
Rossby waves 
 

 
Away from the equator, gravity wave adjustment is trapped horizontally within the 
deformation radius. However, there are other waves that can communicate over large 
distances.  
 
The variation of the Coriolis parameter with latitude (or more generally variations in PV) 
gives rise to a new type of winds called Rossby waves. Rossby waves are a key 
mechanism by which different parts of the atmosphere/ocean communicate. How it works 
can be qualitatively understood in terms of vorticity conservation. 



 

 
Start with PV conservation in a shallow water system: 
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Now simplify it by demanding that H is a constant. Physically, one could place two rigid 
places to bound the fluid: 
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This is known as the nondivergent barotropic vorticity equation. Being barotropic means 
that density (temperature) is constant on constant pressure surfaces. Linearizing it around 
a mean state with a zonal velocity of U, we have: 
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Define β=df/dy and assume it’s a constant, i.e. f=f0+βy. This is known as the β-plane 
approximation. Recall that  
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we have 
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Assume a wave solution of the form exp(i(kx+ly-ωt)), we have the dispersion relation 

 ω =Uk − β k
k2 + l2

 

The zonal phase speed relative to the mean wind is: 

 cx −U =
−β

k2 + l2
 

and is always westward. The phase speeds depend on the wavenumber so Rossby waves 
are dispersive. For a typical midlatitude synoptic-scale disturbance, with l=k and with 
wavelength of ~6000km, we estimate cx-U~-8m/s. This is smaller than typical mean 
zonal wind, so synoptic-scale Rossby waves usually move eastward (in terms of phase). 
Very long Rossby waves can however be stationary or even propagate westward (relative 
to the surface).  
 
One can also compute the group velocity of the Rossby waves. The group velocity is  
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The group velocity can be either eastward or westward (relative to the mean flow), 
depending on the ratio of the zonal and meridional wavenumbers.  
 
Now consider Rossby waves that are forced in a particular region (by baroclinic 
instability, heating or orography, e.g.) To the north, it should have positive cgy while to 
the south, it should have negative cgy. This implies that the phase lines are from northwest 
to southeast to the north, and from southwest to northeast to the south, like the banana-
shapes pattern that we saw before. This converges zonal momentum to the region of 
Rossby wave generation. 
 
An example of the propagation of Rossby waves on a sphere: 



 
Rossby wave can be used to explain the zonal asymmetry in the mean circulation that we 
saw: 

 
Fig. Jan. mean 500hPa geopotential height. 
 
Now consider flow over planetary scale orography. As the flow moves towards the 
orography, it’s compressed in the vertical. By PV conservation, it will gain negative 
relative vorticity. The reverse will happen when the flow extends in the vertical. One may 
include these as sources of vorticity in Eq. (1.1): 
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where U is the mean zonal wind, and the mean meridional wind is assumed to be zero. H 
is the depth of the fluid, f0 is the Coriolis parameter at the latitude of interest and β=df/dy. 
ψ is the streamfunction so that v=∂ψ/∂x and vorticity ζ=∇2ψ. hT is the height of the 



topography. We should assume hT is uniform in y (the meridional direction) and has 
zonal wavenumber of k and amplitude of h0.  
 
Since this is a linear equation with constant coefficients, the response ψ has the same 
frequencies and wavenumbers as the forcing hT. Decompose hT into the different Fourier 
components and we can treat them separately. Denote the component of hT with zonal 
wavenumber k and frequency ω as  
   ĥ0 exp i(kx−ωt)[ ]   
and its response as  
   ψ̂exp i(kx−ωt)[ ]   
Equation (1.2) for this Fourier component then becomes: 
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which is the solution. From this expression, we can see whenever the phase speed of the 
forcing, which is given by ω/k, matches that of a free Rossby wave mode with a zonal 
wavenumber k, we have resonance. For orographic forcing, the frequency is zero and 
resonance happens when U=β/k2.  
 
The response to steady forcing such as orography is therefore: 

 ψ̂ = f0ĥ0 /H
k2 − ks

2  

where ks=sqrt(β/U) is the wavenumber at which the free Rossby wave is stationary. 
Therefore there is a resonance effect when the scale of the orography matches that of the 
stationary Rossby wave. Charney and Eliassen (1949) did this calculation with some 
simple damping and simple y dependence, and were able to produce the observed 
geopotential height distribution quite well given the orography from the Himalayas and 
the Rockies (see below). In reality, the strong diabatic heating as the cold continental air 
moves over the ocean also contribute significantly to the stationary wave pattern. Less 
pronounced orography in the southern hemisphere explains why it’s more zonally 
symmetric in its mean circulation. 
 



 
 
The stationary wave pattern gives rise to the Asian and North American jet streams. Can 
you locate them on the two dimensional plot of the observed stationary wave pattern? 
 
The answer is below: 

 



The jet streams are regions of strong thermal wind, which is what’s behind baroclinic 
instability. So these regions are also favorable for storm development. Moreover, the 
strong jets provide a strong PV gradient and a good wave guide for the Rossby waves so 
these regions are also known as the storm tracks. The storm tracks move seasonally, 
being more equatorward in the winter. This affects the precipitation in many regions. 
 

 
Fig. Rainfall pattern for January (top) and July (bottom) in mm/month. (The high 
precipitations near the Antarctic ice shelf are spurious due to problems with the 
algorithm) 
 
 
Like gravity waves, Rossby waves can also propagate vertically. For a mean state that is 
homogeneous horizontally but varies with height, with some approximations (Boussinesq 
and quasi-geostrophic), the dispersion relation can be written as  
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where m is the vertical wavenumber (see Salby’s book Chapter 14 for a derivation). We 
see that m becomes imaginary if  
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Thus, Rossby waves will not propagate if the mean westerly winds become too weak or 
too strong. In the summer hemisphere in the stratosphere, winds are easterly so no 
Rossby waves can propagate into the stratosphere. In the winter hemisphere, for small 
scale waves such as the synoptic scale (a couple thousand km) waves, the second 
criterion can be satisfied shortly above the tropopause so only the very largest planetary 
waves can propagate into the stratosphere, explaining the difference in the observed wave 
scale in the stratosphere and the troposphere. 

 



 



 
 
Upward propagation of Rossby waves, in particular the stationary waves forced by 
orography, and their dissipation have an important role in the dynamics of the 
stratosphere. As the planetary waves propagate up in the winter stratosphere, because of 
dissipation (both thermal and mechanical), they decelerate the polar night jet and force air 
to move poleward. This wave pumping is what drives the circulation in the stratosphere, 
known as the Brewer-Dobson circulation. This wave pumping adiabatically warms the 
winter polar stratosphere. Otherwise, the winter polar stratosphere would be a lot colder 
(and the polar night jet would be a lot stronger, in fact over 300m/s). 



 



 

 



The Brewer-Dobson circulation is well confirmed by the observed distributions of 
chemical tracers. 

 
Another good example is ozone. 
 
Horizontal propagation of Rossby waves is also very important. It is a mechanism by 
which tropical sea surface temperature changes affect the global circulation. 



 


