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The repair of injured tendons remains a great challenge, largely owing to a lack of in-depth characterization of tendon cells and

their precursors. We show that human and mouse tendons harbor a unique cell population, termed tendon stem/progenitor cells

(TSPCs), that has universal stem cell characteristics such as clonogenicity, multipotency and self-renewal capacity. The isolated

TSPCs could regenerate tendon-like tissues after extended expansion in vitro and transplantation in vivo. Moreover, we show that

TSPCs reside within a unique niche predominantly comprised of an extracellular matrix, and we identify biglycan (Bgn) and

fibromodulin (Fmod) as two critical components that organize this niche. Depletion of Bgn and Fmod affects the differentiation of

TSPCs by modulating bone morphogenetic protein signaling and impairs tendon formation in vivo. Our results, while offering new

insights into the biology of tendon cells, may assist in future strategies to treat tendon diseases.

Tendons are specialized tissues that connect bone to muscle, transmit-
ting the forces generated by these structures to allow for body
movement. Tendon injuries due to overuse or age-related degenera-
tion are a common clinical problem. Damaged tendon tissue heals
very slowly and rarely attains the structural integrity and mechanical
strength of normal, undamaged tendon1. The development of new
treatment options for injured tendons has been hindered by a limited
understanding of basic tendon biology1.

The primary unit of tendon is a fiber comprised of collagen fibrils
that cross-link to each other in a staggered fashion2. Tendon cells
reside between long, parallel chains of these fibrils and synthesize a
unique extracellular matrix (ECM) that contains primarily collagens,
large proteoglycans and small, leucine-rich proteoglycans, which
function as lubricators and as organizers for collagen fibril assembly2,3.
Despite the large abundance of the ECM in tendon, very little is
known about its role in regulating the function of the cells that reside
within it. A better understanding of the mechanisms that regulate the
function and the differentiation of tendon cells is essential to devel-
oping new treatments for tendinopathy such as tendon rupture or
ectopic ossification resulting from injury caused by overuse or trauma.

Several lines of evidence suggest that multipotential stem cells are
present in tendons and ligaments. First, both human and mouse
tendons develop fibrocartilage and ossification in response to injury4.
Second, tendon-derived immortalized cell lines or human tendon-
derived fibroblasts express genes of adipogenic, osteogenic and chon-
drogenic differentiation pathways, suggesting that they possess multiple
differentiation capacities in vitro5,6. Finally, postnatal stem cells capable

of differentiating into adipocytes and osteoblastic cells have been
identified in human periodontal ligaments7. Nevertheless, no studies
to date have identified a definitive stem or progenitor cell population in
tendon tissues or examined the nature of the niche that regulates the
self-renewal and differentiation of tendon stem cells. The goal of our
study was to determine whether adult tendon tissues harbor cells with
stem-cell character and to identify critical components of the tendon
stem-cell niche. We isolated a rare cell population from both human
and mouse tendons and showed that they possess several universal
criteria of stem cells, including clonogenicity, self-renewal and multi-
potent differentiation capacity. However, the cells of this population
showed heterogeneity in these properties and could conceivably con-
tain tendon progenitor cells. We therefore named these cells tendon
stem/progenitor cells (TSPCs). Furthermore, we showed that TSPCs
reside within a niche composed primarily of an ECM, which is unique
among the known stem cell niches, including the bulge niche for skin
stem cells8, the osteoblast niche for hematopoietic stem cells9–11 and
the perivascular niche for neural stem cells and bone marrow stromal
stem cells12–14. Finally, using genetically engineered mice, we identified
Bgn and Fmod as two critical components of the tendon stem cell
niche, which in turn controls the fate of tendon TSPCs in part by
modulating bone morphogenic protein (BMP) activity.

RESULTS

Tendon-derived cells possess clonogenic capability

The commonly used criteria that define stem cells are clono-
genicity, multipotency and self-renewal. To characterize whether
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tendon-derived cells are clonogenic, we generated and cultured single-
cell suspensions from WT C57BL/6 mouse patellar tendon or human
hamstring tendon. A portion of tendon-derived cells attached onto the
plate and remained quiescent for 5�6 d before they started rapidly
dividing to form colonies. After 8�10 d, colonies that had formed
from single cells were visualized using methyl violet staining (Fig. 1a
and Supplementary Fig. 1a online). A small population (B3�4%) of
tendon-derived cells from both mouse and human tissue formed
adherent cell colonies (Fig. 1a). These colonies were heterogeneous in
size and cell density, potentially reflecting differences in the rate of cell
proliferation (Fig. 1a). Morphologically, five different colony types

were observed in mouse tendon-derived cell cultures (mTSPCs 1�5,
Supplementary Fig. 1b) and they were different from bone
marrow stromal cells (BMSCs, Supplementary Fig. 1b). Human
tendon-derived cells (TSPCs) were relatively homogeneous and
similar to human BMSCs (BMSCs, Supplementary Fig. 1b).

Tendon-derived cells are distinct from BMSCs

Before we tested TSPCs further for more stem cell criteria, we first
compared the gene expression profile of TSPCs to that of BMSCs in
order to identify TSPC-specific markers. Thus, we isolated mouse and
human TSPCs and BMSCs from postnatal tendon tissues and bone
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Figure 1 Isolation and characterization of TSPCs. (a) The colony-forming efficiency of mouse and human tendon-derived cells. The results shown are

mean ± s.e.m. of 3�4 flasks. Bars, 2 mm. (b) RT-PCR analysis of gene expression profiles related to tendon, cartilage and bone in mouse (left) or human

(right) TSPCs and BMSCs that were cultured in the presence or absence of 100 ng/ml BMP2 or 2 ng/ml TGF-b1 for 7 d. (c) Immunocytochemistry staining

of proteins related to tendon and cartilage in mouse TSPCs and BMSCs. Bars, 50 mm. (d) Flow cytometry analysis of the expression of cell surface markers

related to stem cells, BMSCs, hematopoietic stem cells and endothelial cells on mouse (left) and human (right) TSPCs.
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marrow, respectively, expanded them in vitro and carried out mRNA
isolation and assessment. Semiquantitative reverse transcriptase (RT)-
PCR showed that mouse TSPCs expressed higher amounts of scleraxis
(a twist-related bHLH transcription factor encoded by the gene Scx)15,
cartilage oligomeric protein (Comp)16, the transcription factor SOX9
(Sox9) and the osteogenic transcription factor runt-related transcrip-
tion factor 2 (Runx2) as compared to mouse BMSCs (Fig. 1b).
Human TSPCs expressed higher levels of tenomodulin (TNMD)17

than did human BMSCs (Fig. 1b). BMP2 and transforming growth
factor-b1 (TGF-b1) are important growth factors in the regulation of
tendon and bone formation. Therefore, we examined how TSPCs and
BMSCs responded to these factors. BMP2 and TGF-b1 inhibited TSPC
expression of Scx, Sox9 and TNMD but promoted both mouse and
human BMSC expression of the genes encoding the RUNX2 and SP7
(also known as osterix) proteins. Sp7 and SP7 were strongly induced
by BMP2 in BMSCs. The expression levels of COMP were similar in
both human TSPCs and BMSCs (Fig. 1b) and were not affected by
BMP2 and TGF-b1 treatment.

Immunocytochemistry staining further confirmed the unique phe-
notype of the isolated TSPCs. Specifically, all TSPCs expressed type I
collagen, whereas only a certain population of BMSCs expressed
this protein (Fig. 1c). On the other hand, expression of a-smooth
muscle actin (a-SMA) was more abundant in BMSCs than in TSPCs
(Fig. 1c). In line with what we showed previously using RT-PCR
(Fig. 1b), more TSPCs than BMSCs expressed Comp and tenascin C.
All TSPCs and BMSCs expressed fibronectin, but none expressed type
II collagen (Fig. 1c).

We used flow cytometric analysis to examine the presence of surface
antigens on TSPCs (Fig. 1d). Over 96% of mouse TSPCs (passage 0)
were positive for a stem cell marker, stem cell antigen-1 (Sca-1)18–22,

and over 60% of these cells were positive for
the fibroblast marker CD90.2 that was not
expressed by BMSCs (Fig. 1d and Supple-
mentary Fig. 1c). They were negative for the

hematopoietic stem cell markers CD34 and CD117, for the leukocyte
marker CD45, and for the endothelial cell markers Flk-1 and CD144,
thus verifying the lack of contaminating hematopoietic cells and
endothelial cells (Fig. 1d). TSPCs were positive for CD44, but not
CD18, a surface receptor present on BMSCs23 (Fig. 1d). Similarly,
human TSPCs (passage 2) were positive for BMSC markers Stro-l,
CD146 (also known as Muc18 or MCAM)24,25, CD90 and CD44, but
not for CD18 (Fig. 1d). Like mouse TSPCs, human TSPCs did not
express the hematopoietic cell markers CD34, CD45 and CD117(c-kit)
or the endothelial cell marker CD106 (Fig. 1d).

The putative tendon stem cells are multipotent

The multidifferentiation potentials of the TSPCs toward osteogenesis,
adipogenesis and chondrogenesis were determined and then com-
pared to those of BMSCs. Mouse and human TSPCs accumulated
Ca2+ more rapidly and formed B4 times more nodules than BMSCs
(Fig. 2a and Supplementary Fig. 2a online). RT-PCR analysis showed
that the expression of the osteogenic markers osteopontin (Spp1),
bone sialoprotein (Ibsp), alkaline phosphatase (AKP1) and osteocalcin
(BGLAP1) was increased after osteogenic induction for 3 weeks.
Alkaline phosphatase (Akp1) expression in mouse cells was observed
both with and without osteogenic induction. Oil Red O staining of the
lipid droplets within the adipocytes, an indicator of adipogenesis, was
also greater in TSPCs than in BMSCs after 3 weeks of culture in
adipogenic induction medium (Supplementary Fig. 2b). The expres-
sion of the adipogenic markers lipoprotein lipase (Lpl/LPL),
C/EBPa (Cebpa/CEBPA), aP2 (Fabp4), adipsin (CFD) and PPARg
(PPARGC1A) was also induced after 3 weeks of adipogenic induction.
Chondrogenic differentiation after induction in chondrogenic med-
ium was assessed in pellet culture by immunostaining of type II
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Figure 2 Multidifferentiation potential of

putative mouse and human TSPCs in vitro and

in vivo. (a) Alizarin Red S and Oil Red O

staining showed osteogenic and adipogenic

differentiation, respectively, of mouse (left)

and human (right) TSPCs. Bar, 100 mm.

RT-PCR showed gene expression profiles

related to osteogenic (osteo) and adipogenic

(adipo) differentiation compared to uninduced

(un) cultures. (b) Chondrogenic differentiation

of mouse (left) and human (right) TSPCs.

Chondrogenic differentiation was assessed

by toluidine blue, Safranin O and the expression

of aggrecan and type II collagen. Bar, 100 mm.

(c) Multipotential differentiation of mouse
TSPCs in vivo. H&E stained sections of the

transplant showed that bone, bone marrow,

tendon-like tissue and fibrocartilage (FC)

were formed (left). Bar, 100 mm. Higher

magnification of the yellow box at upper left

shows the presence of bone- and tendon-like

tissues by H&E staining (top middle) and by

polarized light (bottom middle). Bars, 25 mm.
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collagen and aggrecan expression and by toluidine blue and Safranin
O staining of the proteoglycan-rich ECM (Fig. 2b and Supplementary
Fig. 2c). In addition to comparing mouse TSPCs with BMSCs,
we also isolated dermal fibroblasts from the same mice and found
that in vitro, they too could be induced to accumulate Ca2+ and lipid
droplets (Supplementary Fig. 2a,b). They could not, however, be
induced toward chondrogenic differentiation (Supplementary
Fig. 2c). Like human BMSCs26, individual colonies of human
TSPCs showed heterogeneous differentiation potential toward osteo-
genesis, adipogenesis and chondrogenesis (Supplementary Fig. 3a
online). The majority of colonies (14 of 18 colonies from two
donors) were tripotential (that is, showed all three differentiation
potentials). Small percentages were bipotential (3 of 18 colonies) and
unipotential (1 of 18 colonies). To determine the multidifferentiation
potential of TSPCs in vivo, we cultured them in osteogenic
induction medium in the presence of BMP2 for 2 weeks before
transplanting them subcutaneously with a carrier (hydroxyapatite/
tricalcium phosphate, HA/TCP) into immunocompromised mice27,28.
After 8 weeks, bone formation was observed on the HA/TCP carrier
surface (Fig. 2c, left), and tendon-like tissues were observed adjacent
to the newly formed bones (Fig. 2c, top middle), which was further
confirmed by the presence of unique collagen fibers when the tissue
was visualized under polarized light (Fig. 2c, bottom middle) and
by Goldner’s trichrome staining (Supplementary Fig. 4 online).
Bone marrow–like structures were found at the center of the newly
formed bones and were surrounded by fibrocartilages (FC, Fig. 2c,

left), as evidenced by positive Alcian blue staining (Fig. 2c, top right)
and negative type I collagen staining (Fig. 2c, bottom right).

The putative tendon stem cells are self-renewing

Both human and mouse TSPCs proliferated faster than BMSCs
isolated from the same individuals (Fig. 3a), as judged by bromo-
deoxyuridine (BrdU) incorporation. Population doubling assays
showed that both mouse and human TSPCs could divide for an
extensive period in vitro (Fig. 3b). Population doubling of mouse
TSPCs, but not of human TSPCs, was higher than that of BMSCs
(Fig. 3b). Furthermore, TSPCs derived from individual colonies
also showed high proliferation capability for an extended period of
time (Fig. 3c).

The high doubling capacity of TSPCs suggested that they possessed
self-renewing capability. To confirm this, we examined TSPCs for their
clonogenic and multidifferentiation potential after serial in vitro and
in vivo expansions (Fig. 3d). Briefly, TSPCs were isolated from green
fluorescence protein (GFP)-expressing C57BL/6 transgenic mice,
expanded in vitro and then transplanted subcutaneously with Gelfoam
into immunocompromised mice. After 8 weeks, the tendon-like
tissues that formed contained GFP-positive cells, indicating their
donor-cell origin (Fig. 3e). The transplants were removed, digested
and then expanded again in vitro. The transplant-derived GFP-positive
TSPCs retained their ability to form colonies (Fig. 3f and Supple-
mentary Fig. 5a online) with a lower colony-forming efficiency
(B2%, Fig. 3g). Approximately 90% of the colonies were GFP
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Figure 3 Self-renewal of putative tendon stem cells. (a) Proliferation of mouse and human TSPCs and BMSCs from the same donor measured by BrdU

incorporation. Data are mean ± s.e.m. of 5�6 fields. *P o 0.0005 TSPCs versus BMSCs. (b) Population doublings of multicolony-derived mouse and

human TSPCs and BMSCs from the same donors. Data are mean ± s.e.m. of three mice or two donors. *P o 0.05 TSPCs versus BMSCs. (c) Population

doublings of single colony–derived mouse and human TSPCs. (d) Strategy for testing self-renewal capability of TSPCs. s.c., subcutaneous transplantation.

(e) TSPCs from GFP-transgenic mice (arrows) formed tendon-like tissues (yellow dashed line) after being expanded in vitro (from 8 � 104 to 12 � 106 cells)

and transplanted with Gelfoam. Bars, 25 mm. (f) Phase-contrast (top) and fluorescence microscopy (bottom) showed the morphology and GFP fluorescence of
the colonies formed from transplant-derived cells. Bars, 200 mm. Numbers denote morphologically different types of colonies. (g) The colonies were stained

with GFP-specific antibody (GFP; IgG as a negative control; methyl violet staining shows the total amount of colonies). Bar, 500 mm. Bottom graph shows the

number of total colonies (methyl violet–stained) and GFP-positive (GFP+) colonies. N.S., not significant total colonies versus GFP+ colonies. (h) Transplant-

derived TSPCs maintained their multidifferentiation capacity toward osteogenesis (Alizarin Red S; bar, 500 mm), adipogenesis (Oil Red O; bar, 200 mm) and

chondrogenesis (type II collagen–positive; bar, 200 mm) in vitro and tendon formation (polarized light, yellow dashed line; bar, 25 mm) by GFP+ cells (arrows)

in vivo after being expanded in vitro (from 9 � 104 to 4 � 106 cells).
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positive, as determined by fluorescence microscopy (Fig. 3f) and
by GFP-specific antibody staining (Fig. 3g and Supplementary
Fig. 5a). A few GFP-negative cell clusters were observed in
the culture; these came from contamination of the host tissue
(Fig. 3f, mTSPCs-5). Morphologically, the GFP-positive cells
showed heterogeneity similar to that of primary tendon-derived
TSPC cultures (compare Fig. 3f to Supplementary Fig. 1b). Most
importantly, the transplant-derived TSPCs retained their ability to
differentiate into osteoblasts, adipocytes and chondrocytes (Fig. 3h
and Supplementary Fig. 5b), as well as their ability to form tendon-
like tissues in vivo when retransplanted with Gelfoam (Fig. 3h and
Supplementary Fig. 5c). These data demonstrated that even
after extended expansion in vitro and in vivo, the TSPCs
still retained their clonogenic and multipotent properties and their
ability to form tendon-like tissues in vivo, thus confirming their self-
renewing potential.

The putative tendon stem cells form enthesis-like tissue

The identification of TSPCs with self-renewal capability provided us
with a unique opportunity to repair and regenerate damaged or
diseased tendon tissues. To test the feasibility of this approach, we
first expanded GFP-expressing TSPCs in vitro and then transplanted
them with different carriers. Tendon-like tissues were generated from
mouse TSPCs with either Gelfoam, HA/TCP or Matrigel as carriers
(Fig. 3e and Fig. 4a,b). The regenerated tendon-like tissues showed
tendon-specific parallel alignments of collagen fibers, as evidenced by
their ability to reflect polarized light (polar, Fig. 4a–c). They also
stained strongly for type I collagen (Fig. 4a,b), and the donor origin of
the cells within the newly formed tendons was confirmed by their
positive GFP staining (Fig. 3e and Fig. 4a). Mouse dermal fibroblasts
transplanted with either Gelfoam or Matrigel did not form any tissue
(data not shown). Similarly, human TSPCs from the initial culture
and from individual colonies could generate tendon-like tissues when
transplanted with HA/TCP or Matrigel (Fig. 4c and Supplementary
Fig. 3b). When mouse TSPCs were treated with BMP2 and then
transplanted subcutaneously into immunocompromised mice, osteo-
tendinous junction–like structures (termed entheses) were formed
(Fig. 4d). More notably, when transplanted with HA/TCP onto the
surface of mouse calvariae, human TSPCs formed condensed collagen
fibers that were inserted into the bone, which were similar to Sharpey’s
fibers (Fig. 4e). These results were particularly striking, as the

human TSPCs, placed into a completely heterologous environment,
were still able to form tissue structures similar to those found
in vivo in humans.

Extracellular matrix organizes the tendon stem-cell niche

The differentiation and self-renewal of stem cells are regulated by the
cells’ specific niche. To characterize the tendon stem-cell niche, we first
localized TSPCs within their natural environment. Stem cells are
quiescent, but can also be slow cycling when spurred on by such
stimuli as rapid growth, regeneration of tissues and ex vivo explanta-
tion. We were able to label stem cells by taking advantage of their
slow-cycling proliferation during the rapid growth period. We admin-
istered BrdU intraperioneally into 3-d-old pups (daily for 3 d) to label
the proliferating cells. One day after this labeling procedure, approxi-
mately 40% of the cells within the patellar tendon were labeled by
BrdU as a result of rapid growth of the skeletal system (Fig. 5a). After
an extended period of time (more than 8 weeks), only cells that
retained the BrdU label29, representing stem cells, could be detected.
By 14 weeks, approximately 6.1 ± 1.63% of the cells within the patellar
tendon still retained BrdU (Fig. 5a), a percentage similar to the
colony-forming efficiency of tendon-derived cells (3.68 ± 0.32% for
2,000 cells plated, P ¼ 0.219; compare to Fig. 1a).

We found that the TSPCs resided in between the long parallel
chains of collagen fibrils and were surrounded predominantly by
ECM. Therefore, we predicted that the TSPC niche, if it exists, is
composed primarily of various ECM components. We further theo-
rized that alteration of the ECM composition would change the
structure of the TSPC niche and thus affect the fate of TSPCs. To
test this hypothesis, we studied two small proteoglycans, Bgn and
Fmod, that were both highly expressed in the tendon (Fig. 5b).
Genetic inactivation of Bgn and Fmod impairs tendon formation30.
We found that the patellar tendon in Bgn�/0Fmod�/� mice appeared
more translucent (Fig. 5c), significantly thinner and more cellular
than that of wild-type (WT) mice (Fig. 5d). In the absence of Bgn and
Fmod, the collagen fibers within the tendon were disorganized, as
evidenced by the large gaps within the tendon tissue and the fibers’
appearance under polarized light (Fig. 5d). On the basis of this
observation, we hypothesized that an ECM-rich niche, organized in
part by Bgn and Fmod, controls the self-renewal and differentiation of
TSPCs. Indeed, the number of colonies in Bgn�/0Fmod�/� mice was
significantly greater than in WT mice (Fig. 5e). TSPCs from
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Figure 4 Regeneration potential of TSPCs.

(a,b) Mouse TSPCs formed tendon-like tissue

in vivo 8 weeks after transplantation with HA/TCP

ceramic powder (a) or Matrigel (b). Tendon-like

tissues were identified under polarized light

(polar) or by Masson’s trichrome and type I

collagen staining (Col I, brown color). The

origin of the tendon-like tissues was identified by

GFP-specific antibody staining (black arrow).

Bars, 50 mm. (c) Human TSPCs formed tendon-

like tissue in vivo 8 weeks after transplantation

with HA/TCP (left) and Matrigel (right).

Bars, 50 mm. (d) Mouse BMP2–treated TSPCs

formed bone-tendon junction–like tissue

in vivo 8 weeks after transplantation with
HA/TCP. Bars, 100 mm. (e) Human TSPCs

formed Sharpey’s fibers (arrows) that were

inserted into the calvarial bone after

transplantation with HA/TCP on the surface of

calvariae for 8 weeks. Bars, 25 mm.

ART ICL ES

NATURE MEDICINE VOLUME 13 [ NUMBER 10 [ OCTOBER 2007 1223

©
20

07
 N

at
ur

e 
P

ub
lis

hi
ng

 G
ro

up
  

ht
tp

://
w

w
w

.n
at

ur
e.

co
m

/n
at

ur
em

ed
ic

in
e



Bgn�/0Fmod�/� mice proliferated faster than the cells from WT mice
(Fig. 5f). This increased number and proliferation of TSPCs may be
caused by a compensation for the impaired differentiation and
function of TSPCs, which could further contribute to the mal-
formation of tendon tissue in Bgn�/0Fmod�/� mice. This hypothesis
was supported by our finding that the expression of the
tendon marker Scx and of type I collagen was decreased in TSPCs
from Bgn�/0Fmod�/� mice as compared to cells from WT mice
(Fig. 5g,h). Thus, the TSPC niche, formed predominantly by ECM,
controls TSPC self-renewal and differentiation, and alteration
of the ECM composition leads to tendon malformation and
pathologic ossification.

An ECM-rich niche controls TSPC fate through BMP signaling

Human tendon tissue subjected to overuse and injures can acquire
ectopic ossification4, which might be caused by interruption of the
ECM structure and, subsequently, the TSPC niche. Indeed, the
impaired tendon in Bgn�/0Fmod�/� mice underwent ossification as
early as 2 months after birth and became more pronounced with age
(Fig. 6a). Similar to intratendinous ossification in humans, ossicles
formed in the tendons of Bgn�/0Fmod�/� mice were surrounded by
fibrocartilage, suggesting that ossification occurred through endonch-
ondral bone formation4,30. Consistent with this interpretation, we
found that Bgn�/0Fmod�/� TSPC cultures, but not WT cultures,

contained type II collagen–expressing cells (Fig. 6b). The expression of
aggrecan, a chondrocyte marker, was also increased in TSPCs in the
absence of Bgn and Fmod (Fig. 6b). The TSPCs from Bgn�/0Fmod�/�

mice formed bone in addition to tendon-like tissue in vivo, whereas
WT TSPCs only formed tendon-like tissue (Fig. 6c). We speculated
that changes in TSPC niche–associated ECM composition may
perturb the balance of certain cytokines and growth factors stored
within the ECM and thus alter the fate of TSPCs from tenogenesis to
osteogenesis. One of these regulatory cytokines is BMP2, which signals
through the Smad1-Smad5-Smad-8 pathway to increase the expres-
sion of Runx2 (Fig. 6d) and, as a result, Ca2+ accumulation (Fig. 6e,
bottom left), as measured by Alizarin Red staining, was substantially
increased. Likewise, alkaline phosphatase activity (Fig. 6e, top left), as
well as in vivo bone formation (Fig. 6e, right), were also considerably
increased. Therefore, we tested whether the Smad1-Smad5-Smad8
signal transduction pathway was affected by the absence of Bgn and
Fmod. Western blot analysis using a pan-pSmad antibody, showed
that phosphorylation of Smad1, Smad5 and Smad8 upon treatment
with BMP2 was greater in Bgn�/0Fmod�/� TSPCs than in WT cells
(Fig. 6f). Immunocytochemistry staining revealed more abundant
nuclear localization of phosphorylated Smad1 in Bgn�/0Fmod�/�

TSPCs as compared to WT cells, and the difference was even greater
after stimulation with BMP2 (Fig. 6g). Furthermore, transcriptional
activity of a BMP-responsive luciferase reporter construct (pID-lux)
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25 mm. Graph shows the percentage of BrdU+ cells 1 d and 14 weeks after labeling with

BrdU. Data are mean ± s.e.m. of 3 mice. *P o 0.0003 for 1 d versus 14 weeks. (b) Bgn and

Fmod are highly expressed in wild-type tendon. Bar, 25 mm. (c) The gross appearance of

impaired tendon (bright white tissue) formation in a 4-month-old Bgn�/0Fmod�/� mouse, as
compared to that in an age-matched wild-type mouse. (d) H&E staining of the sagittal
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was significantly higher in Bgn�/0Fmod�/� TSPCs in the presence of
BMP2 as compared to WT TSPCs (Fig. 6h). Taken together, these data
indicate that BMP signaling was more active in the absence of both
Bgn and Fmod.

DISCUSSION

We have successfully identified and isolated a unique cell population
from human and mouse tendon tissues that, on the basis of a number
of different criteria, shows characteristics of stem cells. With a DNA
labeling-retention assay that has been used to identify putative stem
cells in various tissues31–33, we show that TSPCs reside within a niche
environment that is surrounded predominantly by ECM proteins,
thus suggesting that the ECM may play a major role in organizing the
TSPC niche. Using mice deficient in the ECM proteins Bgn and Fmod,
we provide evidence that the TSPC fate is controlled by specific
components of this ECM-rich niche.

The isolation and characterization of TSPCs is important because
the cells will provide a new tool to study basic tendon biology. Little is
known about the factors that control tendon formation and main-
tenance, largely because tendon cells have been poorly characterized
and because specific tendon markers have not been identified. One
goal of our study was to identify such markers; for this we used a
combination of RT-PCR, immunocytochemistry and FACS analyses.
As is the case for other stem cells, no single marker could identify
TSPCs; rather, a combination of factors must be used. Although
TSPCs express many of the same markers as BMSCs, the expression

patterns were not identical. TSPCs highly express tendon-related
factors, such as Scx, TNMD, Comp and tenascin C. Mouse TSPCs
expressed CD90.2, a fibroblast marker, but not CD18, a BMSC marker.
These data suggest that TSPCs are closely related to BMSCs, but
not identical.

The stem-cell niche has been defined as a specialized microenviron-
ment that houses stem cells and maintains a balance of quiescence,
self-renewal and cell-fate commitment. The stem-cell niche is a three-
dimensional structure composed of cells, cytokines and the ECM34,35.
A number of stem-cell niches have been identified within a variety of
tissues and organs. For example, the osteoblasts govern the hemato-
poietic stem cell niche through the BMP, parathyroid hormone, and
Tie2–angiopoietin-1 signaling pathways10,11,36. The bulge of the hair
follicle, crypt and perivascular region provide niche microenviron-
ments for epidermal, intestinal and neural stem cells, respectively,
perhaps through multiple signaling pathways12,37,38. In addition, the
perivascular region was also identified as the niche that maintains the
‘stemness’ of bone marrow stromal stem cells13,14. Although most of
the identified niches are cell based, the ECM may also be involved in
the regulation of stem cells. For example, ECM proteins, such as
tenascin C, osteopontin and the combination of Bgn and decorin,
have been found to control the number of neural stem cells, hema-
topoietic stem cells and BMSCs, respectively27,39–42. Given that tendon
tissue is extremely rich in ECM components and contains substantially
fewer cells than most tissues, we hypothesized that tendon tissue may
contain a unique niche for TSPCs that is formed primarily by ECM
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Figure 6 Ectopic activation of BMP signaling induces ossification in Bgn�/0Fmod�/� mouse tendon tissue. (a) MicroCT image of the knees of 2- and

5-month-old Bgn�/0Fmod�/� mice showed patellae (arrows) and ectopic ossicles (red asterisks) formed in tendons. Bars, 2 mm. (b) Immunocytochemistry

staining of type II collagen and aggrecan in TSPCs from WT and Bgn�/0Fmod�/� mice. Bar, 50 mm. (c) TSPCs from Bgn�/0Fmod�/� mice form bone and

tendon-like tissue (arrows) after in vivo transplantation. Bar, 100 mm. (d) Phosphorylation of Smad1-Smad5-Smad8 (faster migrating, lower bands) with

or without BMP2 for 30 min (upper two panels) The upper band is nonspecific and is not induced by BMP. The expression of Smad1 and Runx2 with or

without BMP2 for 10 d (lower three panels). Hsp90, loading control. (e) Alkaline phosphatase (ALP) activity (top left) and Ca2+ accumulation as judged by

Alizerin Red staining (bottom left) in TSPCs and BMSCs with or without BMP2 for 3 d (upper) or 3 weeks (lower). Data are mean ± s.e.m. of three wells.

*P o 0.0001 vehicle versus BMP2. Bone formation, b, in vivo after cells were cultured with or without BMP2 for 2 weeks and then transplanted with
HA/TCP into immunocompromised mice (right). Bone marrow (m). Bar, 200 mm. (f) BMP-induced phosphorylation of Smad1-Smad5-Smad8 in TSPCs from

WT and Bgn�/0Fmod�/� mice (top). A pan-pSmad antibody that recognizes phosphorylation of Smad1, Smad5 and Smad8 was used for pSmad detection.

Hsp90, loading control. Densitometric analysis (bottom). (g) Nuclear localization of p-Smad1-Smad5-Smad8 in the presence or absence of BMP2 for 30 min.

Bar, 50 mm. (h) The transcriptional activity of a reporter plasmid expressing a BMP-responsive luciferase construct (pID-lux). pGL3, control vector. The

luciferase activity was reported as the fold increase over that of WT cells transfected with control vector in the absence of BMP2. Data are mean ± s.e.m. of

three wells. *P o 0.02 Bgn�/0Fmod�/� versus WT.
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components. In this study, we show that the tendon stem-cell niche is
composed predominantly of ECM and that alteration of ECM
composition changes TSPC pool size; this detours TSPC fate from
tenogenesis to osteogenesis, leading to ectopic ossification in the
tendon of Bgn�/0Fmod�/� mice.

ECM proteins (including proteoglycans) regulate the fate of stem
cells within their niche by modulating the bioactivities of growth
factors and cytokines to which ECM proteins often bind. In fact,
tenascin C affects neuronal differentiation by modulating the sensi-
tivity of the stem cells to fibroblast growth factor-2 and BMP4 (ref.
39). Our data also show increased sensitivity of TSPCs to BMP2 in the
absence of Bgn and Fmod, which could be a mechanistic basis for
altering the fate of TSPCs. BMP signaling has been shown to inhibit
tendon formation during development43. In sum these observations
reveal new and important roles for the ECM microenvironment in
TSPC maintenance and ultimately in normal tissue development
and maintenance.

The discovery of tendon stem cells that possess regenerative
capabilities opens new possibilities for treating damaged tendon tissue
that is slow to repair after injury. Unlike autologous bone grafts that
can be harvested in large quantities from large bones like the pelvis,
autologous tendon tissue is not readily available for use as grafting
material. However, the ability to use small portions of tendons to
isolate and expand cells that could form tendon tissue in vivo offers a
new strategy for improving the current means of tendon repair. In
addition, we show that TSPCs isolated from human tendons form
tendon-like tissue and enthesis-like structures (bone-tendon junc-
tions) when transplanted into immunocompromised mice. These
data suggest that human TSPCs could eventually be used to treat
patients with the damaged tendons or ruptured bone-tendon junc-
tions (enthesopathies) that are commonly caused by tendon overuse
or trauma.

A key limitation in using TSPCs to repair damaged tendon tissue is
the availability of autologous tendon tissue. Previous studies indicated
that BMSCs can form tendon- or ligament-type structures44. However,
we show that BMSCs are different from TSPCs, and that they form
bone rather than tendon-like tissue when in vitro–expanded cells are
transplanted into mice. The repair and regeneration of tendon tissue
with BMSCs without differential induction could potentially lead to
ossification, thereby worsening the tendinopathy. Recent work shows
that Smad8 overexpression in the immortalized BMSC-like cell line
C3H10T1/2 induces tenogenic differentiation45. Finding the optimal
conditions that will induce BMSC differentiation into tendon-forming
cells will be crucial for the development of BMSC-based tendon repair.
Given that tendon ECM controls tendon stem cell fate, it will be
interesting to determine whether BMSCs will acquire tendon stem cell
fate in the tendon ECM niche.

METHODS
Mice. We used male WT C57BL/6, C57BL/6-TgN(ACTbEGFP)1Osb mice

(Jackson Labs), or Bgn�/0Fmod�/� and their strain-matched WT mice

(C57BL/6-129) with approval from the Animal Care and Use Committee, US

National Institutes of Health (#NIDCR-DIR-05-347).

Cell isolation and culture. We obtained human hamstring tendon samples

from individuals (age 8�12 years) that had undergone tenotomy to release

hamstring contractures at Johns Hopkins University Hospital and followed the

approved guidelines set by the US National Institutes of Health Office of

Human Subjects Research (approval # OHSR 3005 for use of surgical waste).

Mouse patellar tendons from 6�8-week-old mice were dissected as follows: we

stripped off the tendon sheath and the surrounding paratenon, cut tendon

tissues into small pieces and digested with 3 mg/ml collagenase type I

(Worthington) and 4 mg/ml dispase (Roche) in PBS for 1 h at 37 1C.

Single-cell suspensions were cultured in a-MEM (Gibco), supplemented with

20% lot-selected FBS (Equitech-Bio) and 100 mM 2-mercaptoethanol (Gibco)

for 8�10 d at 5% CO2, 37 1C. We also isolated and cultured bone BMSCs from

the same individual or from the same mouse as previously described46. For

assays of colony-forming efficiency, we cultured single-cell suspensions of

tendon-derived cells in a 25-cm2 flask for 9 d. We stained and scored the

colonies and assessed the proliferation of TSPCs and BMSCs (passage 1) as

previously described27. We calculated population doubling (PD) for each

passage using the formula PD E log2[Nc/No], where No is the inoculum cell

population and Nc the number of cells at confluence, and added the PD from

each passage together to obtain the population doubling values. We performed

all the experiments with passage 1 for mouse TSPCs and passage 1 or 2 for

human TSPCs.

Multipotent differentiation. We tested the in vitro multidifferentiation poten-

tial of the TSPCs toward osteogenesis, adipogenesis and chondrogenesis as

described previously27,47,48. Osteogenic differentiation of TSPCs was quantified

by the intensity of Alizarin Red S staining Ca2+ (ref. 49) and normalized to cell

count using Cell Count Kit-8 (Dojindo). We visualized adipocytes using 0.3%

Oil Red O (Sigma). We assessed chondrogenic differentiation of TSPCs by stain-

ing for toluidine blue and Safranin O or for type II collagen and aggrecan. We

also examined the multidifferentiation potential of the TSPCs using an in vivo

transplantation system as previously described27,28, except TSPCs were first

cultured in vitro in osteogenic induction medium for 2 weeks in the presence

of 100 ng/ml BMP2 (Wyeth) before being mixed with HA/TCP (Zimmer).

Label-retaining cells. We injected BrdU (Sigma, 50 mg per g body weight)

intraperitoneally into 3-d-old pups twice daily for 3 d. We detected BrdU-

labeled cells on the paraffin-embedded sections using the BrdU Staining

Kit (Zymed).

Western blotting. We treated confluent TSPCs or BMSCs with 100 ng/ml

BMP2 or vehicle for the indicated times. The primary antibodies included

rabbit-specific antibodies to phosphorylated Smad1 (p-Smad1), Smad1 (Cell

Signaling, diluted 1:500), Hsp90 (Santa Cruz, diluted 1:500) and Aml-3

(Runx2) (Oncogene, diluted 1:100).

FACS analysis. We immunolabeled 5 � 105 cells with 1 mg of PE- or FITC-

conjugated rat anti-mouse, mouse anti-human monoclonal antibodies or

isotype-matched IgGs (Supplementary Methods online) for 1 h at 4 1C. For

non-conjugated antibodies (Supplementary Methods), we incubated 1 � 106

cells with primary antibody for 1 h and fluorescent secondary antibody for 1 h

at 4 1C, analyzed the samples using an Epics-XL-MCL flow cytometer

(Beckman Coulter) and calculated data using the FACScan program

(BD Biosciences).

RT-PCR. We designed primers (Supplementary Methods) with Primer3 soft-

ware (http://www-genome.wi.mit.edu/cgi-bin/primer/primer3.cgi).

Nucleofection and luciferase reporter assays. We determined the activation of

the BMP signaling pathway using the BMP-responsive luciferase reporter

construct pID1–lux (ref. 50) as described in Supplementary Methods.

In vivo transplantation. We mixed approximately 2�2.5 � 106 cells with 40 mg

of HA/TCP ceramic powder (Zimmer), Gelfoam (3 mm � 3 mm � 2 mm,

Pharmacia) or 50 ml Matrigel (BD Biosciences) subcutaneously onto calvariae

or into the dorsal surface of 8�10-week-old female immunocompromised

athymic nude-Foxn1nu mice (Harlan) as previously described28. We harvested

the transplants 8-10 weeks later.

Histochemistry and immunohistochemistry. We histochemically stained

paraffin-embedded sections with H&E, toluidine blue (Sigma), Safranin O

(Sigma) or trichrome (Masson’s or Goldner’s). For immunohistochemical

analysis, the sections were immunolabeled with primary antibodies (Supple-

mentary Methods) at 25 1C for 1 h. Isotype-matched negative control

antibodies (Zymed) were used under the same conditions. The broad-spectrum

immunoperoxidase AEC kit (Picture Plus, Zymed) was subsequently used to

detect the immunoactivity.
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Immunocytochemistry. We fixed the transplant-derived TSPC colonies or

passage 1 TSPCs with 4% paraformaldehyde in PBS at 25 1C for 20 min and

immunostained with primary antibodies (Supplementary Methods) for 1 h at

room temperature or overnight at 4 1C. The broad-spectrum immunoperox-

idase AEC kit was subsequently used to detect the immunoactivity.

Microcomputed tomography analysis. We scanned and reconstructed mouse

knees with 15 mm isotropic voxels on a microcomputed tomography analysis

(mCT) system (eXplore MS, GE Medical Systems). The two-dimensional and

three-dimensional images of the knee region were visualized with Microviewer

(GE Medical Systems).

Statistical analysis. We reported representative data of at least three indepen-

dent experiments. We performed statistical analyses with Student’s t-test.

Note: Supplementary information is available on the Nature Medicine website.
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