Global-to-Local Theory CS289

Why Global-to-local Theory?

- Global-to-local compilers allows us to transform a class of global goals into local rules for individual agents
 - Robustness, scalability, provable..
- But they do not tell us what is computable
 - · Local to Global is hard: e.g. Conway's Game of Life
 - But, Global to Local is possible: Yamins, PhD 2008

Cellular Automata

- Stanislaw Ulam and John von Neumann (1940s)
 - Simulate "discrete" biology & physics;
 - Self-replicating machines
- Conway's Game of Life (1970s)
 - A simple intuitive rule....amazing dynamic patterns!
 - Turing Complete! (2002)
- Wolfram, A New Kind of Science, 2002
 - Systematic classification of all 1D two-state CA rules

Why Global-to-local Theory?

- Global-to-local compilers allows us to transform a class of global goals into local rules for individual agents
 - Robustness, scalability, provable..
- But they do not tell us what is computable
 - · Local to Global is hard: e.g. Conway's Game of Life
 - But, Global to Local is possible: Yamins, PhD 2008

The Setup

• 1D multi-agent system (like cellular automata)

•

Theoretical Underpinnings

- Local Checkability
 - Given agent model (r, m)
 - Can you design a "voting" scheme such that if every agent says 1, then the global pattern is in goal space.
 - Necessary and Sufficient*
- If no check exists => no solution exists
 - Can use to to prove minimal requirements
- If a check is available =>
 - Can automatically produce a local rule,
 but with slightly larger radius (R=2r+2)
 - Provably correct, robust to asynchrony, self-repairing

Lets do an example

- Goal Pattern: 000100010001.....0001
- 1) Design and prove correct a local check scheme for r=2
- 2) Prove that no local check scheme can be designed for r=1
- 3) How would you add state (change pattern) to make r=1 possible?
- 4) Make a local rule of radius r=4 for the original pattern
- 5) Prove there is no local check of finite radius for the half-n-half pattern (0ⁿ1ⁿ) pattern

Goal Pattern: 000100010001.....

Local check scheme for r=2

Left case: 000 0001 Right case: 001 and 0001

Middle case: 00100 00010 01000 10001

No local check for r=1: You need to accept 000, but then all zeros would be accepted

Local Rule Construction for r=4

Always possible to make a local rule of length R=2*r+2 Method is to make a "left-side" local rule (here, we do r=4 on left side)

Special cases on left side

- * => 0
- 0* => 00
- 00* => 000
- 000* => 0001

General cases

- 0001* => 0001<mark>0</mark>
- 0010* => 0010<mark>0</mark>
- 0100* => 0100<mark>0</mark>
- 1000* => 1000<mark>1</mark>

Example, try this initial condition: 1000 0010 0000 00000......

n this case,

You cannot do a left-side rule for r=2 Because 00* is ambiguous

Compiler generated patterns

Some Thoughts

- So far we have tackled 1D systems. Can we generalize the ideas to other agent models?
- Open Questions:
 - More complex patterns
 - E.g. Majority vote (Melanie Mitchell)
 - More complex spaces
 - 3D cellular automata: Lattice Swarms! (Th&B)
 - Approximate (high-probability) solutions

The Curious Case of 2D Proportional Patterns

Proportional Patterns are Interesting

In 1D (line), no solution exists with fixed state and radius But, in 2D (square), can solve with finite state and radius!

Theoretical Underpinnings

- Reason theoretically about intuitive things
 - How one can tradeoff state and radius
 - Why some things are harder than others
 - Why some things take longer than others
 - How simple patterns can be combined to make complex ones
 - Why 1D patterns are like Strings (relation to grammars)
 - Why global-to-local is possible in CAs,
 whereas local-to-global may be so complex....