

- In Nature?
- In Engineering?

Agenda

- Why is Flocking useful?
- What makes a "good" flock?
- Alternatives to decentralized flocking?
- How does one "prove" a flocking algorithm?

Related Topics: Formation control (flocks with shapes), Obstacles and goals (partial information), Predators (speed of reaction, manuevers), Flocking gone bad (ant mills), Human flocking (panic), etc.

What makes a good flock?

LIST A

· Alignment: match velocity and heading

- Velocity similar to natural velocity of individual (not a slow march)
 - Velocity is seemingly independent of flock size
- Cohesion: maintain some desired distance between nearest neighbors
 - Very loose definition (flock could take on many shapes? Who constitutes as neighbors?)
 - Collisions are extremely rare (allow tight inter-agent distances while maintaining speed)
- Connectedness
 - Everyone is part of the moving flock (don't accidently lose members along the way)

LIST B

- Recovery
 - Always a force towards getting into a flock; small perturbations should not cause flock to fall apart
 - Big Obstacles: maybe flock splits temporarily but comes back together...
- Reactivity
 - Fast ability to change direction without losing flock properties (alignment, cohesion, connected)
- Scalability
 - Same behavior is observed regardless of swarm size (e.g. flock velocity, connectedness, reactivity)

Flocking and Formation Control

Lots of potential algorithmic approaches

- Prescribed Paths (blue angels, sync swimming)
- Leader-Follower (or a tree of relations)
- Explicit management of connectivity
- ... Or decentralized flocking

Lots of alternatives to decentralized. How do these compare ?

Agenda

- Why is Flocking useful?
- What makes a "good" flock?
- Alternatives to decentralized flocking?
- How does one "prove" a flocking algorithm?

Related Topics: Formation control (flocks with shapes), Obstacles and goals (partial information), Predators (speed of reaction, manuevers), Flocking gone bad (ant mills), Human flocking (panic), etc.

Analyzing Decentralized Flocking

- Biology
 - Biological empirical studies date back long time
 - Fish Schooling; Highly popular still! (e.g. Couzin at Princeton. Starlings EU project in Rome)
 - The "real" local rules remains unknown (e.g. Do all neighbors matter?)
- Two Influential models
 - Craig Reynolds, SIGGRAPH, 1990
 - Tamas Viscek, Physical Review letters, 1995

Control theory

- Use flocking for scalable formation control on unmanned vehicles
 - Biology suggests that nature has some powerful and effective solutions
 - But unclear what the individual mechanisms are
 - (and whether the hypotheses lead to observed behavior (huge parameter space))
- Tanner, Jadbabaie, Pappas;
 - Proof strategies, extensions like limited vision, DARPA "Swarms" project at Upenn.
- Olfati-Saber and Murray; obstacle avoidance and goal-directed behaviors

Analyzing Decentralized Flocking

Olfati-Saber and Murray

- Cohesion as a hexagonal lattice (alpha-net)
- Steady state: 6 neighbors

Extended idea to flocking with

- Goals (everyone knows)
- Obstacle avoidance (gamma-agents)
- Split, join, squeeze maneuvers

