually comes to rest at some point
x*. Then the velocity must be zero there, so we call x* a
fixed point. It corresponds to an equilibrium state of the
physical system being modelled. If all small disturbances
away from x* damp out, x* is called a stable fixed point
— it acts as an attractor for states in its vicinity.

Another long-term possibility is that x(t) flows
towards a closed loop and eventually circulates around it
forever. Such a loop is called a limit cycle. It represents a
self-sustained oscillation of the physical system.

A third possibility is that x(t) might settle onto a
strange attractor, a set of states on which it wanders
forever, never stopping or repeating. Such erratic,
aperiodic motion is considered chaotic if two nearby
states flow away from each other exponentially fast.
Long-term prediction is impossible in a real chaotic
system because of this exponential amplification of small
uncertainties or measurement errors

Box 1
Nonlinear dynamics: 
terminology and concepts97
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the nervous system can be strong or weak, inhibitory or 
excitatory.

4. Dynamical complexity: the nodes could be nonlinear dynamical
systems. In a gene network or a Josephson junction array, the state
of each node can vary in time in complicated ways.

5. Node diversity: there could be many different kinds of nodes. The
biochemical network that controls cell division in mammals 
consists of a bewildering variety of substrates and enzymes6, only
a few of which are shown in Fig. 1c.

6. Meta-complication: the various complications can influence
each other. For example, the present layout of a power grid
depends on how it has grown over the years — a case where 
network evolution (2) affects topology (1). When coupled 
neurons fire together repeatedly, the connection between them is
strengthened; this is the basis of memory and learning. Here
nodal dynamics (4) affect connection weights (3).
To make progress, different fields have suppressed certain 

complications while highlighting others. For instance, in nonlinear
dynamics we have tended to favour simple, nearly identical 

dynamical systems coupled together in simple, geometrically regular
ways. Furthermore we usually assume that the network architecture
is static. These simplifications allow us to sidestep any issues of 
structural complexity and to concentrate instead on the system’s
potentially formidable dynamics.

Laser arrays provide a concrete example19–24. In the single-mode
approximation, each laser is characterized by its time-dependent
gain, polarization, and the phase and amplitude of its electric field.
These evolve according to four coupled, nonlinear differential 
equations. We usually hope the laser will settle down to a stable state,
corresponding to steady emission of light, but periodic pulsations
and even chaotic intensity fluctuations can occur in some cases19.
Now suppose that many identical lasers are arranged side by side in a
regular chain20 or ring21, interacting with their neighbours by evanes-
cent coupling or by overlap of their electric fields22. Will the lasers
lock their phases together spontaneously, or break up into a standing
wave pattern, or beat each other into incoherence? From a technolog-
ical standpoint, self-synchronization would be the most desirable
outcome, because a perfectly coherent array of N lasers would 
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Figure 1 Wiring diagrams for complex networks. a, Food web of Little Rock Lake,
Wisconsin, currently the largest food web in the primary literature5. Nodes are
functionally distinct ‘trophic species’ containing all taxa that share the same set of
predators and prey. Height indicates trophic level with mostly phytoplankton at the
bottom and fishes at the top. Cannibalism is shown with self-loops, and omnivory
(feeding on more than one trophic level) is shown by different coloured links to
consumers. (Figure provided by N. D. Martinez). b, New York State electric power grid.
Generators and substations are shown as small blue bars. The lines connecting them
are transmission lines and transformers. Line thickness and colour indicate the
voltage level: red, 765 kV and 500 kV; brown, 345 kV; green, 230 kV; grey, 138 kV
and below. Pink dashed lines are transformers. (Figure provided by J. Thorp and 
H. Wang). c, A portion of the molecular interaction map for the regulatory network 
that controls the mammalian cell cycle6. Colours indicate different types of
interactions: black, binding interactions and stoichiometric conversions; red, 
covalent modifications and gene expression; green, enzyme actions; blue,
stimulations and inhibitions. (Reproduced from Fig. 6a in ref. 6, with permission.
Figure provided by K. Kohn.)
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produce N2 times as much power as a single one. But in practice,
semiconductor laser arrays are notoriously prone to both spatial and
temporal instabilities20,21. Even for a simple ring geometry, this 
problem is dynamically complex.

The first part of this article reviews what is known about dynami-
cal complexity in regular networks of nonlinear systems. I offer a few
rules of thumb about the impact of network structure on collective
dynamics, especially for arrays of coupled limit-cycle oscillators.

The logical next step would be to tackle networks that combine
dynamical and structural complexity, such as power grids or 
ecological webs. Unfortunately they lie beyond our mathematical
reach — we do not even know how to characterize their wiring 
diagrams. So we have to begin with network topology.

By a happy coincidence, such architectural questions are being
pursued in other branches of science, thanks to the excitement about
the Internet, functional genomics, financial networks, and so on. The
second part of this article uses graph theory to explore the structure
of complex networks, an approach that has recently led to some
encouraging progress, especially when combined with the tools of
statistical mechanics and computer simulations.

Needless to say, many other topics within network science deserve
coverage here. The subject is amazingly rich, and apologies are
offered to those readers whose favourite topics are omitted.

Regular networks of coupled dynamical systems
Networks of dynamical systems have been used to model everything
from earthquakes to ecosystems, neurons to neutrinos25–32. To
impose some order on this list, consider the dynamics that each node
would exhibit if it were isolated. Assuming it is a generic dynamical

system, its long-term behaviour is given by stable fixed points, limit
cycles or chaotic attractors (Box 1).

If we now couple many such systems together, what can be said
about their collective behaviour? The answer is not much — the
details matter. But I will propose some rough generalizations anyway.

If the dynamical system at each node has stable fixed points and no
other attractors, the network tends to lock into a static pattern. Many
such patterns may coexist, especially if the nodes have competing
interactions. In that case the network may become frustrated and 
display enormous numbers of locally stable equilibria. This kind of
complex static behaviour is seen in models of spin glasses, associative
memory neural networks and combinatorial optimization
problems33.

At the opposite extreme, suppose each node has a chaotic 
attractor. Few rules have emerged about the effect of coupling 
architecture on dynamics in this case. It is known that networks of
identical chaotic systems can synchronize their erratic fluctuations, a
curious phenomenon with possible applications to private commu-
nications34,35. For a wide range of network topologies, synchronized
chaos requires that the coupling be neither too weak nor too strong;
otherwise spatial instabilities are triggered34. Related lines of research
deal with networks of identical chaotic maps, lattice dynamical 
systems and cellular automata. These systems have been used mainly
as testbeds for exploring spatiotemporal chaos and pattern 
formation in the simplest mathematical settings, rather than as 
models of real physical systems.

Identical oscillators
The intermediate case where each node has a stable limit cycle has
turned out to be particularly fruitful. Much of the research has been
inspired by biological examples, ranging from the mutual 
synchronization of cardiac pacemaker cells, to rhythmically flashing
fireflies and chorusing crickets, to wave propagation in the heart,
brain, intestine and nervous system25.

Arrays of identical oscillators often synchronize, or else form pat-
terns that depend on the symmetry of the underlying network36.
Other common modes of organization are travelling waves in one
spatial dimension, rotating spirals in two dimensions and scroll
waves in three dimensions25,26. For fully connected networks where
each node is coupled equally to all the others, the completely 
synchronized state becomes likely.

These heuristics apply to systems coupled by smooth interactions
akin to diffusion. But many biological oscillators communicate by
sudden impulses: a neuron fires, a firefly flashes, a cricket chirps.
Hence the recent interest in pulse-coupled oscillators37. This thread
began with Peskin’s model of the sinoatrial node, the heart’s natural
pacemaker, as a collection of N identical integrate-and-fire oscilla-
tors38. For the simple case where each oscillator is connected to all the
others, Peskin conjectured that they would all end up firing in unison,
no matter how they started. He gave a proof for N!2 oscillators; it was
later demonstrated39 that the conjecture holds for all N. Peskin also
conjectured that synchronization would occur even if the oscillators
were not quite identical, but that problem remains unproven.

Peskin’s model has been used as a caricature of coupled neu-
rons40–42 by including synaptic delays, refractory periods, inhibition
and local coupling; these realistic features also remove some of the
undesirable discontinuities in the mathematics. In an example of 
scientific cross-fertilization, Hopfield43 pointed out that the locally
coupled version of the model is closely related to slider-block models
of earthquakes and should therefore display self-organized criticali-
ty. That observation suggested intriguing links among neurobiology,
geophysics, synchronization and self-organized criticality, and
sparked a burst of research activity, as reviewed in ref. 37.

Non-identical oscillators
While modelling populations of biological oscillators, Winfree 
discovered a new kind of cooperative phenomenon, the temporal
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Figure 2 Spontaneous synchronization in a network of limit-cycle oscillators with
distributed natural frequencies. The state of each oscillator is represented
geometrically as a dot in the complex plane. The amplitude and phase of the
oscillation correspond to the radius and angle of the dot in polar coordinates. Colours
code the oscillators’ natural frequencies, running from slowest (red) to fastest (violet).
In the absence of coupling, each oscillator would settle onto its limit cycle (circle) and
rotate at its natural frequency. However, here all the oscillators are also pulled towards
the mean field that they generate collectively (shown as an asterisk at the centre of the
population). Time increases from left to right, and from top to bottom. Starting from a
random initial condition, the oscillators self-organize by collapsing their amplitudes;
then they sort their phases so that the fastest oscillators are in the lead. Ultimately
they all rotate as a synchronized pack, with locked amplitudes and phases. The
governing equations describe a mean-field model of a laser array23. (Simulation
provided by R. Oliva.)
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analogue of a phase transition44. He proposed a mean-field model of
nearly identical, weakly coupled limit-cycle oscillators and showed
that when the coupling is small compared to the spread of natural 
frequencies, the system behaves incoherently, with each oscillator
running at its natural frequency. As the coupling is increased, the

incoherence persists until a certain threshold is crossed — then a
small cluster of oscillators suddenly ‘freezes’ into synchrony. For still
greater coupling, all the oscillators become locked in phase and
amplitude (Fig. 2).

Kuramoto26 refined this connection between nonlinear dynamics
and statistical physics. He proposed an exactly solvable model of 
collective synchronization, given by 
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(a convenient measure of the extent of synchronization) in the limit
N→( and t→(. He found that 

0, K < Kcr!#$1%(Kc%/K)%, K)Kc

where Kc!2'. In other words, the oscillators are desynchronized
completely until the coupling strength K exceeds a critical value Kc.
After that, the population splits into a partially synchronized state
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Figure 3 Schematic illustration of regular and random network architectures. a, Ring
of ten nodes connected to their nearest neighbours. b, Fully connected network of ten
nodes. c, Random graph constructed by placing n nodes on a plane, then joining pairs
of them together at random until m links are used. Nodes may be chosen more than
once, or not at all. The resulting wiring diagram (not shown) would be a snarl of criss-
crossed lines; to clarify it, I have segregated the different connected components,
coloured them, and eliminated as many spurious crossings as possible. The main
topological features are the presence of a single giant component, as expected51–53 for
a random graph with m > n/2 (here n!200, m!193), and the absence of any
dominant hubs. The degree, or number of neighbours, is Poisson distributed across
the nodes; most nodes have between one and four neighbours, and all have between
zero and six. d, Scale-free graph, grown by attaching new nodes at random to
previously existing nodes. The probability of attachment is proportional to the degree
of the target node; thus richly connected nodes tend to get richer, leading to the
formation of hubs and a skewed degree distribution with a heavy tail. Colours indicate
the three nodes with the most links (red, k!33 links; blue, k!12; green, k!11).
Here n!200 nodes, m!199 links. Figure provided by D. Callaway. Network
visualization was done using the Pajek program for large network analysis
(http://vlado.fmf.uni-lj.si/pub/networks/pajek/pajekman.htm).

Figure 4 Solvable model of a small-world network. The model starts with a ring lattice
of n nodes, each connected to its neighbours out to some range k (here n!24 and
k!3). Shortcut links are added between random pairs of nodes, with probability *
per link on the underlying lattice. In the limit n " 1, the average path length between
nodes can be approximated analytically. (Adapted from ref. 75.)
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consisting of two groups of oscillators: a synchronized group that
contributes to the order parameter r, and a desynchronized group
whose natural frequencies lie in the tails of the distribution g(#) and
are too extreme to be entrained. With further increases in K, more
and more oscillators are recruited into the synchronized group, and r
grows accordingly.

Twenty-five years later, the Kuramoto model continues to sur-
prise us (see ref. 45 for a review). First, the incoherent state with r!0
was found to be neutrally stable below threshold, despite its apparent
stability in simulations; the analysis reveals a connection to Landau
damping in plasmas. Second, the square-root critical behaviour of r,
almost a cliché for mean-field models in statistical mechanics, turns
out to be non-generic; if the sinusoidal coupling is replaced by a 
periodic function with second harmonics, the scaling changes to 
r ~ K%Kc. Third, although the model was motivated originally by
biological oscillators, it has appeared in such far-flung settings as the
flavour evolution of neutrinos32, and arrays of Josephson junctions27

and semiconductor lasers24.
The main unsolved problem is the stability of the partially 

synchronized state for K > Kc. Numerical simulations indicate 
that it is globally stable, in the sense that it attracts almost all 
solutions, but even the linear stability problem has yet to be 
solved. Another issue concerns the extension of the model to 
nearest-neighbour coupling on a d-dimensional cubic lattice. 
Simulations46 and renormalization arguments47 indicate that the
synchronization phase transition persists for d)3 and vanishes 
for d!1; the results are ambiguous for d!2. All of this awaits a
mathematical resolution.

In contrast to the mean-field models of Winfree and Kuramoto,
Ermentrout and Kopell’s classic work deals with one-dimensional
chains of oscillators, first in connection with neuromuscular
rhythms in the mammalian intestine48, and later in their model of
the central pattern generator for the lamprey eel49,50. The main 
phenomena here involve travelling waves, rather than the 
synchrony found in mean-field models. This is not accidental, as
wave propagation is essential for the generation of peristalsis in 
the intestine, and for the creation of the swimming rhythm 
in lamprey.

Ermentrout and Kopell introduced several deep mathematical
innovations, but perhaps their most impressive result is a counterin-
tuitive biological prediction. Their lamprey model suggested that the
tail-to-head neural connections along the spinal cord would be
stronger than those running from head to tail, despite the fact that the
wave associated with swimming travels from head to tail. To 

everyone’s delight, that prediction was later confirmed by their
experimental collaborators50.

Complex network architectures
All the network topologies discussed so far — chains, grids, lattices
and fully-connected graphs — have been completely regular (Fig. 3a,
b). Those simple architectures allowed us to focus on the complexity
caused by the nonlinear dynamics of the nodes, without being 
burdened by any additional complexity in the network structure
itself. Now I take the complementary approach, setting dynamics
aside and turning to more complex architectures. A natural place to
start is at the opposite end of the spectrum from regular networks,
with graphs that are completely random.

Random graphs
Imagine n "1 buttons strewn across the floor51. Pick two buttons at
random and tie them together with thread. Repeat this process m
times, always choosing pairs of buttons at random. (If m is large, you
might eventually select buttons that already have threads attached.
That is certainly allowed; it merely creates clusters of connected 
buttons.) The result is a physical example of a random graph with n
nodes and m links (Fig. 3c). Now slowly lift a random button off the
floor. If it is tied to other buttons, either directly or indirectly, those
are dragged up too. So what happens? Are you likely to pull up an 
isolated button, a small cluster or a vast meshwork?

Erdös and Rényi52 studied how the expected topology of this 
random graph changes as a function of m. When m is small, the graph
is likely to be fragmented into many small clusters of nodes, called
components. As m increases, the components grow, at first by linking
to isolated nodes and later by coalescing with other components. A
phase transition occurs at m!n/2, where many clusters crosslink
spontaneously to form a single giant component. For m > n/2, this
giant component contains on the order of n nodes (more precisely, its
size scales linearly with n, as n→(), while its closest rival contains
only about log n nodes. Furthermore, all nodes in the giant 
component are connected to each other by short paths: the 
maximum number of ‘degrees of separation’ between any two nodes
grows slowly, like log n.

In the decades since this pioneering work, random graphs have
been studied deeply within pure mathematics53. They have also
served as idealized coupling architectures for dynamical models of
gene networks, ecosystems and the spread of infectious diseases and
computer viruses29,51,54,55.

Small-world networks
Although regular networks and random graphs are both useful ideal-
izations, many real networks lie somewhere between the extremes of
order and randomness. Watts and Strogatz56,57 studied a simple
model that can be tuned through this middle ground: a regular lattice
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Figure 5 Average path length, normalized by system size, is plotted as a function of
the average number of shortcuts. The circles are results from simulations of the model
with range k!1 and size up to n!107 nodes. The solid line is given by the formula in
the text. (Adapted from ref. 75.)

Table 1 Clustering for three affiliation networks

Network Clustering C
Theory Actual

Company directors 0.590 0.588

Movie actors 0.084 0.199

Biomedical authors 0.042 0.088

US corporate directors: 7,673 company directors linked by joint membership on 914 boards of
the Fortune 1,000 companies for 1999. Movie actors: 449,913 actors linked by mutual
appearances in 151,261 feature films, as specified by the Internet Movie Database
(www.imdb.com) as of 1 May 2000. Biomedical collaborations: 1,388,989 scientists linked by
coauthorship of at least one of 2,156,769 biomedical journal articles published between 1995
and 1999 inclusive, as listed in the MEDLINE database. The clustering coefficient C is defined as
the probability that a connected triple of nodes is actually a triangle; here nodes correspond to
people, as in the unipartite representation shown in Fig. 7b. Intuitively, C measures the likelihood
that two people who have a mutual collaborator are also collaborators of each other. The results
show that the random model accurately predicts C for the corporate director network, given the
network’s bipartite structure and its degree distributions; no additional social forces need to be
invoked. For the networks of actors and scientists, the model accounts for about half of the
observed clustering. The remaining portion depends on social mechanisms at work in these
communities (see text). (Adapted from ref. 91.)
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where the original links are replaced by random ones with some
probability 0+*+1. They found that the slightest bit of rewiring
transforms the network into a ‘small world’, with short paths between
any two nodes, just as in the giant component of a random graph. Yet
the network is much more highly clustered than a random graph, in
the sense that if A is linked to B and B is linked to C, there is a greatly
increased probability that A will also be linked to C (a property that
sociologists58 call ‘transitivity’).

Watts and Strogatz conjectured that the same two properties —
short paths and high clustering — would hold also for many natural
and technological networks. Furthermore, they conjectured that
dynamical systems coupled in this way would display enhanced 
signal propagation speed, synchronizability and computational
power, as compared with regular lattices of the same size. The 
intuition is that the short paths could provide high-speed 
communication channels between distant parts of the system, thereby
facilitating any dynamical process (like synchronization or computa-
tion) that requires global coordination and information flow.

Research has proceeded along several fronts. Many empirical 
examples of small-world networks have been documented, in fields
ranging from cell biology to business9,14,59–64. On the theoretical side,
small-world networks are turning out to be a Rorschach test — 
different scientists see different problems here, depending on their
disciplines.

Computer scientists see questions about algorithms and their
complexity. Walsh65 showed that graphs associated with many diffi-
cult search problems have a small-world topology. Kleinberg66

introduced an elegant model of the algorithmic challenge posed by
Milgram’s original sociological experiment67 — how to actually find
a short chain of acquaintances linking yourself to a random target
person, using only local information — and he proved that the 
problem is easily solvable for some kinds of small worlds, and 
essentially intractable for others.

Epidemiologists have asked how local clustering and global 

contacts together influence the spread of infectious disease, with
implications for vaccination strategies and the evolution of 
virulence68–71. Neurobiologists have wondered about the possible
evolutionary significance of small-world neural architecture. They
have argued that this kind of topology combines fast signal 
processing with coherent oscillations72, unlike either regular or 
random architectures, and that it may be selected by adaptation to
rich sensory environments and motor demands64.

Perhaps the strongest response to the Rorschach test comes from
the statistical physicists, who sensed immediately73 that the toy model
of Watts and Strogatz56 would yield to their techniques (see ref. 74 for
a review). In its improved form the model starts with a ring of n
nodes, each connected by undirected links to its nearest and next-
nearest neighbours out to some range k. Shortcut links are then
added — rather than rewired — between randomly selected pairs of
nodes, with probability * per link on the underlying lattice; thus
there are typically nk* shortcuts in the graph (Fig. 4). The question is:
on average, how many steps are required to go from one node to
another along the shortest route? If ! denotes that average separation,
we find that ! drops sharply near *!0, confirming that a few 
shortcuts do indeed shrink the world dramatically. One of the most
striking results is the following formula derived by Newman, Moore
and Watts75: 

!!!
n
k

!f (nk*)

where 

f (x)!!
2$x

1
2$2x%
! tanh%1!

$x2

x
$2x%
!

This solution is asymptotically exact in the limits n→( (large
system size) and either nk*→( or nk*→0 (large or small number of
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Figure 6 Degree distributions for real networks. a, World-Wide Web.
Nodes are web pages; links are directed URL hyperlinks from one
page to another. The log–log plot shows the number of web pages
that have a given in-degree (number of incoming links). The raw data
have been logarithmically binned, with bin ratio 2. The tail of the
distribution follows an approximate power law with exponent ' ≈ 2.2.
(Adapted from ref. 10.) b, Coauthorship networks. Nodes represent
scientists; an undirected link between two people means that they
have written a paper together. The data are for the years 1995–1999
inclusive and come from three databases: arxiv.org (preprints mainly
in theoretical physics), SPIRES (preprints in high-energy physics) and
NCSTRL (preprints in computer science). Symbols denote different
scientific communities: astrophysics (circles), condensed-matter
physics (squares), high-energy physics (upright triangles) and
computer science (inverted triangles). The log–log plot shows that the
probability of having a total of z coauthors is well approximated by a
truncated power law (solid line) of the form pz ~ z%'exp(%z/zc),
where zc is the cutoff. The curves have been displaced vertically for
clarity. (Adapted from ref. 14.) c, Power grid of the western United
States and Canada. Nodes represent generators, transformers and
substations; undirected links represent high-voltage transmission
lines between them. The data are plotted as a cumulative distribution
to reduce the effects of noise on this smaller data set. The linear–log
plot shows that the proportion of nodes with at least k transmission
lines decays exponentially in k. The negative derivative of this
cumulative distribution is the degree distribution, also an exponential.
(Adapted from ref. 62.) d, Social network. Nodes are 43 Mormons in
Utah; undirected links represent acquaintances with other
Mormons79. The linear–log plot of the cumulative distribution is well
fit by an error function (solid line), so the degree distribution is a
gaussian. (Adapted from ref. 62.)
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shortcuts). Figure 5 shows that it also gives the correct qualitative
behaviour for nk*≈ 1. Barbour and Reinert76 improved this result by
proving a rigorous distributional approximation for !, along with a
bound on the error.

Scale-free networks
In any real network, some nodes are more highly connected than 
others are. To quantify this effect, let pk denote the fraction of nodes that
have k links. Here k is called the degree and pk is the degree distribution.

The simplest random graph models52,53 predict a bell-shaped
Poisson distribution for pk. But for many real networks, pk is highly
skewed and decays much more slowly than a Poisson. For instance,
the distribution decays as a power law pk ~ k%' for the Internet 
backbone11, metabolic reaction networks9, the telephone call graph13

and the World-Wide Web10 (Fig. 6a). Remarkably, the exponent ' ≈
2.1–2.4 for all of these cases. Taken literally, this form of heavy-tailed
distribution would imply an infinite variance. In reality, there are a
few nodes with many links (Fig. 3d). For the World-Wide Web, think
Yahoo; for metabolic networks, think ATP. Barabási, Albert and
Jeong77,78 have dubbed these networks ‘scale-free’, by analogy with
fractals, phase transitions and other situations where power laws
arise and no single characteristic scale can be defined.

The scale-free property is common but not universal62. For 
coauthorship networks of scientists, pk is fit better by a power law with
an exponential cutoff14 (Fig. 6b); for the power grid of the western
United States, pk is an exponential distribution62 (Fig. 6c); and for a
social network of Mormons in Utah79, pk is gaussian62 (Fig. 6d).

Nevertheless, the scale-free case has stimulated a great deal of 
theorizing. The earliest work is due to Simon80,81 in 1955, now 
independently rediscovered by Barabási, Albert and Jeong77,78. They
showed that a heavy-tailed degree distribution emerges automatical-
ly from a stochastic growth model in which new nodes are added 
continuously and attach themselves preferentially to existing nodes,
with probability proportional to the degree of the target node. Richly
connected nodes get richer, and the result is pk ~ k%3. More 
sophisticated models82–84 include the effects of adding or rewiring
links, allowing nodes to age so that they can no longer accept new
links, or varying the form of preferential attachment. These general-
ized models predict exponential and truncated power-law pk in some
parameter regimes, as well as scale-free distributions.

Could there be a functional advantage to scale-free architecture?
Albert, Jeong and Barabási85 suggested that scale-free networks are
resistant to random failures because a few hubs dominate their 
topology (Fig. 3d). Any node that fails probably has small degree (like
most nodes) and so is expendable. The flip side is that such networks
are vulnerable to deliberate attacks on the hubs. These intuitive ideas
have been confirmed numerically10,85 and analytically86,87 by 
examining how the average path length and size of the giant 
component depend on the number and degree of the nodes removed.
Some possible implications for the resilience of the Internet79–81, the
design of therapeutic drugs9, and the evolution of metabolic 
networks9,59 have been discussed.

Generalized random graphs
As mentioned above, the simplest random graph predicts a Poisson
degree distribution, and so cannot accommodate the other types of
distribution found in real networks. Molloy and Reed88,89 introduced
a more flexible class of random graphs in which any degree distribu-
tion is permitted. Given a sequence of non-negative integers {dk},
where dk denotes the number of nodes with degree k, consider the
ensemble of all graphs with that prescribed degree sequence, and
weight them all equally when computing statistical averages of 
interest. For this class of graphs, Molloy and Reed derived a simple
condition for the birth of the giant component88, and they also found
an implicit formula for its size as a fraction of n, the total number of
nodes89. Specifically, let n " 1 and define

Q!!
(

k!1
pkk(k%2)

where pk!dk/n. If Q < 0, the graph consists of many small compo-
nents. The average component size diverges as Q→0 from below, and
a giant component exists for Q > 0. (In technical terms, these results
hold ‘almost surely’; that is, with probability tending to 1 as n→(.)

Aiello, Chung and Lu90 applied these results to a random graph
model for scale-free networks. For pk of power-law form, the 
condition on Q implies that a giant component exists if and only 
if ' < 3.47, which holds for most scale-free networks measured so far.
If ' < 1, there are so many high-degree hubs that the network 
forms one huge, connected piece. They also proved theorems 
about the number and size of small components outside the giant
component, and compared these to a real graph of about 47 million
telephone numbers and the calls between them in one day. 
They found that the data are best fit by an exponent ' ≈ 2.1, which
predicts correctly that the call graph is not connected but has a 
giant component.

The papers by Molloy and Reed88,89 and Aiello et al.90 are 
mathematically rigorous. Newman, Strogatz and Watts91 recently
developed a more heuristic approach based on generating functions.
By handling the limit n→( in an intuitive way, their approach yields
elementary derivations of the earlier results, along with new exact
results for graphs with additional structure, such as directed or 
bipartite graphs.
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Figure 7 Bipartite versus unipartite representations of the corporate director network.
a, In the bipartite approach, directors and boards are treated as distinct kinds of
nodes. The schematic example shows 11 directors and 4 boards. Links indicate which
people sit on which boards. By definition there are no links between pairs of people, or
between pairs of boards. b, The more familiar unipartite representation depicts the
people as nodes, with links between those on the same board, forming cliques. This
approach discards important information and can conflate different structures. For
example, the triangle FHI corresponds to board number 3, as seen in a, whereas the
similar-looking triangle FGI does not correspond to any single board. Another
confusing effect is the large number of cliques that occur automatically in this
projection of the full bipartite graph. Such cliques account for much of the high
clustering observed in real affiliation networks58. The random graph model teases out
this generic source of clustering from that indicative of more interesting social
interactions. (Adapted from ref. 91.)
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The bipartite case is especially interesting for applications58. By
definition, in a bipartite graph there are two types of nodes, with links
running only between different kinds (Fig. 7). For example, consider
the network of the boards of directors of the Fortune 1,000 compa-
nies, the largest US corporations ranked according to revenues. This
network is fascinating because the boards ‘interlock’ — some impor-
tant people sit on several of them — and this overlap knits virtually all
large US firms together into a giant web of corporate governance17.

Let pj denote the probability that a director sits on exactly j boards,
and let qk denote the probability that a board consists of k directors.
Figure 8 shows that pj is approximately exponential, with most 
directors sitting on only one board, whereas qk is strongly peaked
around k!10, indicating that most boards have about ten members.
As a null hypothesis, assume that the Fortune 1,000 network is a 
random member of the ensemble of all bipartite graphs with the same
pj and qk. Then generating functions yield predictions for various
quantities of interest91. For example, suppose we want to calculate rz ,
the probability that a random director works with a total of 
z other co-directors, summed over all the boards on which he or she
serves. Let 

f0(x)!!
(

j!0
pjx

j

g0(x)!!
(

k!0
qkxk

be the generating functions associated with the empirical degree 
distributions pj and qk. If we now choose a random edge on the bipar-
tite graph and follow it to the board at one of its ends, the distribution
of the number of other edges leaving that board can be shown to be
generated by g1(x)!g0,(x)/-, where -!g0,(1). Then for a randomly
chosen director, the generating function for z is given by
G0(x)!f0(g1(x)). If we expand G0 in a series as  

G0(x)!!
(

z!0
rzx

z, 

the coefficients rz are exactly the quantities we seek. They can be
extracted by repeated differentiation: rz!(1/z!)(dzG0/dxz).x!0.

Figure 8c shows that the predicted rz agrees almost perfectly 
with the actual distribution. Similarly, the clustering coefficient56

predicted for the directors lies within 1% of the observed value 
(Table 1). Clearly the random model captures much of the structure
of the real network.

However, for two other bipartite graphs — film actors and the
movies they appeared in, and biomedical scientists and the papers
they coauthored — the model91 underestimates the clustering 
coefficients by half (Table 1). The reason is that the random model
quantifies only the generic portion of the clustering; it reflects the
cliques that are formed automatically whenever a bipartite collabora-
tion graph is projected onto the space of people, as in Fig. 7b. For the
corporate board data, those cliques account for essentially all the
clustering (simply because most directors sit on only one board, thus
preventing clustering across boards). But for the scientists and actors,
some further mechanisms must be at work. One possible explanation
is that scientists tend to introduce pairs of their collaborators to each
other, engendering new collaborations.

In this way the random model allows us to disentangle the generic
features of bipartite graphs from those that could reflect sociological
effects. Beyond their benchmarking role, generalized random graphs
provide a promising new class of substrates on which dynamical
processes can be simulated and even approached analytically. Using
this approach, Watts92 has given an intriguing explanation of fads and

normal accidents as the natural consequence of cascade dynamics on
sparse interaction networks.

Outlook
In the short run there are plenty of good problems about the nonlin-
ear dynamics of systems coupled according to small-world, scale-free
or generalized random connectivity. The speculations that these
architectures are dynamically advantageous (for example, more syn-
chronizable or error-tolerant) need to be sharpened, then confirmed
or refuted mathematically for specific examples. Other ripe topics
include the design of self-healing networks, and the relationships
among optimization principles, network growth rules and network
topology82–84,93–96.

In the longer run, network thinking will become essential to all
branches of science as we struggle to interpret the data pouring in
from neurobiology, genomics, ecology, finance and the World-Wide
Web. Will theory be able to keep up? Time to log back on to the 
Internet... ■■

1. Western Systems Coordinating Council (WSCC). Disturbance Report for the Power System Outage
that Occurred on the Western Interconnection on August 10th, 1996 at 1548 PAST
<http://www.wscc.com> (October 1996).

2. Anonymous. Media: Six degrees from Hollywood. Newsweek 11 October 1999, 6 (1999).
3. Kirby, D. & Sahre, P. Six degrees of Monica. New York Times 21 February 1998, op. ed. page (1998).
4. Cohen, J. E., Briand, F. & Newman, C. M. Community Food Webs: Data and Theory (Springer, Berlin, 1990).
5. Williams, R. J. & Martinez, N. D. Simple rules yield complex food webs. Nature 404, 180–183 (2000).
6. Kohn, K. W. Molecular interaction map of the mammalian cell cycle control and DNA repair systems.

Mol. Biol. Cell 10, 2703–2734 (1999).

insight review articles

NATURE | VOL 410 | 8 MARCH 2001 | www.nature.com 275

0 5 10
Number of boards  j  

10-4

10-2

100

P
ro

ba
bi

lit
y 

 p
j  

0 10 20 30
Number of members  k  

10-3

10-2

10-1

P
ro

ba
bi

lit
y 

 q
k 

 

0 10 20 30 40
Number of co-directors  z    

0.00

0.05

0.10

P
ro

ba
bi

lit
y 

 r z
  

a

c

b

Figure 8 Structural properties of the Fortune 1,000 network of corporate directors for
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