Gradient-based Assisted Navigation and Control for Autonomous UAV
Swarms

Bryan Kate
bkate @eecs.harvard.edu
Harvard University

Abstract

We present a system and corresponding algorithms for
directing the flight of autonomous aerial vehicle swarms
in order to perform long-distance navigation and control.
Our solution relies on a static deployment of embedded
devices in the environment, each capable of radio com-
munication with the mobile vehicle within a local radius.
As the vehicle moves through the environment, it detects
the presence of one or more artificial fields projected by
the nodes from which it computes a gradient value. The
vehicle ascends or descends this gradient based on sim-
ple local rules, using radio signal strength as a rudimen-
tary metric for progress. Our solution does not require
localization or sophisticated sensors; it requires only ra-
dio capabilities. We characterize the feasibility of our
system in both real-world tests and simulation. We show
that in simulation the paths taken by vehicles are roughly
twice the length of the optimal path when using random-
ized movement algorithms.

1 Introduction

As the sizes of unmanned aerial vehicles continue to
shrink, there are increasingly many difficult design trade-
offs. Energy becomes a primary constraint, limiting the
capabilities of the robotics. Micro-scale UAVs will have
limited sensors and computational ability, and balancing
the tradeoffs between functionality and vehicle scale is
a non-trivial task. The Harvard RoboBees project [13] is
building a swarm of micro-insect UAVs and is faced with
many of these problems.

In this paper, we propose a solution for UAV swarm
control that requires only local radio communication by
leveraging a system of deployed ground nodes. The
nodes broadcast artificial spatial field values via radio
messages. Coupling these values with the received sig-
nal strength of the message allows swarm agents to per-
form coarse-grained bearing control without relying on

Peter Bailis
pbailis@eecs.harvard.edu
Harvard University

any sort of localization. Multiple such fields can be com-
bined in order to build more complex behaviors, and we
can construct complicated global behaviors while limit-
ing the computational and communication costs at a local
agent-based scale.

We present and evaluate a series of algorithms that al-
low us to use RF gradients in practice. We present an
algorithm that allows an agent to determine whether it
is making progress while moving through a field; this
informs another set of algorithms that dictate how the
agent should actually move throughout the environment.
We examine the feasibility of using signal strength as
a coarse-grained estimator of progress using commod-
ity radios in a representative configuration in an outdoor
environment and conclude that it is adequate given ap-
propriate smoothing techniques. We implement our al-
gorithms in simulation and obtain an average path effi-
ciency of approximately two times that of the optimal
distance using only RF bearing estimation. Finally, al-
though our future hardware platform for UAV explo-
ration is currently under development, we perform lim-
ited field experiments with human subjects that show
promise for more algorithmic control strategies in prac-
tice. We conclude that properly constructed RF gradients
are both feasible in practice and a convenient abstraction
for controlling UAV swarms with limited sensing capa-
bilities.

The structure of this paper is as follows: In Section
2, we motivate the need for RF bearing and explain the
RoboBee project’s goals. In Section 3, we describe the
system of embedded nodes, propose a novel algorithm
for determining progress within a gradient, and discuss
possible movement algorithms. In Section 4, we evalu-
ate the feasibility of using signal strength indicators for
ranging in a real environment, we evaluate our gradient
algorithms in simulation, and present limited evidence
from human-based trials. In Section 5, we discuss possi-
bilities for future research in this area. In Section 6, we
discuss related work and how our proposed system dif-



fers from prior gradient-based approaches. We conclude
in Section 7.

2 Motivation

The RoboBees project is building a swarm of biolog-
ically inspired micro-robotic aerial vehicles. Over the
next four years, the team will design and build an aerial
robot system at a previously unexplored micro scale.
There are myriad challenges involved at each level, from
the mechanics and electronics to coordination of behav-
ior. Enabling these robots to cooperate on several com-
plex tasks such as pollination, search and rescue, and en-
vironmental mapping will be difficult.

Undoubtedly, the final RoboBees platform will be lim-
ited. It should fly and have moderate control capabilities,
but will likely have limited sensors and poor reliability.
In addition, the robots will not likely know their loca-
tion within an environment. They will be equipped with
the fewest number of sensors and computation required
in order to achieve their goals. These constraints are not
artificial; at a micro-scale, increased sensor capability or
computation power translate to shorter flight times due
to increased weight. In order to control and coordinate
these agents at scale, we face many of the problems in-
herent in traditional distributed systems, but we expect
the magnitude of problems to be much greater: partial
knowledge, agent failure, and limited connectivity will
be the norm, and we must design for this worst case.

In order to perform meaningful tasks with these
robots, we require a new abstraction. We need to influ-
ence agent movement while allowing agent behaviors to
be expressed and computed simply. We cannot depend
on localization or complex sensors. Ideally, we will be
able to reason about the global behavior of the system in-
stead of programming agents individually. By macropro-
gramming the RoboBees and using global-to-local con-
trol techniques, we can scale the number of agents with-
out incurring significant additional overhead. Perhaps
most importantly, we need an abstraction layer that will
work in practice and not simply in simulation. We are
building a real-world system, and need to account for
real-world constraints like energy, inaccuracy, and fail-
ure while providing a usable abstraction for algorithm
designers and system users.

3 Design

The scale of a RoboBees swarm, predicted to be on the
order of magnitude of one thousand autonomous vehi-
cles, prevents us from implementing a system that re-
quires even modest amounts of direct communication be-
tween devices. Instead, we choose to focus on decentral-

Figure 1: A RoboBee vehicle traversing unknown ter-
rain by ascending a virtual gradient being broadcast by
devices embedded in the environment.

ized systems that rely on shared infrastructure and in-
direct communication. Subsequently, we allow individ-
ual vehicles to make local decisions and carry out tasks
without the limitation and responsibility of maintaining
connections to other bees in the swarm.

Our motivating problem is one of environment explo-
ration and resource exploitation. We envision a scenario
in which the bees are deployed into an unfamiliar area
and are tasked with finding resources in the environment
(e.g. flowering plants) and directing the swarm to exploit
that resource accordingly (e.g. cross-pollinating patches
of flowers). Since the environment is unfamiliar, using
a map that is pre-computed offline is not possible. Fur-
thermore, it is difficult to collaboratively construct a map
when the robotic platform lacks reliable sensing, odom-
etry, and localization capabilities. However, we want to
exploit individual knowledge in a way that is meaning-
ful to the swarm as a whole. We propose a solution in
which online decisions about long-distance travel are in-
fluenced by information collected from the environment
and controlled by high level agent behaviors that are trig-
gered in the presence of this information. We believe that
controlling the cues that are available to agents and the
corresponding reactive tasks is a scalable, global-to-local
solution to defining swarm behavior.

We propose a system that uses devices embedded in
the environment to provide the aforementioned cues via
radio signals. In addition, the embedded devices can act
as a repository for information, allowing passing vehi-
cles to deposit data that may be relevant to others, such
as the amount of energy it takes to reach a destination or
the presence of a valuable resource. By embedding these
devices, we establish a shared infrastructure that obvi-
ates the need for extensive inter-vehicle communication.
Through this infrastructure we can build primitives like
routing, virtual fencing, and signposts that can be used
to define agent behavior. For the scope of this project
we assume that the embedded devices are statically de-
ployed, though one could envision a system in which the
swarm dynamically deployed the infrastructure as it ex-
plored a space, with some bees landing to fill that role.



Additionally, we assume that the embedded devices are
not networked together, though that capability could en-
able a host of useful system properties stemming from
the ability to disseminate information.

Our solution relies on radio communication between
the flying vehicles and the embedded ground nodes.
More specifically, we rely on the ability to detect if a ve-
hicle is moving closer to or further from a radio source.
While radio signal strength is theoretically predictable
as a function of distance, it is well known that such mea-
surements are not constant in reality and can vary by de-
vice and environmental conditions [14]. It is important
to emphasize that we are not proposing a precise method
for navigation in a small space. Rather, we are aiming
to quickly guide bees to a remote destination (such as
across a large field) where other mechanisms can take
over to perform detailed tasks. As such, we believe we
can provide a solution in spite of the inherent variability
of radio communications. At this point in time we do
not attempt to provide an optimal gradient-following al-
gorithm (in terms of distance or energy) for the vehicles
and instead focus on finding a reasonable algorithm as a
proof-of-concept, though this is a topic of future work.

3.1 Gradient Abstraction

We propose a gradient abstraction to leverage this em-
bedded mesh of ground nodes. Each node broadcasts at
least one artificial spatial field “value” that is assigned
at a global system level. Computing the gradient val-
ues from the artificial fields and combining them with
signal strength measurements gives the observer a bear-
ing within the gradient without reference to actual node
topology. An observer can tell its relative distance from
different points in the field, localizing it within the global
field space, but not within absolute space. However, we
do not require absolute localization; as long as the ob-
server can detect progress within a field (whether follow-
ing increasing gradient values, decreasing gradient val-
ues, or a level set within the gradient), then it can traverse
it. The gradient abstraction allows a local interpretation
of global goals and desired behavior.

To illustrate the gradient abstraction, we provide three
sample scenarios:

e Movement to and from the hive. In the first panel
of Figure 2, we show a gradient that allows an agent
to move towards or away from the hive. At the hive,
the gradient value is zero, and the gradient value
increases proportionally as one moves away from
the hive. An agent can move away from the hive by
ensuring it moves towards higher gradient values,
or can return by moving towards the hive until it
reaches the gradient value of zero.

e Movement along a path. In the second panel of
Figure 2, we show a gradient that allows an agent
to move along a path. Along the path, the gradient
value is nonzero, and off of the path, the gradient
value is zero. By adding a monotonically increasing
value to each node along the path, we can construct
a gradient that allows the agent to perform simple
path-following.

e Virtual Fencing. In the third panel of Figure 2, we
show a gradient that warns the agent of areas where
it should not go. There are two strongly negative
areas of the gradient where the agent should not fly
(perhaps obstacles exist or the area is previously ex-
plored). The negative values form a “virtual fence”
for the swarm.

We can also consider combining several of our gra-
dients based upon the agent behavior. Consider an sce-
nario in which we want the agent to travel away from the
hive along a path but avoid certain obstacles. We could
multiply the values from the fields shown in the first two
panels of Figure 2 to get a monotonically increasing path
away from the hive. We could then add or multiply the
resulting field with the values of the field in the third
panel. By programming the agent to move towards in-
creasing gradient values, the agent could complete a task
that requires it to move away from the hive along a path
while avoiding fenced regions.

Similarly, agents should be able to modify parts of the
field as they encounter it. In a system designed for en-
vironmental mapping, once an agent has visited a node,
the node broadcasts that it has already been visited by
expressing a negative field value. In another system de-
signed for search and rescue, agents could stigmergically
deposit information that other agents could use as a trail.

3.2 Gradient Progress Evaluation

Agents need a means of evaluating their progress within
an artificial field. As they fly, they will receive signals
from the ground nodes which will provide them feedback
about their latest movements. Because we do not have
means for localization, we cannot determine a move-
ment vector for the agent even with the help from the
ground nodes. Similarly, because we do not give strict
requirements for the ground node topology, ranging and
triangulation will not be helpful. Instead, we want a
localization-free algorithm that will give us our relative
(not absolute) progress within the gradient.

Given a radio message from a ground node, we have
several pieces of information that we can use. First, we
have the message itself, which will contain the field value
and associated metadata. For example, we will be able
to determine which node sent the message by attaching



(@)

(b)

Figure 2: Example fields that can may combined and followed by aerial vehicles.

a sender ID. We can also determine the received signal
strength (RSS) of the message, which is known to de-
grade inversely with the distance from the sending radio.
This can provide some information about the direction
of travel over time relative to the transmitter. Finally,
we also have information about which nodes we have re-
cently heard from. We can compare the current set of
broadcasts to the previous set, which may give us an in-
dication of progress.

We measure relative progress instead of absolute
progress. Our progress evaluation is expressed as a dif-
ference from the previous position instead of an absolute
metric of how far along we are in the gradient. Although
there may be absolute characteristics inherent in the field
(the distance from the hive, for example), due to the com-
plexity of RSS measurements we have decided it is bet-
ter to tell the agent that they made a “good step” rather
than provide an absolute measure (ex. a percentage of
the goal) as a means of evaluating progress.

We model progress through the field as a response to
attractive and repulsive forces on the agent. We define
the agent’s current field level at any point in time as the
value of the node with the highest RSS. If ascending
the gradient, the agent wants to move away from nodes
with lower field values — the repulsive force — and move
towards nodes with higher field values — the attractive
force. As such, it is important to ensure that the ground
nodes are deployed with overlapping radio ranges so that
there is more than one force guiding the vehicle.

The rate at which an agent evaluates its progress is
implementation and deployment-specific and depends on
several factors. An agent needs a representative sample
of messages from broadcasting nodes in order to make an
informed decision. If an agent is moving very quickly,
it may need updates much quicker than a slower mov-
ing agent. With more signals to analyze, an agent can
perform better noise reduction and make more accurate
decisions. The rate at which the ground nodes broadcast,
however, is not necessarily fixed; there is no reason why
an agent could not broadcast itself in order to request
messages from the nodes around it. We do not explore

these ideas here, but the broadcast rate, communication
protocol, and update step size are important considera-
tion for system builders.

For a given evaluation period e, assume an agent re-
ceives a set of signals S, = s;,..., s, such that s; is
from node ¢ with field value f(i). We define RSS of
message s; as 7(s;). This RSS can be an average of
many values or may be a smoothed value; we propose
a sliding window of values as a first approach. The agent
considers node ¢, the node with the largest RSS value
in S its current node and considers f(c) as its current
field value. The agent then compares its current state
to its previous state, S._1, by taking the relative change
A(n) in RSS between S, and S._; for each node n
(A(n) = r(s;) — r(s}) such that 7(s}) is the message
from ¢ € Se_1). If there is no message from ¢ in S._1,
then we assign A(n) = k where k is a small constant.
If there are multiple nodes with a single gradient value,
we only consider the node with the highest RSS from the
set.

In order to evaluate our progress, we weight the dif-
ferences in RSS by the field-distance of the node from
the current node c. Our progress function P(Se, Se—1) is
defined as ), g p(s;) such that:

7(1,_50)3 x A1) i<c
p(si) =4 v+ A() ti=c
2= xA(l) i>c

(i=c)

If the progress function is positive, then the agent
made progress within the field. Otherwise, the agent did
not make progress.

For an example, consider an agent that previously
heard from nodes 1, 2, and 3 with signal strengths —30,
—25, and —40 respectively. For simplicity, assume o =
1] 0 1. Now, in the next time period, it hears
from the same nodes, but the RSS values are now —40,
—10, and —30. A(1) = —40 — (=30) = —10,A(2) =
—10 — (—25) = 15 and A(3) = —30 — (—40) = 10.
The current node is node 2, so p(1) = oy *—10 =

10,p(2) = v+ 15 = 15, and p(3) = 3% * 10 = 10.



alpha (4)

gamma (.8)

beta (.25)

Figure 3: The piecewise function used to compute p(s;).
The X axis represents the distance in the artificial field
from that of the closest node (¢ — ¢), and the correspond-
ing point on the Y axis is multiplied by A(%). The func-
tion is designed to provide attractive and repulsive forces
to guide the motion of the vehicle as it encounters em-
bedded devices.

Therefore, our progress function evaluates to 45, and
the agent has made progress in moving towards values
higher in the field by ascending the gradient.

Intuitively, « controls the agent’s attraction towards
higher field values, 3 controls the agent’s repulsion away
from lower field values, and 7 controls the agent’s at-
traction to its current node. Note that without « or 3, the
agent would simply hone in on a node and stop moving.
In practice, 3 is small, « is large, and ~y is in-between.
This asymmetry, depicted in Figure 3, is intended to bias
the agent in one direction while traveling through the
field.

This evaluation function is a first step towards an ap-
propriate gradient progress evaluation function. We fo-
cused on finding a function that would allow us to take
into account all nodes within radio range instead of sim-
ply performing iterative homing. Ideally, future func-
tions would better integrate noise smoothing by the use
of Kalman filters or other filtering techniques. In prac-
tice, however, our algorithm works reasonably well (see
Section 4).

3.3 Movement Algorithms

Using the metric defined above, it is possible for an agent
to determine how it has moved, relative to an arbitrary
spatial field, over some time interval. Given this infor-
mation, what action should the agent take to reach its
goal? To begin, we consider stateless approaches - those
that do not rely on tracking prior actions to make a de-
cision. Our agents evaluate their progress periodically,

so a decision that can influence the direction of travel is
made at a regular interval and the results of that action
remain until the next update. In addition, we assume that
the agents are capable of level flight, effectively reducing
the problem to two dimensions. Finally, we restrict the
agent to movement in the forward direction at a constant
velocity and turns about a single axis (left and right).

The first movement algorithm we considered is essen-
tially gradient descent. At each update the agent can take
one of two actions:

1. Continue moving in the current direction.

2. Make a random turn prior to moving forward.

The first action is taken if progress has been made
since the last time step (P > 0), and the second is taken
if no progress is made (P < 0).

The second movement algorithm we tried, chemo-
taxis, is inspired by the movement of bacteria toward
chemical food sources [7]. In the wild, bacteria are ca-
pable of detecting chemical gradients but have no means
of determining a direction to the food source. As such,
the bacteria implement a biased random walk strategy to
locate the source of the chemical. Agents implement-
ing the chemotaxis algorithm can perform the same set
of actions listed above, but are governed by a different
set of rules. Specifically, the agent can choose the first
action (move forward for a complete time step) only if
progress was made (P > 0) after tumbling (took the sec-
ond action in the prior step). If progress was made but
the agent had not previously tumbled (took the first ac-
tion in the prior step) and the prior step was a full step
then it executes the first action for a partial time step
(t41 = t + stepsize * bias : 0 < bias < 1). This is
referred to as a biased step because it allows an agent to
take advantage of the progress and continue moving in
the same direction as opposed to tumbling at each time
step (as would be the case in a pure random walk). Fi-
nally, if progress was not made (P < 0) or if the agent
took a biased step during the previous period, then the
second action is taken. This strategy forces the agent to
make random turns more often (every other time step if
progress is being made) but is less prone to getting stuck
in local minima.

Figures 4 and 5 show simulated traces of agents us-
ing the gradient descent and chemotaxis (20% bias) al-
gorithms, respectively. A detailed description of the sce-
nario is given in Section 4.2. From these traces we can
see that the resulting aggregate motion of the gradient de-
scent algorithm is dominated by long, straight segments
separated by abrupt changes in direction, whereas the
chemotaxis algorithm has shorter, curved sections and
more gradual turns - a direct result of frequent tumbling.



10 T T T T T T 4

Y (meters)
N
Gradient Value

5 0 5 10 15 20 25 30
X (meters)
Figure 4: Simulation of an agent moving according to the
gradient descent algorithm. Embedded nodes are repre-

sented by squares and the agent’s path is denoted by the
solid line.

In both movement algorithms we restrict the angle
for a random tumble so that the agent does not com-
pletely reverse direction when it stops making progress.
This limits the amount of possible negative backtrack-
ing caused by tumbles in the chemotaxis algorithm and
generally encourages forward progress, especially as it is
unlikely that an agent needs to turn around completely.
Likewise, the agent is slower to react when a drastic
course correction is required. It is empirically evident
that the former point generally dominates the latter.

Both of these algorithms are relatively simple and are
stateless. Using these algorithms we can arrive at our
destination but not in the most efficient manner. We
are considering several improvements as future work,
including making more informed decisions by tracking
past actions and reasoning about the overall direction
traveled before turning. Using this information we hope
to eliminate the random element and choose more effi-
cient paths.

4 Evaluation

We evaluated the feasibility of using radio signals and
artificial gradients through real-world and simulated ex-
perimentation. We first explored the possibility of us-
ing commodity hardware in an outdoor environment by
running a characterization experiment. We then imple-
mented our algorithms in simulation and examined the
effectiveness across different parameters and behaviors.
Although our ultimate goal is to use a helicopter testbed
to approximate our RoboBees, because the hardware is
not yet operational we could not rigorously validate our
simulation results. We did, however, perform limited hu-
man trials that give anecdotal evidence that a RF-based

10 T T T T T T 4

N
Gradient Value

5 0 5 10 15 20 25 30
X (meters)
Figure 5: Simulation of an agent moving according to the
chemotaxis algorithm (20% bias). Embedded nodes are

represented by squares and the agent’s path is denoted by
the solid line.

gradient navigation system can work in practice.

4.1 Characterization Experiments

We explored the correlation between received signal
strength and distance in practice. Theoretically, the sig-
nal strength for a line-of-sight transmission should drop
off with the square of the distance r from the radio (%2).
However, the signal attenuation is much more severe in
reality due to equipment imperfections, deployment de-
tails, and environmental factors. Although this relation-
ship has been studied extensively in the literature [14],
we wanted to examine its accuracy in our operating en-
vironment with a reasonable deployment of commodity
radios. To this end, we devised a characterization ex-
periment to collect data on the received signal strength
indicator (RSSI) - a measure of signal strength provided
by the radio chip with each signal reception.

Figure 6 provides an aerial view of our experimen-
tal setup. We chose a space that is largely open (with
the exception of one tree) and established a grid measur-
ing 80 feet in width and 70 feet in length, marking mea-
surement locations every 10 feet. We then deployed six
TelosB motes (battery-powered embedded devices used
in sensor networks containing 802.15.4 wireless radios
and built-in omnidirectional antennas) into the space in
a cross formation, co-locating two of the devices at the
center. We elevated the motes 18 inches off the ground
on cardboard boxes and oriented them to face in the same
direction (along the Y axis of our grid). Each mote ran a
program that broadcast a message at -25 dBm every 500
ms (with random jitter of 100 ms to reduce congestion)
that contained the mote ID and a sequence number. A
mote connected to a laptop was used as a receiver and
collected data at each point in our grid (also on a card-



Figure 6: A satellite image of the experiment landscape.
Broadcasting motes are denoted by numbered squares
and measurement points (where the receiver is placed)
are denoted as orange circles. The origin of the measure-
ment grid is in the lower left corner.

board box 18 inches from the ground). At each point the
receiving mote captured and recorded all messages and
corresponding RSSI values for 30 seconds.

With this setup we were able to compute statistics re-
lated to the received signal strength of messages sent
from each mote. Figure 7 shows a heatmap of the mean
RSSI of messages from the mote with ID 6. As ex-
pected, there is a clear trend indicating that the signal is
stronger as the distance between the transmitter and re-
ceiver shrinks. However, there is a great deal of variation
in the readings, causing false peaks and valleys. The sig-
nificant result from this experiment is that RSSI may be
used to indicate progression toward or away from a trans-
mission source in practice, provided that some weight
is given to the longer trend as opposed to changes over
shorter time scales. Additionally, this experiment high-
lights the importance of smoothing data and algorithmic
robustness to false peaks in the gradient.

4.2 Simulation

Though the ultimate goal of this project is to implement
our system on the helicopter testbed, we created a sim-
ulation environment in which our ideas could be rapidly
prototyped. Our simulator not only allowed us to quickly
realize our ideas, it provided a means for exploring the
parameter space of our algorithms in a repeatable way.
Since the helicopter platform is a work in progress, most
of the core results in this paper are validated through sim-

©
[
RSS! (dBm)

6 7 8

|
-100
0 1 2 3 4 5
X

Figure 7: A heatmap showing the average RSSI of pack-
ets transmitted by the mote with ID 6 (located at (4,6.5)
in the grid) and received at each point in the collection
grid. Note that data is missing for the cells (2-8,1).

ulation.

Our simulator, written in Java, provides a 3D contin-
uous virtual world. The position, orientation, physical
extent, and kinematics of objects in our simulation are
handled by an embedded 3rd-party rigid body physics
engine, JBullet [8]. We build upon this base by provid-
ing a model for radio communication, virtualized sensing
equipment, an abstraction for flight control, and an exten-
sible interface for user-supplied agent behavior. Using
the modeling framework provided, we constructed two
bee models - one that is stationary and acts as a beacon,
and one that collects beacon information (virtual field
values) and uses it to navigate in the virtual world.

An important part of creating a simulation environ-
ment is anchoring it to reality. Results obtained through
simulation will always be idealized and limited to the fi-
delity of the models. However, if the fidelity is increased,
users can be more confident in the validity of their algo-
rithms and accuracy of their performance. As such, we
focused on modeling RF communications with improved
fidelity since RSSI is such an integral part of our solution.
We modeled the radio from the TelosB motes, the Chip-
con CC2420, using the transceiver properties from the
data sheet [4]. We assume that the built in antenna pro-
vides 0 dBi gain and is omnidirectional (modeled as an
isotropic antenna). We created a functional representa-
tion of the radio’s receiver by mapping the measured sig-
nal to noise ratio (SNR) to a packet reception rate (PRR).
This mapping function was generated from empirical ev-
idence [9] and is now incorporated into the TinyOS sim-
ulator, TOSSIM [10].

Since the largest variation in RSSI comes from path
loss, we focused our attention on correctly modeling sig-
nal attenuation in open, outdoor environments. There are
many models for path loss based on theoretical physics



-40

two-ray ‘model

freespace model -

RSSI (dBm)

-180 L . L

0 5 10 15 20
Distance from Transmitter (meters)

Figure 8: Theoretical path loss models for a radio trans-

mission at -25 dBm in the 802.15.4 (2.4 GHz) spectrum.

The transmitter and receiver are each elevated 18 inches

above the ground plane.

and empirical data, but we chose two that best repre-
sented our target environment. The first is the free space
model, a simple, monotonically decreasing approxima-
tion based on the inverse square law. The second is the
two-ray (plane earth) model, in which signal reception is
modeled with two rays - a direct line-of-sight connection
and a reflection off the surface of the earth [12]. Figure
8 shows the behavior of the two models for a transmis-
sion at -25 dBm. Notice that the two-ray model accounts
for constructive and destructive interference (caused by
the phase shift of the reflected ray) and exhibits a fluc-
tuating pattern. This behavior is evidenced in the real
world, so it was important to capture in the simulator
so that appropriate smoothing mechanisms could be de-
veloped to compensate for the variation. In addition to
path loss, the communications model must also account
for background noise. We are currently modeling noise
using a Gaussian distribution around a mean noise floor
that is independently distributed between measurements.
We are not modeling channel contention or the effects
of simultaneous transmission. As an extra measure, we
would like to use the data collected in our characteriza-
tion experiments to improve the fidelity of the propaga-
tion and noise models, but this is left as future work.

We performed a number of simulated experiments in
which our bees navigated through the the virtual envi-
ronment. We propose two deployments of embedded
nodes, a straight line and a series of concentric circles. In
the straight line scenario, nodes are placed every 20 feet
along the positive X axis (five in total) and are broad-
casting artificial field values that are monotonically in-
creasing. The agent’s task is to follow the gradient from
its starting position at the origin to the end of the line,
reverse direction, and repeat. In the concentric circle
scenario, rings of nodes are placed at 20 foot intervals

l Param \ \ Value Description
o 4.0 See Section 3.2
1) 0.25 See Section 3.2
0% 0.8 See Section 3.2
velocity 0.5 (%) Forward vel. of bees
altitude 0.3 (m) Altitude of bees
run length 0.25 (s) Movement time step
tumble bias il’r—e, (rad) Max. tumble angle
history 0.5 (s) Past signal queue len.
window 4 Sliding window size
beacon power -7 (dBm) Ground node Tx power
beacon rate 20 (Hz) Beacon broadcast rate
noise floor -100 (dBm) Mean RF noise level
noise o 10 (dBm) RF noise variance
total time 600 (s) Scenario length

Table 1: Non-varying simulation parameters used in all
experiments.

from the origin. Each ring is approximated by a reg-
ular decagon, with every node in the ring broadcasting
identical artificial field values. The field values increase
monotonically from the origin with each level of rings.
In total, 41 nodes are needed to complete this deploy-
ment. In both scenarios the distance between nodes was
selected such that the radio signals overlap, enabling our
progress function to be evaluated effectively.

There are a number of parameters that are fixed for
each experiment. The free space propagation model, as
opposed to the two-ray model, was used in all runs. Our
trivial smoothing and thresholding approaches could not
adequately deal with the peaks and nulls of the fluctuat-
ing RSSI values while using the tw-ray model. A more
robust approach is anticipated as future work. Table 1
lists the most important variable values used in the sim-
ulated experiments. Some values, like o, 3, 7, and the
tumble bias were obtained with a coarse, gridded search
of the parameter space. Note that many of the values are
codependent (such as velocity, time step, beacon rate,
history length, and window size) and must be adjusted
together.

We began experimenting with the straight line sce-
nario. The purpose of these experiments is twofold; first,
we verify that the progress evaluation function can be
used to ascend and descend an artificial gradient and sec-
ond, we evaluate the effectiveness of the two movement
algorithms. Figures 4 and 5 depict two runs of this sce-
nario in which the bees move according to the gradient
descent and chemotaxis algorithms, respectively. A cur-
sory evaluation indicates that that the progress evaluation
mechanism and simple movement algorithms are suffi-
cient for accomplishing the task - the bee is able to as-
cend and descend the gradient several times before the



30 T T T T T 4

20

w

10

Y (meters)
o
N
Gradient Value

-10 F

i

-20 F

.30 L L L L L 0
-30 -20 -10 0 10 20 30

X (meters)

Figure 9: Simulated agents (five in total) navigating
through a landscape using the gradient descent algo-
rithm. The embedded devices produce an artificial field
that is monotonically increasing outward from the origin.

scenario finishes. However, this process is by no means
efficient. While the gradient is attracting bees to move
along the X axis, there is no guidance (with the exception
of fading signal strength) in the Y axis. Despite this in-
efficiency and the hovering” behavior displayed around
the goal, the path length is not prohibitively long. We
ran the simulation 100 times using the gradient descent
algorithm and found that the mean path length is about
1.88 times the optimal (straight line) path length. While
there is room for improvement, the results are not bad
for such trivial algorithms. In addition, we ran a series
of experiments using the chemotaxis algorithm, varying
the run bias from 10% to 90%. The mean path length
over 100 executions for each bias variation ranged from
1.84 to 1.89 times the optimal length. This indicates
that these is no real difference between the two move-
ment algorithms, and, surprisingly enough, that chang-
ing the bias has little effect on the overall performance
of chemotaxis. Of course, not all paths are equal - some
have more straight sections and others may be dominated
by twists and turns (an important distinction for a UAV
platform in which turning is a difficult maneuver). If we
classify portions of the paths into useful and superfluous
segments, we may find that one algorithm outperforms
the other.

We now turn our attention to the concentric circle sce-
nario. The impetus for these experiments is to see how
the progress evaluation function behaves when embed-
ded nodes are distributed throughout the environment
and there are multiple nodes broadcasting the same vir-
tual field value. We present two variations of this sce-
nario; the first is a discrete approximation of a ’funnel” in
which the field is monotonically increasing uniformally
in all directions away from the origin, and the second is a

30 T T T T T 4

20 |

10

Y (meters)
o
N
Gradient Value

-10 F

20 F

30 L L L L L 0
-30 -20 -10 0 10 20 30

X (meters)

Figure 10: Simulated agents (five in total) navigating
through a landscape using the gradient descent algo-
rithm. The embedded devices produce an artificial field
that is constant with the exception of two monotonically
increasing paths anchored at the origin.

level field with two preferred paths away from the origin.
Figure 9 depicts the path traces of five bees navigating
the space according to the same ascend-descend-repeat
behavior used in the line scenario. Each bee starts with a
random orientation; this initial orientation along with the
random tumbles taken by the bee during flight determine
which outer node(s) it visits. The average path length
over 100 executions is about 2.11 times the the optimal
length. The increased overhead is likely caused by diver-
sions in the path caused by confusion between multiple
nodes broadcasting the same artificial field value. Figure
10 depicts the path traces of five bees using the same be-
havior in an environment where there are two preferred
paths. Such a scenario might come about if bees had the
ability to “mark” nodes as they fly, similar to how ants
use pheromones to mark trails. In the presence of marked
nodes the bees would follow the path (by multiplying the
“funnel” field values with the “path” field values to cre-
ate a new field) and would otherwise explore the space
or switch to another task. We ran this experiment 100
times, and the average path length is approximately 2.5
times the optimal length.

There are numerous other experiments we could run
with the simulator. Our immediate future work will focus
on modeling RSSI fluctuations more accurately, imple-
menting better smoothing mechanisms, stigmergically
constructing preferred paths, and developing methods for
combining fields. The ultimate goal of the simulator is to
work out the subleties in our algorithms prior to imple-
menting them on a UAV testbed.



4.3 Human Trials

Since our UAV testbed is not yet running, we satis-
fied our curiosity about how this mechanism functions
in the real world by conducting human trials. In these
thoroughly unscientific experiments, a human subject at-
tempted to move through an outdoor space by interpret-
ing feedback provided by a laptop. The subject was de-
prived of sight and could only hear auditory cues through
headphones. These audible cues corresponded to the pe-
riodic evaluation of the progress function, indicating if
the subject gained or lost ground since the last update.
Three TelosB motes were set up in the space approxi-
mately 20 feet apart to form a line. The experiment was
deemed a success if the human subject, carrying a laptop
connected to a receiving mote, moved to within 5 feet of
the end node after being randomly oriented and walking
more than 60 feet.

These experiments provided much needed (video-
taped) comic relief, but no deep insights. Some of the
participants were able to reach the goal, but it is un-
clear if this is due to random chance. Our main takeaway
from these experiments is that our algorithm may work
in practice, but because our test subjects were unable to
follow a rigorously defined algorithm and often chose to
ignore our auditory cues, this evidence is anecdotal at
best.

5 Future Work

This project forms a solid foundation for significant fu-
ture work. We have validated the feasibility of using ar-
tificial gradients for coarse-grained navigation and have
formulated basic algorithms to accomplish this on a sim-
ple agent, however there are many opportunities for fu-
ture research.

First and foremost, we would like to implement our
algorithms using real UAVs. We have a set of eFlite
Blade MCx remote control helicopters with custom sen-
sor boards capable of running TinyOS that we would like
to use to test our algorithms. Real algorithmic control (as
opposed to human control) of our agents should give us a
better understanding of how the algorithms work in prac-
tice. Once the TinyOS radio driver for the RF231 radio is
ported to our robotic platform, we should easily be able
to start experimenting.

We have presented only one of many possible gradient
progress evaluation metrics. We need to explore metrics
that take into account more state and that possibly give
the agent additional information about its location within
the field. It would also be useful to characterize for which
fields we can have an absolute measurement of progress
instead of a relative metric. Additionally, we would like
to explore better RF signal smoothing, whether in the

10

form of Kalman filters, more aggressive signal collection
and averaging, or another technique from the literature.

Our current system design uses statically deployed
nodes. We would like to explore methods for building
fields at runtime using techniques from the sensor net-
work and networked robotics literature. We would also
like to consider mutable fields and inter-node commu-
nication which would facilitate more complex behaviors
such as state propagation back towards the hive. We also
envision using a higher-level programming language or
mini-language in order to express our gradients more ef-
ficiently. We could also compile existing languages like
Proto into TinyOS modules we could deploy on our sys-
tem.

We hope to continue this work throughout the summer
in order to answer many of these questions and test our
system using real hardware. We believe the system will
prove to be beneficial for the RoboBees project.

6 Related Work

We are by no means the first group to propose the use
of embedded sensors to assist mobile robots with naviga-
tion through unknown territory. There are several notable
projects in which this concept is demonstrated through
simulation and prototype platforms.

The work of Corke et al. [5] aimed to guide a mobile
agent to a destination through a potentially hostile envi-
ronment, such as a forest fire. This system relied on the
deployment of an embedded sensor nodes into the target
environment. For their solution to work, the nodes must
be localized (by GPS or other means) and form an ad-hoc
sensor network once deployed. In the forest fire example,
the embedded nodes would be responsible for sampling
the environment and maintaining a temperature gradient
that could be used to navigate resources toward the fire
or evacuate personnel safely. With the embedded net-
work in place, a distributed computation can determine
the most efficient route through the environment while
avoiding dangerous regions. The coordinates of the sen-
sor nodes on the path are transmitted to the helicopter,
which is equipped with a GPS device. We aim to achieve
a less precise form of guidance by allowing the vehicle to
make local decisions based on sensed information from
passive (non-planning) nodes. In addition, our solution
to this problem cannot rely on localizing the embedded
nodes or autonomous agents.

Another project by Dantu et al. [6] used passive em-
bedded sensor nodes to supply gradient information to
a mobile robot. In this work, the sensor nodes are ran-
domly deployed into the environment according to a min-
imum required density. The nodes are localized, but do
not form a network. Each node is capable of sampling
the environment and responding to queries from a mo-



bile agent. The authors propose a control law that allows
a mobile robot to descend the gradient formed by the
sensed values or to trace a level set (contour) in the field.
To determine the correct course of action, mobile robots
query sensor nodes in the local neighborhood around its
current position. The nodes return a position and sen-
sor value, which can be used to compute the robot’s next
movement. Iteratively applying this technique allows the
robot to move along (or orthogonally to) the gradient of
the sensor field, which may fluctuate over time. Though
randomly deployed in the environment, the embedded
nodes are localized so that the absolute direction for the
robot to travel can be accurately computed.

Batalin et al. [3] showed that a robot can use node-
wise navigation to traverse an unknown environment. In
this project, the continuous world is discretized to form a
graph of nodes. As such, a network of embedded devices
is deployed such that each node is aware of the relative
direction to its neighbors. At the outset of a journey, the
destination of the robot is given to the node closest to the
robot’s starting position. A distributed computation is
performed by the embedded nodes to determine the tran-
sition weights in the graph that will move the robot to the
goal along the shortest path. The robot then navigates to
a destination by following hop-by-hop instructions pro-
vided by the nodes it encounters. Since the robot in this
work has no localization capabilities, it relies on radio
signal strength to determine if it has reached a node in
the graph. The authors present a statistical mechanism,
known as Adaptive Delta Percent, that outperforms sim-
ple thresholding mechanisms when making these deci-
sions. We aim to explore this approach in our forthcom-
ing helicopter testbed. This work is very similar to our
own in that the capabilities of the embedded nodes and
mobile robot are severely restricted. However, we are
pursuing a solution that does not require a careful de-
ployment (to form a well known graph) and a networked
population of embedded nodes to compute movement
plans.

Our solution relies on the construction and detection of
artificial computational fields in the environment. This
concept is directly related to amorphous computing, in
which computation is defined in terms of a continuous
amorphous medium that fills space. Each point in the
amorphous medium has the ability to propagate, sense,
and react to fields defined by the space. These concepts
have been demonstrated in simulation and expressed in
amorphous computing languages like Proto [1]. Proto
allows users to manipulate fields (through combination,
restriction, and other operations) to produce new fields.
If certain particles in the medium actuate according to a
sensed field it is possible to guide their movement by ma-
nipulating the field over time. This concept has been ex-
tended and applied to a multirobot system, Protoswarm

11

[2], which is capable of simple coordinated behavior
like dispersion and clustering. The amorphous comput-
ing abstraction is of limited usefulness to our project
since Proto assumes the ability to localize points in the
medium and Protoswarm bots have the ability to deter-
mine the relative position of neighbors. However, there
is a great deal to learn from the field operations defined in
Proto, which can be applied by our mobile agents when
interpreting the signals from embedded nodes.

A similar approach to distributed motion coordination
is used in the Co-Fields [11] model, in which a coordina-
tion field is created as a combination of fields generated
by each participant in the system. Like many other sys-
tems, the Co-Fields model assumes a dense network of
localized nodes spread throughout the environment. De-
spite this drawback, the literature provides some useful
insight into constructing coordination fields for various
tasks.

7 Conclusion

We believe that our efforts in this project have been
largely beneficial. Through simulation we have shown
that the concept of assisted navigation using RF trans-
mitters embedded in a target environment to be feasible.
Furthermore, we have shown that knowledge of position
in the environment is not a prerequisite for offering guid-
ance. Our system is capable of assisting a mobile agent
by broadcasting an arbitrary number of artificial fields.
Unlike prior systems that rely on real-world sensors to
create a gradient from physical phenomena, our system
is extensible. Though we cannot provide precision guid-
ance, we are confident that the course bearing we offer to
mobile agents is useful for long distance movement.

This solution is attractive to the RoboBees project not
only for its ability to operate within the given constraints.
We believe that the ability to define agent behavior in
terms of operations on fields will greatly simplify the
task of programming and managing swarms. In addi-
tion, the presence of the embedded nodes provides an
indirect means of communication between bees - a po-
tentially scalable solution that is also energy conscious.
We hope to advance these concepts in the coming months
and realize this potential.

References

[1] BACHRACH, J., AND BEAL, J. Programming a
sensor network as an amorphous medium. Dis-
tributed Computing in Sensor Systems (DCOSS)
(2006).

[2] BACHRACH, J., MCLURKIN, J., AND GRUE, A.
Protoswarm: A language for programming multi-



robot systems using the amorphous medium ab-
straction. In AAMAS ’08: Proceedings of the
7th International Joint Conference on Autonomous
Agents and Multiagent Systems (2008), vol. 3,
pp- 1175-1178.

[3] BATALIN, M., SUKHATME, G., AND HATTIG, M.
Mobile robot navigation using a sensor network.

In IEEE International Conference on Robotics and
Automation (2004).

[4] Chipcon AS SmartRF CC2420 Preliminary
Datasheet (rev 1.2), 2004.

[S] CORKE, P., PETERSON, R., AND RUS, D. Net-
worked robots: Flying robot navigation using a sen-
sor net. Proceedings of the 11th Annual Interna-
tional Symposium of Robotics Research (2003).

[6] DANTU, K., AND SUKHATME, G. Detecting and
tracking level sets of scalar fields using a robotic
sensor network. In IEEE International Conference
on Robotics and Automation (2007).

[7] DHARIWAL, A., SUKHATME, G., AND RE-
QUICHA, A. Bacterium-inspired robots for envi-
ronmental monitoring. In IEEE International Con-
ference on Robotics and Automation (2004).

[8] JBullet. http://jbullet.advel.cz.

[9] LEE, H., CERPA, A., AND LEVIS, P. Improving
wireless simulation through noise modeling. Pro-
ceedings of the 6th international conference on In-
formation processing in sensor networks (2007).

[10] LEvis, P., LEE, N., WELSH, M., AND CULLER,
D. Tossim: accurate and scalable simulation of en-
tire tinyos applications. SenSys '03: Proceedings of
the st international conference on Embedded net-
worked sensor systems (Nov 2003).

[11] MAMEI, M., AND ZAMBONELLI, F. Field-based
approaches to adaptive motion coordination in per-
vasive computing scenarios. Handbook of Algo-
rithms for Mobile and Wireless Networking and
Computing (2004).

[12] RAPPAPORT, T. Wireless Communications: Prin-
ciples and Practice, second ed. Prentice Hall, 2002.

[13] RoboBees. http://robobees.seas.harvard.edu.

[14] WHITEHOUSE, K., KARLOF, C., AND CULLER,
D. A practical evaluation of radio signal strength
for ranging-based localization. ACM SIGMOBILE
Mobile Computing and Communications Review
(2007), 41-52.

12



