
10/19/18

1

	
Global-to-Local	Theory	

CS289	

“Spatial”	Computers	

10/19/18

2

Why	Global-to-local	Theory?	

•  Global-to-local	compilers	allows	us	to	
transform	a	class	of	global	goals	into	local	
rules	for	individual	agents	

•  Robustness,	scalability,	provable..		

•  But	they	do	not	tell	us	what	is	computable	
•  Local	to	Global	is	hard:	e.g.	Conway’s	Game	of	Life		
•  But,	Global	to	Local	is	possible:		Yamins,	PhD	2008	

Cellular	Automata	
•  Stanislaw	Ulam	and	John	von	Neumann	(1940s)	

–  Simulate	“discrete”	biology	&	physics;		
–  Self-replicating	machines	

•  Conway’s	Game	of	Life	(1970s)	
–  A	simple	intuitive	rule….amazing	dynamic	patterns!	
–  Turing	Complete!	(2002)	

•  Wolfram,	A	New	Kind	of	Science,	2002	
–  Systematic	classification	of	all	1D	two-state	CA	rules	

10/19/18

3

Why	Global-to-local	Theory?	

•  Global-to-local	compilers	allows	us	to	
transform	a	class	of	global	goals	into	local	
rules	for	individual	agents	

•  Robustness,	scalability,	provable..		

•  But	they	do	not	tell	us	what	is	computable	
•  Local	to	Global	is	hard:	e.g.	Conway’s	Game	of	Life		
•  But,	Global	to	Local	is	possible:		Yamins,	PhD	2008	

The	Setup	
•  1D	multi-agent	system	(like	cellular	automata)	
	
	
	
	

•  Goal:	
–  Self-organize	target	pattern	
–  Scalable	to	more	agents	
– Any	initial	condition	
– Any	timing	model	

.......

.......

.......

.......

agent state m=R,B
agent local view, r = 2

LOCAL RULE

n agents

GOAL

Initial Condition

10/19/18

4

The	Setup	
•  1D	multi-agent	system	(like	cellular	automata)	
	
	
	
	

•  Goal:	
–  Self-organize	target	pattern	
–  Scalable	to	more	agents	
– Any	initial	condition	
– Any	timing	model	

.......

.......

.......
.......

agent state m=R,B
agent local view, r = 2

LOCAL RULE

n agents

GOAL

Initial Condition

Theoretical	Underpinnings	
•  Local	Checkability	

–  Given	agent	model	(r,	m)	
–  Can	you	design	a	“voting”	scheme	such	that	if	every	agent	says	1,	

then	the	global	pattern	is	in	goal	space.	
–  Necessary	and	Sufficient*	

•  If	no	check	exists	=>	no	solution	exists	
–  Can	use	to	to	prove	minimal	requirements	

•  If	a	check	is	available	=>		
–  Can	automatically	produce	a	local	rule,		
													but	with	slightly	larger	radius	(R=2r+2)	
–  Provably	correct,	robust	to	asynchrony,	self-repairing	

10/19/18

5

Lets	do	an	example	
• Goal	Pattern:	000100010001.....0001	

1) 	Design	and	prove	correct	a	local	check	scheme	for	r=2	
2) 	Prove	that	no	local	check	scheme	can	be	designed	for	r=1	

3) 	How	would	you	add	state	(change	pattern)	to	make	r=1	possible?		

4) 	Make	a	local	rule	of	radius	r=4	for	the	original	pattern	
	

5) 	Prove	there	is	no	local	check	of	finite	radius	for	the		
					half-n-half	pattern	(0n1n)	pattern	

Goal	Pattern:	000100010001.....	
	
Local	check	scheme	for	r=2	

	Left	case:	000	0001	 		
									Right	case:	001	and	0001	

	Middle	case:	00100	00010	01000	10001	
	
No	local	check	for	r=1:	You	need	to	accept	000,	but	then	all	zeros	would	be	accepted	

Local	Rule	Construction	for	r=4	
Always	possible	to	make	a	local	rule	of	length	R=2*r	+	2		
Method	is	to	make	a	“left-side”	local	rule	(here,	we	do	r=4	on	left	side)	
	
Special	cases	on	left	side	
•  *	=>	0	
•  0*	=>	00	
•  00*	=>	000	
•  000*	=>	0001	
General	cases	
•  0001*	=>	00010	
•  0010*	=>	00100	
•  0100*	=>	01000	
•  1000*	=>	10001	
Example,	try	this	initial	condition:	1000	0010	0000	00000……	

In this case,
You cannot do a left-side rule for r=2
Because 00* is ambiguous
00* could be 001 or 000

10/19/18

6

Yamin’s	Global-to-Local	Compiler	

Local	Checkability-based	Compiler	
Input:		

Target	pattern,	desired	agent	state	and	radius	

Output:	
Compiler	tries	to	derive	a	local	check	scheme	
Either	doesn’t	exist	(suggest	minimum	radius	needed)	

Or	Local	Rule	(scalable,	asynchronous,	self-repairing)	

10/19/18

7

Compiler	generated	patterns	

Some	Thoughts	

•  So	far	we	have	tackled	1D	systems.	Can	we	
generalize	the	ideas	to	other	agent	models?	

•  Open	Questions:	
– More	complex	patterns	

•  E.g.	Majority	vote	(Melanie	Mitchell)	

– More	complex	spaces	
•  3D	cellular	automata:	Lattice	Swarms!	(Th&B)	

– Approximate	(high-probability)	solutions	

10/19/18

8

The	Curious	Case	of	
2D	Proportional	Patterns	

Proportional	Patterns	are	Interesting	

In	1D	(line),	no	solution	exists	with	fixed	state	and	radius	
But,	in	2D	(square),	can	solve	with	finite	state	and	radius!	

Theoretical	Underpinnings	
•  Reason	theoretically	about	intuitive	things	

–  How	one	can	tradeoff	state	and	radius	

–  Why	some	things	are	harder	than	others	
–  Why	some	things	take	longer	than	others	

–  How	simple	patterns	can	be	combined	to	make	complex	ones	
–  Why	1D	patterns	are	like	Strings	(relation	to	grammars)	

–  Why	global-to-local	is	possible	in	CAs,		
							whereas	local-to-global	may	be	so	complex....	

