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Abstract

I explore learning dynamics for people who believe in the “gambler’s fallacy” —
anticipating too much regression to the mean for realizations of independent random
events. Agents arrive in large generations and face the same stage game, an optimal-
stopping problem. They are initially uncertain about the distributions generating
draws in different periods of the stage game and must infer these fundamentals from the
decision histories of their predecessors. Each agent’s stopping strategy thus imposes
a censoring effect on the datasets of her successors, as her history does not record
the future draws she would have found had she persisted longer in the stage game.
While innocuous for rational agents, this censoring effect interacts with the gambler’s
fallacy and creates a positive-feedback loop between distorted stopping strategies and
pessimistic beliefs about the fundamentals. In general settings, stopping strategies
of successive generations converge monotonically to a steady-state strategy that stops
earlier than optimal. If agents jointly infer the means and variances of the distributions,
they will exaggerate variances to an extent that depends on the severity of censoring
in their datasets of histories. The positive-feedback loop continues to obtain provided
the optimal-stopping problem is convex.
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1 Introduction

The gambler’s fallacy is widespread. Many people believe a fair coin has a higher chance
of landing on tails after landing on heads three times in a row, think a son is “due” to a
woman who has given births to consecutive daughters, and in general expect too much mean
reversion from sequential realizations of independent random events. Early experimental
evidence of this statistical bias came from the abstract domain of producing or recognizing
i.i.d. random sequences based on a given alphabet of digits, letters, or colors (see Bar-Hillel
and Wagenaar (1991) for a review). Recent work by Chen, Moskowitz, and Shue (2016) has
shown that this fallacy also affects experienced decision-makers in high-stakes settings, such
as judges in asylum courts. I discuss the empirical literature on this bias in Section 1.3.

This paper undertakes the first study of the dynamics of endogenous learning for a society
of agents suffering from this statistical bias. Consider successive generations of agents facing
the same single-player optimal-stopping problem in turn: they receive a draw each period and
must decide between stopping to receive a payoff based on the current draw, or continuing for
a future payoff depending on the next draw. Examples include managers choosing between
hiring the current job applicant or continuing their recruitment search in hopes of finding a
better candidate, and entrepreneurs deciding between liquidating their early-stage startup at
the current market value or continuing to improve their prototype in hopes of greater future
returns. Agents are uncertain about the distributions generating these draws in different
periods, so they must use histories of their predecessors (e.g. experience of managers from
previous hiring seasons, or historical data about entrepreneurs from past years) to learn
parameters of these distributions — the “fundamentals” of the environment.

This situation presents a novel learning obstacle: the stopping decisions of earlier agents
impose an endogenous censoring effect on the dataset of the current generation, as the
future draws that these predecessors would have generated had they persisted longer in
their decision problems remain unknown. When a manager decides to fill her job vacancy
with a candidate discovered early in the hiring cycle, she stops her recruitment efforts and
future managers do not observe what alternative candidates the firm would have found with
additional search in the same hiring cycle. If an entrepreneur decides to liquidate her early-
stage startup, future entrepreneurs cannot learn how her innovation would have matured had
she kept working on her project. While harmless if agents were rational, the censoring effect
interacts with the gambler’s fallacy bias, leading to misinference about the fundamentals.

I suppose agents are Bayesians except for the gambler’s fallacy bias, isolating the learning
implications of the particular bias under consideration1. More precisely, agents start with a
prior belief over a family of subjective models about the joint distribution of draws in different

1As an extension, Appendix B shows the main results of the paper are robust to non-Bayesian agents
using a natural method-of-moments procedure to estimate the fundamentals.
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periods, with the models differing in the unconditional means of the draws in different periods
(the fundamentals) but all specifying the same negative correlation between draws. Agents
apply Bayes’ rule to update their belief over this class of misspecified models after observing
a dataset of histories generated by their predecessors, in an environment where draws across
periods are objectively independent.

This is not a theory about misunderstanding missing data — agents know the censoring
mechanism and perform a Bayesian estimation procedure taking censoring into account. In
fact, it is precisely this understanding of censoring that leads them astray. To develop an in-
tuition for how the censoring effect leads to misinference, consider the psychology of a biased
manager following the unlucky draw of a below-average first-period candidate in the hiring
problem. The manager expects an above-average second-period candidate, for he expects the
second-period draw to reflect a combination of the second-period fundamental and a positive
reversal to “balance out” the bad first-period draw. But in a dataset containing the decision
histories from past hiring cycle, the second-period candidate is only observed following this
kind of bad first-period candidate, as the past managers would have stopped searching when
they discovered an outstanding early candidate. A manager with the gambler’s fallacy bias
therefore expects the unconditional mean of second-period candidate quality to fall below its
sample mean in the censored dataset, for he thinks the sample mean reflects a combination
of the second-period fundamental and a positive contribution from the expected reversal
following bad early draws. In reality, the early and late candidate qualities are independent.
Therefore, the bias manager’s line of reasoning leads him to underestimate the second-period
fundamental, where the extent of the underestimation grows with the severity of censoring.

I focus on how this misinference unfolds over the course of learning. The severity of the
censoring effect evolves continuously across generations as agents’ beliefs about the funda-
mentals drift and their stopping strategies adjust accordingly. As an example, Section 4
documents the welfare implication of a positive-feedback cycle between wrong beliefs and
wrong behavior in the case of hiring managers searching for a candidate across two periods.
Starting with correct beliefs about fundamentals in the first generation, managers’ beliefs
about second-period candidate quality become more pessimistic across generations, leading
to more relaxed acceptance standards for first-period candidates2. This, in turn, imposes
a more severe censoring effect on future generations, as future managers only observe the
second-period candidate quality if the first-period candidate fails to meet the newly lowered
standard. The increased censoring effect brings about even more pessimistic beliefs about
the second-period fundamental for managers with the gambler’s fallacy, and hence a fur-

2In this example and for most of the paper, I consider the case where agents find it possible that draws
are generated from different distributions in different periods, so they may estimate different values of the
fundamental for different periods. The dynamics discussed here remain unchanged even if agents dogmatically
believe the distributions are the same in all periods.
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ther lowering of the acceptance threshold. In the steady state, the biased managers uses
an acceptance threshold that is not only below the objectively optimal one, but also below
the threshold they would have used if they only observed the histories generated in the t-th
generation for any t = 0, 1, 2, . . . . This monotonic mislearning is driven by the interaction
between the censoring effect and the gambler’s fallacy bias, not by either assumption alone.
In a counterfactual world where today’s managers observe all candidates that would have
been drawn in previous hiring seasons, regardless of the actual stopping decisions of the
earlier managers, a society of biased managers would nevertheless correctly infer the fun-
damentals and play the objectively optimal stopping strategy in every generation. On the
other hand, managers who do not suffer from the gambler’s fallacy can always correctly infer
the fundamentals, even from a censored dataset.

Section 5 considers general optimal-stopping problems, fully characterizing the interplay
between biased beliefs about fundamentals and distorted stopping strategies across genera-
tions. The key phenomena from Section 4’s example remain robust. I find that the censoring
effect always enable positive feedback between belief and behavior, so that both beliefs and
stopping thresholds converge monotonically across generations to their steady-state values.
In the long run, biased agents use suboptimal stopping rules with strictly lower stopping
thresholds than the objectively optimal threshold. That is, the early-stopping phenomenon
taking place every generation in Section 4’s example obtains generally for late enough gen-
erations.

Section 6 extends the model and considers agents who are uncertain about both the
means and variances of the draw distributions. I show that this joint estimation leads to
the same misinference about means as in the baseline model on each censored dataset, but
exaggerates the variances in a way that depends on the censoring threshold. I derive two
results that illustrate how this fictitious variation interacts with endogenous learning. First,
provided the optimal-stopping problem is convex, the positive-feedback cycle of the baseline
model continues to obtain. This is because a more severely censored dataset not only makes
successors more pessimistic about the second-period fundamental due to the usual censoring
effect, but also decreases their belief in fictitious variation. Due to convexity of the optimal-
stopping problem, both forces discourage successors from continuing into the second period,
leading to a lower stopping threshold and even heavier data censoring in the future. Second,
a society with agents uncertain about variances can end up with a different long-run belief
about the means of the distributions than another society that knows the correct variances,
even though agents in both societies would make the same (mis)inference about the means
given the same dataset of histories.
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1.1 Related Theoretical Work

Heidhues, Koszegi, and Strack (2018) find a similar mislearning pattern in the context of
learners playing a static stage game with a different bias: overconfidence about own ability.
But these results stem from two different sources. In addition to the assumed psychologi-
cal bias, Heidhues, Koszegi, and Strack (2018)’s results depend on sign restrictions of cross
partial derivatives of observable output, which ensures that initial action adjustments accen-
tuate rather than dampen mislearning3. By contrast I consider a dynamic stage game, as
the gambler’s fallacy is a behavioral bias concerning the serial correlation of data. Since the
censoring effect relies on the dynamic structure of the decision problem, it has no analog in
a static-game setting. Also, the monotonicity of the stopping threshold across generations
holds generally in my model — it does not depend on assumptions about prior belief, the
relative pool qualities of different periods, or whether the draws are interpreted as “values”
that the agent gets if he chooses to stop, or as “costs” that the agent must pay if he chooses
to stop, as shown in Online Appendix OA 3.2. The positive feedback result is endogenously
driven by the optimal stopping rule censoring future draws only after favorable early draws,
rather than by exogenous assumptions on environmental primitives.

Rabin (2002) and Rabin and Vayanos (2010) were the first to study the inferential mis-
takes implied by the gambler’s fallacy. With the exception of an example in Rabin (2002),
all of their investigations have focused on passive inference where learners observe an exoge-
nous information process. By contrast, I examine an endogenous learning setting where the
actions of predecessors censor the dataset of the current learners. This setting allows me to
ask whether the feedback loop between learners’ actions and biased beliefs will attenuate or
exaggerate the distortions caused by the fallacy over the course of learning. Also, relative
to this existing literature, the current paper provides a unique focus on the dynamics of
mislearning under the gambler’s fallacy, tracing out the trajectory of beliefs and behavior
over generations.

Rabin (2002) Section 7 discusses an example of endogenous learning under a finite-urn
model of the gambler’s fallacy. However, the nature of his endogenous data is unrelated to
the censoring effect central to the present paper.4 In Appendix D, I modify the Rabin (2002)

3Heidhues, Koszegi, and Strack (2018) assume that the marginal product of effort is non-increasing in
ability, which rules out cases where effort and ability are strong complements such as in Bénabou and Tirole
(2002). If this sign restriction is reversed, then over-confidence does not lead to misguided learning but
under-confidence does.

4In Rabin (2002)’s example, the biased agents (correctly) believe that the part of the data which is
always observable is independent of the part of the data that is sometimes missing. However, what I term
the “censoring effect” is about misinference resulting from agents wrongly believing in negative correlation
between the early draw that is always observed and the late draw that may be censored depending on the
realization of the early draw. In this sense, my central mechanism highlights a novel interaction between
censoring and the gambler’s fallacy bias that is not present in the previous literature.
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example to induce the censoring effect. I find a misinference result in his finite-urn model of
the gambler’s fallacy similar to what I find in the continuous Gaussian model of this paper,
showing the robustness of the my results to different models of the statistical bias.

When the biased agents’ subjective models specify a different auto-correlation between
draws in the decision problem than the objective auto-correlation, no estimates of the fun-
damentals exactly match the data. I assume that agents in each generation observe histories
from infinitely many decision problems from the previous generation and end up with a doc-
trinaire belief in the fundamentals minimizing Kullback–Leibler divergence to the observed
data. Across generations, play converges to a Berk-Nash equilibrium of Esponda and Pouzo
(2016). But rather than focusing only on equilibrium analysis, I focus on inter-generational
learning dynamics to illustrate how the censoring effect drives the society towards the sub-
optimal steady state step by step. In Section 8, I provide a justification of the learning
dynamics I study as the limit of finite-population dynamics when population size tends to
infinity.

Finally, Fudenberg, Romanyuk, and Strack (2017) studied a continuous-time model of
active learning under misspecification, where a single long-lived learner’s belief is supported
on two subjective models but neither corresponds to the truth. In contrast, I look at mis-
specified endogenous learning in a large-generations learning model, where agents entertain
a continuum of subjective models all reflecting the psychological bias of the gambler’s fallacy.
The central mechanism of this paper, the censoring effect, does not appear in Fudenberg,
Romanyuk, and Strack (2017), where information is generated through a static decision
problem each instant.

1.2 Roadmap

The rest of the paper is organized as follows. The remainder of Section 1 reviews the empirical
literature on the gambler’s fallacy. Section 2 introduces the model, including both the
optimal-stopping problem that serves as the stage game and the large-generations learning
model. Section 3 contains the keys preliminary results about inference from censored datasets
and the agent’s behavior in the stage game given her belief about the fundamentals. Section 4
applies these results in an illustrative example about managers searching for candidates to fill
an open position, showing how the interaction between the censoring effect and the gambler’s
fallacy leads to monotonic mislearning across generations. Section 5 turns to the general
learning dynamics for a class of optimal-stopping problems, showing that qualitatively similar
results obtain. Specifically, the positive feedback cycle holds generally while the long-run
stopping threshold is suboptimally low. Section 6 turns to agents who jointly estimate means
and variances from censored datasets. Section 7 demonstrates the robustness of the results to
a number of extensions: (1) agents observing histories from multiple predecessor generations,
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(2) agents with a non-dogmatic prior belief about the correlation (but with the support of
this belief bounded below 0), and (3) societies with a fraction of selection neglecters in
each generation. Section 8 provides a finite-population foundation for the large-generations
inference results. Appendix B considers agents estimating the joint distributions of the draws
from a family of general, possibly non-Gaussian subjective models, under a natural method-
of moments-procedure. Appendix C studies misinference about fundamentals from censored
datasets in decision problems with L periods.

1.3 Empirical Evidence on the Gambler’s Fallacy

Bar-Hillel and Wagenaar (1991) review classical psychology studies on the gambler’s fallacy.
In “production tasks” where subjects are asked to produce i.i.d. random sequences using a
given alphabet, they tend to generate sequences with too many alternations between symbols
as they attempt to balance out symbol frequencies locally. In “judgment tasks” where
subjects are asked to identify which sequence of binary symbols appears most like consecutive
tosses of a fair coin, subjects find sequences with alternation probability 0.6 more random
than those with alternation probability of 0.5. The gambler’s fallacy persists in the lab
even when subjects are given feedback about the randomness of the sequences they generate
(Budescu, 1987), when they are playing the matching pennies game where the strategy of
randomizing 50-50 between heads and tails is the minimax strategy (Rapoport and Budescu,
1992), or when given monetary incentives so that the bet on a fair coin continuing its streak
pays strictly more than the bet on the streak reversing (Benjamin, Moore, and Rabin, 2017).
Recently, Barron and Leider (2010) showed that experiencing a streak of binary outcomes
one at a time exacerbates the gambler’s fallacy, compared with simply being told the past
sequence of outcomes all at once.

A number of other studies have identified the gambler’s fallacy using field data on lotteries
and casino games. Unlike in experiments, agents in field settings are typically not explicitly
told the underlying probabilities of the randomization devices. In state lotteries, players
tend to avoid betting on numbers that have very recently won. This under-betting behavior
is strictly costly for the players when lotteries have a pari-mutuel payout structure (as in the
studies of Terrell (1994) and Suetens, Galbo-Jørgensen, and Tyran (2016)), since it leads to
a larger-than-average payout per winner in the event that the same number is drawn again
in the following week. Using security video footage, Croson and Sundali (2005) show that
roulette gamblers in casinos bet more on a color after a long streak of the opposite color.
Narayanan and Manchanda (2012) use individual-level data tracked using casino loyalty cards
to find that a larger recent win has a negative effect on the next bet that the gambler places,
while a larger recent loss increases the size of the next bet. This result extends gambler’s
fallacy beyond the binary outcomes domain and suggests the same psychology also operates
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for continuous outcomes, with the severity of the recent bad outcome believed to foretell
the degree mean reversal “due” in the near future. Finally, using data from the diverse
areas of asylum granting, loan approvals, and baseball umpire calls, Chen, Moskowitz, and
Shue (2016) show that even very experienced decision-makers show a tendency to alternate
between two decisions across a sequence of randomly ordered decision problems. This can be
explained by gambler’s fallacy, as the fallacy leads to the belief that the objectively “correct”
decision is negatively autocorrelated across the sequence of decision problems. The authors
rule out a number of other explanations including contrast effect and quotas.

As Rabin (2002) and Rabin and Vayanos (2010) have argued, someone who dogmatically
believes in the gambler’s fallacy must attribute the lack of reversals in the data to the
fundamental probabilities of the randomizing device, leading to overinference from small
dataset. This overinference can be seen in the field data. Cumulative win/loss (as opposed
to very recent win/loss) on a casino trip is positively correlated with the size of future
bets (Narayanan and Manchanda, 2012). A player who believes in the gambler’s fallacy
rationalizes his persistent good luck on a particular day by thinking he must be in a “hot”
state, where his fundamental probability of winning in each game is higher than usual. In a
similar vein, a number that has been drawn more often in past 6 weeks, excluding the most
recent past week, gets more bets in the Denmark lottery (Suetens, Galbo-Jørgensen, and
Tyran, 2016). This kind of overinference result from small samples persists even in a market
setting where participants have had several rounds of experience and feedback (Camerer,
1987). In line with these evidence, the model I consider involves agents who dogmatically
believe in the gambler’s fallacy and misinfer some parameter of the world as a consequence
— though the misinference mechanism in my model is further complicated by the presence
of endogenous data censoring.

2 Model

I introduce four aspects of the model in turn. Section 2.1 sets up the optimal-stopping
problem that serves as the stage game of the learning environment. Section 2.2 discusses
stopping strategies and histories in the stage game, highlighting how stopping strategies
naturally “censor” game histories as the hypothetical values that would have been drawn
after stopping remain unobserved. Section 2.3 explains that agents have a prior belief over a
class of “subjective models” about how draws in different periods are jointly generated, with
all subjective models in the prior’s support exhibiting the gambler’s fallacy bias. Section 2.4
details the large-generation learning environment and how agents make inferences from their
observations.
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2.1 Optimal-Stopping Problem as a Stage Game

The stage game is a two-period optimal-stopping problem. In the first period, the agent
draws a value x1 ∈ R and decides whether to stop. If she decides to stop at x1, her payoff
is u1(x1) and the stage game ends. Otherwise, she continues to the second period where
she draws another value x2 ∈ R. The stage game then ends with the agent getting payoffs
u2(x1, x2). The values (x1, x2) are the realizations of a pair of random variables (X1, X2).
The agent holds some belief about the joint distribution of (X1, X2) and makes her stopping
decision in the first period as to maximize her expected utility given her belief.

The payoff functions u1 : R → R and u2 : R2 → R are continuous and satisfy some
regularity conditions to be introduced in Assumption 1. Through appropriate choices of u1

and u2, this general setup can accommodate a range of economic situations. I illustrate with
two examples.

Example 1 (Search). Many industries have a regular hiring season each year. Suppose the
agent is the manager of a firm in such an industry, who must fill a vacancy in her company.
In the early phase of the hiring season, her human resource team interviews a number of
applicants and identifies the best candidate, who would bring net benefit x1 to the firm if
hired. The manager must decide between hiring this candidate immediately or interviewing
more candidates. If the manager decides to wait, her team can continue searching for a
potentially better candidate in the late phase of the hiring season — one who would bring
net benefit x2 to the organization. But waiting carries the risk that the early candidate
accepts an offer at a different firm in the interim. Suppose there is q ∈ [0, 1) probability that
the early candidate will remain available for hiring in the late hiring phase. Then we may
let u1(x1) = x1 and u2(x1, x2) = q · max(x1, x2) + (1 − q)x2 to model this situation. That
is, there is q probability the manager gets payoff equal to the highest of the two candidates’
qualities, and 1− q probability that she only has the option to hire the second candidate. �

Example 2 (Startup). An entrepreneur pays effort cost κ1 > 0 in period 1 to develop a
startup valued at v1(x1), where v1 : R → R is strictly increasing with limx1→∞ v1(x1) = ∞
and x1 captures the idiosyncratic luck or difficulty she encounters. She chooses whether to
sell the early startup for v1, or whether to work more and mature her startup further. If
she chooses to work more, she pays a further effort cost κ2 > 0 and the market value of her
startup changes to αv1(x1) + v2(x2), where α ∈ (0, 1) and v2 : R → R is another strictly
increasing function with limx2→∞ v2(x2) = ∞. To interpret, x2 represents idiosyncratic
factors affecting the growth of her project, while the baseline value of her prototype is
discounted to αv1(x1) due to changing market demand or the entrance of competitors. In
this example, u1(x1) = v1(x1)− κ1, u2(x1, x2) = αv1(x1) + v2(x2)− κ1 − κ2. �
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I now present a set of conditions on the payoff functions that will be maintained through-
out.

Assumption 1. The payoff functions satisfy:

(a) For x′1 > x
′′
1 and x′2 > x

′′
2 , u1(x′1) > u1(x′′1) and u2(x′1, x

′
2) > u2(x′1, x

′′
2).

(b) For x′1 > x
′′
1 and any x̄2, u1(x′1)− u1(x′′1) > u2(x′1, x̄2)− u2(x′′1 , x̄2).

(c) There exists L > 0 so that u1(L)− u2(L,−L) ≥ 0, while u1(−L)− u2(−L,L) ≤ 0.

Assumption 1(a) says u1, u2 are strictly increasing in the draws in their respective periods.
Assumption 1(b) says a higher realization of the early draw is more helpful for first-period
payoff than for second-period payoff. Under Assumption 1(a), Assumption 1(b) is satisfied
whenever u2 is not a function of x1, or more generally when u2(x1, x2) = z2,1(x1) + z2,2(x2) is
separable across the draws of the two periods with z′2,1(x1) < u

′
1(x1) at all x1 ∈ R. Assump-

tion 1(c) says if the agent knew that x1 were sufficiently positive and x2 were sufficiently
negative, then she would prefer to stop in period 1. Conversely, if she knew that x1 were
very negative while x2 were very positive, then she would prefer to continue to period 2. The
examples above satisfy these conditions.

Claim 1. Examples 1 and 2 satisfy Assumption 1.

Omitted proofs from the main text can be found in Appendix A.

2.2 Stopping Strategies and Endogenous Censoring of Histories

I now turn to strategies and histories in the stage game.

Definition 1. A strategy is a function s : R→{Stop, Continue} that maps the realization
of the first-period draw X1 = x1 into a stopping decision.

Without loss I consider only pure strategies, because under any subjective belief about
the joint distribution of (X1, X2), the agent can maximize her expected utility using a pure
stopping strategy.

Definition 2. The history of the stage game is an element h ∈ H := R × (R ∪ {∅}). If
an agent decides to stop after X1 = x1, her history is (x1,∅). If the agent continues after
X1 = x1 and draws X2 = x2 in the second period, her history is (x1, x2).

The symbol ∅ is a censoring indicator, emphasizing that the hypothetical second-period
draw is unobserved when an agent does not continue into the second period. This observation
structure is natural in my examples. In Example 1, if a firm fills their vacancy in the early
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phase of the hiring cycle, they would stop their recruitment efforts and the counterfactual
candidate that they would have found had they kept headhunting in the same hiring season
remains unknown. In Example 2, when an entrepreneur decides to liquidate her early-stage
startup, society never learns what her project could have grown into had she pursued it
further.

To preview the learning environment that I will describe in Sections 2.3 and 2.4, agents
in successive generations form beliefs about the joint of (X1, X2) using their prior and their
observations. Then, they choose a stopping strategy as to maximize their expected utility
given their beliefs. The stage-game histories of agents in generation t become observations
for agents in generation t + 1 and this process repeats. A key feature of my model is that
the censoring of histories is endogenous. How histories are censored depends on the stopping
strategy of the predecessors, which in turn depends on their beliefs. In contrast, the existing
literature on learning under the gambler’s fallacy has focused on biased learners passively
forming inference from observing an exogenous flow of information. For instance, Rabin and
Vayanos (2010) interpret their model as an observer seeing the returns time series of a mutual
fund run by a team of managers under an exogenous turnover process, then estimating the
parameters of that process. The bulk of my results concern the implications of endogenous
learning under the gambler’s fallacy bias and the interaction between distorted stopping
strategies and distorted beliefs.

2.3 Objective and Subjective Models of Draws

Objectively, X1, X2 are independently drawn from Gaussian distributions X1 ∼ N (µ•1, σ2)
and X2 ∼ N (µ•2, σ2) where parameters µ•1, µ•2 ∈ R are fixed and called fundamentals. In
Example 1, µ•1 and µ•2 stand for the underlying qualities of the two applicant pools in the
early and late phases of the hiring season. In Example 2, µ•1 relates to the selling price of
an early startup and µ•2 is associated with expected improvement from maturing an early
startup.

The agent’s belief deviates from the objective model in two ways. First, the agent is
uncertain about the fundamentals. In addition, the agent suffers from the gambler’s fallacy,
causing her to misperceive the joint distribution of (X1, X2) conditional on the fundamentals.
She believes that if the first draw is higher than expected (based on her belief about the
fundamental), then bad luck is “due” in the near future and the second draw is most likely
below average. Conversely, an exceptionally bad early draw likely portends she will have
above average luck in the next period. Formally, the agent’s belief is supported on a class
of subjective models about the joint distribution of (X1, X2), indexed by her estimate of the
fundamentals (µ1, µ2).
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Definition 3. For µ1, µ2 ∈ R, σ2
1, σ

2
2 > 0, and γ′ ≤ 0, the subjective model Ξ(µ1, µ2, σ

2
1, σ

2
2; γ′)

refer to the joint distribution for (X1, X2), X1 ∼ N (µ1, σ
2
1)

(X2|X1 = x1) ∼ N (µ2 + γ
′(x1 − µ1), σ2

2)


where X2|X1 = x1 is the conditional distribution of X2 given X1 = x1.5 The objective
model is Ξ• = Ξ(µ•1, µ•2, σ2, σ2; 0). The agent’s feasible subjective models is the set
{Ξ(µ1, µ2, σ

2, σ2; γ) : µ1, µ2 ∈ R}, and γ < 0 is his bias parameter.

The fundamentals (µ1, µ2) in the subjective model Ξ(µ1, µ2, σ
2, σ2; γ) represent the un-

conditional means of the two distributions. Although (X1, X2) are objectively independent,
every feasible subjective model predicts a worse X2 following a better X1, due to γ < 0.
The magnitude of γ corresponds to the severity of his gambler’s fallacy bias. I interpret the
agent’s wrong belief about the correlation in early and late draws as coming from the same
psychology that leads people to mispredict the likelihood of a fair coin landing heads after
having landed on heads multiple times in a row. In this model, an X1 realization far above
its mean is analogous to a sequence of heads in a row — a highly unbalanced outcome that
must be followed with an X2 far below its unconditional mean if the sample is to be overall
“representative” of the population means.

Throughout this paper I write EΞ and PΞ for expectation and probability with respect to
the subjective model (X1, X2) ∼ Ξ. When E and P are used without subscripts, they refer
to expectation and probability under the objective model Ξ•.

Remark 1. Alternatively, the subjective model Ξ(µ1, µ2, σ
2, σ2; γ) may be written as follows:

X1 = µ1 + ε1

X2 = µ2 + ε2

where ε1 ∼ N (0, σ2) and ε2|ε1 ∼ N (γε1, σ2). The terms ε1, ε2 can be interpreted as the
decision-maker’s luck in the first and second periods, which determine the realizations of the
draws X1, X2 relative to their unconditional means µ1, µ2. The subjective model stipulates
reversal of luck across the two periods, as (ε1, ε2) are negatively correlated. �

Remark 2. Since all feasible subjective correctly specify the variance of X1 and the condi-
5Equivalently, (X1, X2) have a joint Gaussian distribution with(

X1
X2

)
∼ N

((
µ1
µ2

)
,

(
σ2

1 γσ2
1

γ
′
σ2

1 (γ′)2σ2
1 + σ2

2

))
.

The correlation between X1 and X2 is γ
′
σ1√

(γ′ )2σ2
1+σ2

2
.
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tional variance of X2|X1, I will sometimes abbreviate the subjective model Ξ(µ1, µ2, σ
2, σ2; γ)

as Ξ(µ1, µ2; γ). Section 6 investigates agents who are uncertain about these variances and
must jointly infer the means and variances from their observations. �

Each agent starts with the same full-support prior belief over the feasible subjective
models. This belief is induced by a strictly positive prior density function g : R2 → R++

about the fundamentals (µ1, µ2). Before playing her own stage game, each agent observes data
generated from other people’s experience and updates g in a Bayesian way to form a posterior
belief over the feasible subjective models. Returning to the examples, this corresponds
to observing the interviewing and hiring histories of other firms in her industry from last
year’s hiring season, or the improvements made by previous entrepreneurs who chose to
keep working on their early-stage startups. The agent then uses her observations to make
Bayesian inferences about parameters of the environment: the qualities of the early and late
applicant pools, the profitability of maturing an early-stage startup, etc.

The agent can update her belief about the fundamentals, but all of her feasible subjective
models specify the same γ, so she not revise this aspect of her mental model in light of data.
The agent’s dogmatic belief in γ < 0 is restrictive, but allows me to focus attention on the
learning implications of gambler’s fallacy. As Section 7.2 shows, results are unchanged if
the agent also updates his belief about the coefficient γ, provided the support of his prior
belief lies to the left of 0 and is bounded away from it. This assumption seems broadly in
line with Chen, Moskowitz, and Shue (2016)’s analysis of field data, showing that even very
experienced decision-makers continue to exhibit a non-negligible amount of the gambler’s
fallacy in high-stakes settings.

Another reason why agents may never question their misspecified prior is that the mis-
specification is “attentionally stable” in the sense of Gagnon-Bartsch, Rabin, and Schwartzstein
(2018). Under the theory that the true model falls within the feasible subjective models,
an agent finds it harmless to coarsen her dataset by only paying attention to certain “sum-
mary statistics”. In large datasets, the statistics extracted by the limited-attention agent do
not lead her to question the validity of her theory, even though a full-attention agent who
retains the entire raw dataset could calculate other statistics that lead her to believe that
her prior is misspecified. To summarize the results in Appendix E, for arbitrary full-support
prior g over the fundamentals, the Bayesian posterior density g(·|(hn)Nn=1) after observing a
finite dataset of N stage-game histories (hn)Nn=1 only depends on the dataset through two
sufficient statistics: (i) the sample average of first-period draws; (ii) the sample average of
“re-centered”, uncensored second-period observations, where in the history hn = (x1, x2)
the re-centered observation is defined as x2 − γx1. An agent who compresses every dataset
to just these two statistics finds this coarsening harmless for decision-making purposes and
never needs to notice the true correlation between X1 and X2. In large samples, the infer-
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ence procedure that only uses these two extracted statistics produces the same results as
the full-attention Bayesian procedure I outline in Section 2.4, and furthermore the realized
values of the statistics can always be rationalized by some subjective model in the support
of the agent’s prior.

Since the gambler’s fallacy is a statistical bias about sequential realizations of random
variables, the baseline two-periods model is the minimum model capturing the implications
of this bias and its interaction with censoring. In Appendix C, I study an L-periods model of
the gambler’s fallacy based on Rabin and Vayanos (2010) and derive results about inference
from censored data in stage games with a longer horizon.

2.4 Learning in Large Generations

This section details the learning environment and describes how agents make inferences from
datasets of histories.

There is an infinite sequence of generations, t ∈ {0, 1, 2, ...}. Each generation consists of a
continuum of agents n ∈ [0, 1], with each agent only living for one generation. In the search
problem of Example 1, for instance, successive generations refer to cohorts of hiring managers
working in successive hiring cycles. The realizations of draws X1, X2 are independent across
all stage games, including those from the same generation.

Before playing her own stage game, each agent in generation t ≥ 1 observes an infinite
dataset of histories (hn)n∈[0,1]. This dataset contains all the stage-game histories from gener-
ation t− 1, where hn is the history of predecessor n from that generation. The distribution
of observed histories depends on the joint distribution of (X1, X2) as well as the stopping
strategy6 used by predecessors. Agents are told the stopping strategy used by their prede-
cessors7 and use the dataset of histories to infer the joint distribution between (X1, X2) from
the class of feasible subjective models. Equivalently, agents infer fundamentals µ1, µ2 ∈ R.

Before I can describe this inference procedure, I first introduce some notations for the
distribution of histories in a dataset. For any measurable strategy s : R→ {Stop, Continue}
and subjective model Ξ, let H(Ξ; s) ∈ ∆(H) denote the distribution of histories when draws
are distributed according to (X1, X2) ∼ Ξ and the agent continues into the second period if
and only if s(X1) = Continue. This is formalized below.

Definition 4. For measurable strategy s and subjective model Ξ = Ξ(µ1, µ2, σ
2
1, σ

2
2; γ′)

where µ1, µ2, γ
′ ∈ R, σ2

1, σ
2
2 > 0, let H(Ξ; s) be the distribution on the space of histories,

6Since agents in each generation start with the same prior and observe the same dataset, they all hold the
same beliefs about the fundamentals and play the same subjectively optimal stopping strategy given their
beliefs.

7This stopping rule can also be exactly inferred from the infinite dataset.
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H = R× (R× {∅}), given by

H(Ξ; s)[E1 × E2] := PΞ [(E1 ∩ s−1(Continue))× E2] for E1, E2 ∈ B(R)
H(Ξ; s)[E1 × {∅}] := PΞ[(E1 ∩ s−1(Stop))× R] for E1 ∈ B(R),

where PΞ is the probability measure on R2 given by Ξ, while B(R) is the collection of Borel
subsets of R.

The distribution H(Ξ•; s) refers to the objective distribution on histories when predeces-
sors use the stopping strategy s. I will abbreviate it as H•(s).

Next, I define the Kullback-Leibler (KL) divergence fromH(Ξ; s), the history distribution
under model, to the objective history distribution, H•(s). For a given stopping strategy, the
pseudo-true fundamentals are µ∗1, µ∗2 ∈ R such that the feasible subjective model Ξ(µ∗1, µ∗2; γ)
minimizes this KL divergence.

Definition 5. (a) TheKullback-Leibler (KL) divergence fromH•(s) toH(Ξ(µ1, µ2; γ); s)),
denoted by DKL(H•(s) || H(Ξ(µ1, µ2; γ); s)) ), is

∫
x1∈s−1(Stop)

φ(x1;µ•1, σ2) · ln
(
φ(x1;µ•1, σ2)
φ(x1;µ1, σ2)

)
dx1

+
∫
x1∈s−1(Continue)

{∫ ∞
−∞

φ(x1;µ•1, σ2) · φ(x2;µ•2, σ2) · ln
[

φ(x1;µ•1, σ2) · φ(x2;µ•2, σ2)
φ(x1;µ1, σ2) · φ(x2;µ2 + γ(x1 − µ1), σ2)

]
dx2

}
dx1

where φ(x; a, b2) is Gaussian density with mean a and variance b2.
(b) Say µ∗1, µ∗2 are the pseudo-true fundamentals with respect to the strategy s if

(µ∗1, µ∗2) ∈ arg min
µ1,µ2∈R

DKL(H•(s) || H(Ξ(µ1, µ2; γ); s)) ).

To interpret, the likelihood of the history h = (x1, x2) with s(x1) = Continue is φ(x1;µ•1;σ2)·
φ(x2;µ•2, σ2) under the objective model Ξ•, φ(x1;µ1, σ

2) ·φ(x2;µ2 + γ(x1−µ1), σ2) under the
subjective model Ξ(µ1, µ2; γ). The likelihood of the history h = (x1,∅) with s(x1) = Stop
is φ(x1;µ•1;σ2) under the objective model, φ(x1;µ1, σ

2) under the subjective model. The
likelihoods of all other histories are 0 under both models. So the KL divergence expression
given in Definition 5 is the expected log-likelihood of the history under the objective model
versus under the subjective model with fundamentals (µ1, µ2), with the expectation taken
under the objective model. In general, this quantity depends on the stopping strategy s, so
I will occasionally denote the pseudo-true fundamentals as µ∗1(s), µ∗2(s) to emphasize this
dependence.

When the t-th generation agents observe an infinite dataset of histories with the dis-
tribution H•(s), the agents update their prior g to put dogmatic belief in the pseudo-true
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fundamentals µ∗1(s), µ∗2(s), then play the subjectively optimal stopping strategy for the model
Ξ(µ∗1(s), µ∗2(s); γ). In Section 8, I establish that when a Bayesian agent with prior g observes
a finite dataset of N histories (hn)Nn=1 drawn from the distribution H•(s) where s is a cutoff-
based stopping rule, then as N →∞ her posterior belief about the fundamentals g(·|(hn)N1=1)
almost surely converges in mean to the point-mass belief on the pseudo-true parameters
(µ∗1, µ∗2), and furthermore her posterior expected payoff from any cutoff-based stopping rule
converges to its expected payoff under the model Ξ(µ∗1(s), µ∗2(s); γ). In the large-generations
learning model, belief dynamics between generations are given a deterministic transition
between point mass beliefs, greatly simplifying the analysis.

One assumption behind this procedure is that agents do not reason through why previous
agents made their stopping decisions. So, agents infer nothing about the fundamentals from
the strategic choices of the previous generation. As the analysis of the learning dynamics will
show, the strategies of different generations converge, so that asymptotically agents find the
strategies of the previous generation approximately optimal given their own beliefs about
the fundamentals. Section 7.1 considers a modified learning model where each generation
observes the histories of all previous generations. In that setting we may assume common
knowledge of rationality among the agents, as information sets are nested and generation
t observes all the information that generation t′ < t had, so there is nothing more to infer
from the actions of generation t′ . Here agents will still converge to the same steady state as
when they observe only the immediate predecessor generation and do not assume rationality
of others, though the rate of convergence to the steady state may be slower.

The key intuition behind my main endogenous learning results do not depend on full
Bayesianism or on the Gaussian functional form. Appendix B considers gambler’s fallacy
agents who start with a class of possibly non-Gaussian subjective models of (X1, X2) and infer
the joint distribution of the draws by applying a natural method-of-moments procedure to
the dataset. The positive feedback between distorted beliefs and distorted stopping behavior
continues to hold.

3 Optimal Stopping Rules and Inference from Cen-
sored Datasets

In this section, I develop a number of preliminary results. Section 3.1 derives the subjec-
tively optimal stopping rule for an agent who believes in the model (X1, X2) ∼ Ξ(µ1, µ2; γ).
I show that this stopping rule involves a cutoff threshold that increases in belief about
the second-period fundamental. Section 3.2 characterizes the Bayesian inference about fun-
damentals from large datasets of histories censored with a cutoff-based stopping strategy,
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when agents start with a full-support prior over the (misspecified) class of feasible models.
Finally, Section 3.3 study the constrained inference when agents know that the fundamentals
are time-invariant across periods.

3.1 Subjectively Optimal Stopping Rules

Consider an agent who believes in the subjective model (X1, X2) ∼ Ξ(µ1, µ2; γ), implied by
a belief in the fundamentals (µ1, µ2) ∈ R2. The next lemma characterizes the subjectively
optimal stopping strategy given this model. I show that this stopping rule must be a cutoff
strategy: there exists some value c ∈ R depending on (µ1, µ2) such that the agent strictly
prefers stopping after any x1 > c and strictly prefers continuing after any x1 < c.

Lemma 1. Under the belief that (X1, X2) ∼ Ξ(µ1, µ2; γ), for any γ ≤ 0, there exists a cutoff
C(µ1µ2), such that the agent strictly prefers stopping after any x1 > C(µ1µ2) and strictly
prefers continuing after any x1 < C(µ1µ2).

The next result establishes monotonicity of the cutoff in terms of belief about the second-
period fundamental.

Lemma 2. The indifference threshold C(µ1, µ2) is strictly increasing in µ2.

Proof. Let µ̂1, µ̂2, ˆ̂µ2 ∈ R with ˆ̂µ2 > µ̂2. I show that C(µ̂1µ̂2) < C(µ̂1 ˆ̂µ2).
By Lemma 1, the threshold C(µ̂1, µ̂2) is characterized by the indifference condition,

u1(C(µ̂1, µ̂2)) = EX̃2∼N (µ̂2+γ(C(µ̂1,µ̂2)−µ̂1),σ2)[u2(C(µ̂1, µ̂2), X̃2)]

But if agent were to instead believe (µ̂1 ˆ̂µ2) where ˆ̂µ2 > µ̂2, then the conditional distribution
of X2 given X1 = C(µ̂1, µ̂2) would be N (ˆ̂µ2 + γ(C(µ̂1, µ̂2)− µ̂1), σ2). We have

u1(C(µ̂1, µ̂2)) < EX̃2∼N (ˆ̂µ2+γ(C(µ̂1,µ̂2)−µ̂1),σ2)[u2(C(µ̂1, µ̂2), X̃2)]

by Assumption 1(a). This means C(µ̂1, µ̂2) < C(µ̂1, ˆ̂µ2) by Lemma 1, as only values of X1

below C(µ̂1, ˆ̂µ2) lead to strict preference for continuing.

3.2 Inference about Fundamentals from Censored Datasets

I now turn to generation t+1’s inference when all agents in generation t use a cutoff strategy.
For c ∈ (−∞,∞], denote the stopping strategy s where s(x) = Stop for all x > c and
s(x) = Continue for all x < c as c ↑,8 evocative of the stopping region [c,∞). So, when all

8Whether s(c) = Stop or s(c) = Continue only changes history on a zero-probability event, so it does not
affect inference.
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agents use strategy c ↑, the next generation observes a dataset of histories with distribution
H(Ξ•; c ↑). I will abbreviate this distribution as H•(c ↑).

I now find an explicit expression of the pseudo-true fundamentals (µ∗1, µ∗2) as a function
of c ∈ R.

Proposition 1. The pseudo-true fundamentals minimizing DKL(H•(c ↑) || H(Ξ(µ1, µ2; γ); c ↑
) ) are µ∗1(c) = µ•1 and

µ∗2(c) = µ•2 + γ (µ•1 − E [X1|X1 ≤ c]) .

So µ∗2(c) is strictly increasing in c.

Proof. Applying Definition 5, we see that DKL(H•(c ↑) || H(Ξ(µ1, µ2; γ); c ↑) ), the KL
divergence in the special case of a cutoff strategy c ↑, is

∫ ∞
c

φ(x1;µ•1, σ2) · ln
(
φ(x1;µ•1, σ2)
φ(x1;µ1, σ2)

)
dx1

+
∫ c

−∞

{∫ ∞
−∞

φ(x1;µ•1, σ2) · φ(x2;µ•2, σ2) · ln
[

φ(x1;µ•1, σ2) · φ(x2;µ•2, σ2)
φ(x1;µ1, σ2) · φ(x2;µ2 + γ(x1 − µ1), σ2)

]
dx2

}
dx1.

Rewrite this as
∫ ∞
c

φ(x1;µ•1, σ2) · ln
(
φ(x1;µ•1, σ2)
φ(x1;µ1, σ2)

)
dx1

+
∫ c

−∞
φ(x1;µ•1, σ2) ·

∫ ∞
−∞

φ(x2;µ•2, σ2) · ln
[
φ(x1;µ•1, σ2)
φ(x1;µ1, σ2)

]
dx2dx1

+
∫ c

−∞
φ(x1;µ•1, σ2) ·

∫ ∞
−∞

φ(x2;µ•2, σ2) · ln
[

φ(x2;µ•2, σ2)
φ(x2;µ2 + γ(x− µ1), σ2)

]
dx2dx1

which is:
∫ ∞
−∞

φ(x1;µ•1, σ2) · ln
(
φ(x1;µ•1, σ2)
φ(x1;µ1, σ2)

)
dx1

+
∫ c

−∞
φ(x1;µ•1, σ2) ·

∫ ∞
−∞

φ(x2;µ•2, σ2) ln
[

φ(x2;µ•2, σ2)
φ(x2;µ2 + γ(x1 − µ1), σ2)

]
dx2dx1

The KL divergence between N (µtrue, σ
2
true) and N (µmodel, σ

2
model) is

ln σmodel

σtrue
+ σ2

true + (µtrue − µmodel)2

2σ2
model

− 1
2 ,

so we may simplify the first term and the inner integral of the second term:

(µ1 − µ•1)2

2σ2 +
∫ c

−∞
φ(x1;µ•1, σ2) ·

[
σ2 + (µ2 + γ(x1 − µ1)− µ•2)2

2σ2 − 1
2

]
dx1.
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Dropping constant terms not depending on µ1 and µ2 and multiplying by σ2, we get a
simplified expression of the objective,

ξ(µ1, µ2) := (µ1 − µ•1)2

2 +
∫ c

−∞
φ(x1;µ•1, σ2) ·

[
(µ2 + γ(x1 − µ1)− µ•2)2

2

]
dx1

We have the partial derivatives by differentiating under the integral sign,

∂ξ

∂µ2
=
∫ c

−∞
φ(x1;µ•1, σ2) · (µ2 + γ(x1 − µ1)− µ•2)dx1

∂ξ

∂µ1
= (µ1 − µ•1)− γ

∫ c

−∞
φ(x1;µ•1, σ2) · (µ2 + γ(x1 − µ1)− µ•2)dx1

= (µ1 − µ•1)− γ ∂ξ
∂µ2

By the first order conditions, at the minimum (µ∗1, µ∗2), we must have:

∂ξ

∂µ2
(µ∗1, µ∗2) = ∂ξ

∂µ1
(µ∗1, µ∗2) = 0⇒ µ∗1 = µ•1

So µ∗2 satisfies ∂ξ
∂µ2

(µ•1, µ∗2) = 0, which by straightforward algebra shows

µ∗2(c) = µ•2 + γ (µ•1 − E [X1|X1 ≤ c]) .

To interpret, the period t agents correctly estimate the mean of the early draw, but
misperceive the mean of the late draw in a way that depends on the degree of gambler’s
fallacy bias, the true mean of the early draw, and the cutoff used by the previous generation.

The censoring effect leads to a more pessimistic estimate of the second-period fundamen-
tal for lower values of c. To understand the intuition, consider that when c decreases, the
average X1 conditional on X2 being uncensored in the same game also decreases. Return-
ing to the example, if firms in last year’s hiring cycle decreased their threshold for hiring
the early-phase candidates, then those firms that nevertheless engaged in a second round of
search must have gotten especially disappointing early candidates, that is they must have
drawn very low values of X1.

While objectively X2 is independent of X1, the agents’ gambler fallacy reasoning leads
them to think that better X2 should follow worse X1. So, biased agents think of the sample
mean of uncensored X2 as reflecting a combination of the second-period fundamental and a
reversal effect based on how realizations of X1 accompanying these uncensored X2 deviate
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from the first-period fundamental. Holding fixed the true distribution of observed X2 in the
dataset, which is objectively independent of the censoring threshold c, the agents’ inference
about µ2 decreases as the X1’s in histories with uncensored X2 decrease. This is because the
change leads agents to attribute a greater fraction of the X2 sample mean to the reversal
effect, thus making a more pessimistic inference about the unconditional mean of X2.

Remark 3. The misinference comes from the gambler’s fallacy, not from misunderstanding
missing data. The biased learners understand that X2 is censored when X1 ≥ c, and their
estimation procedure takes this into account. Indeed, it is precisely this understanding
that leads them astray in their inference. If the gambler fallacy agents also suffer from
selection neglect, in the sense that they treat the history of each uncensored game as a pair
consisting of a sample from N (µ•1, σ2) together with an unrelated sample from N (µ•2, σ2),
they would then end up with the correct inferences about both fundamentals. I believe my
learning environment is unlikely to evoke selection neglect, a psychology most likely to be
present when the observed dataset contains does not contain reminders about selection.9 By
contrast, censoring is highly explicit in the datasets of histories in my model: the always-
observed first-period draw is the criterion for history censoring, and a censoring indicator
replaces each unobserved second-period draw. In Section 7.3, I study an extension where
there is a fraction of agents in each generation who suffer from selection neglect. I find
that the presence of selection neglecters moderate the pessimism in inference, but do not
eliminate it completely. �

Remark 4. This result shows that the pseudo-true fundamentals have a method-of-moments
interpretation. Suppose that instead of finding parameters µ∗1, µ∗2 to minimize the KL diver-
gence between H•(c ↑) and H(Ξ(µ1, µ2; γ); c ↑), agents’ inference procedure involves finding

9In Enke (2017)’s experiment on selection neglect, players (one human subject and five computer players
following a mechanical rule) are asked to guess a “state of the world” based on the average of 6 private
signals. Players are sorted into one of two groups based on whether their own private signal is high or
low, then observe the signals of others in their group. In the baseline treatment, there is no reminder of
the excluded data on the decision screen where subjects are shown the signals of others in the same group
and asked to enter a guess. This treatment finds selection neglect. Another treatment where subjects are
given a simple hint stating: “Also think about the computer players whom you do not communicate with!”
reduces the number of selection neglecters by 60%. So I believe the much clearer reminders of selection in
my environment should reduce the frequency of selection neglect even further.
Jehiel (2018) studies misperceived investment returns under selection neglect. In his model, each prede-

cessor has a potential project and observes a private signal about the project’s quality. Predecessors with
high signals implement their projects. Agents in the current generation observe the pool of implemented
projects, then generate their own signals about the qualities of these observed projects. These signals are
independent of the actual private signals that the predecessors used for implementation decisions. Current
agents infer the conditional quality given each signal using the empirical mean quality among past imple-
mented projects generating the same signal. This is another environment where the dataset contains no hints
about the existence of excluded data (the unimplemented projects) or the selection criterion (the private
signals of predecessors). In fact, if datasets in Jehiel (2018)’s setting record the complete experience of the
predecessors in their decision problems, as is the case in my history datasets, then the misinference result
no longer holds.
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µM1 , µ
M
2 ∈ R so that H(Ξ(µM1 , µM2 ; γ); c ↑) matches the observed distribution of histories

H•(c ↑) in terms of two moments: the observed mean of first-period draws, and the observed
mean of second-period draws.

Since history always reveals X1 in every game, µM1 (c) = µ•1 matches the mean of observed
first-period draws. Under the pair of parameters (µ•1, µ̂2), the mean X2 among uncensored
histories will be E[µ̂2 + γ(X1 − µ•1)|X1 ≤ c] = µ̂2 + γ(E[X1|X1 ≤ c] − µ•1). In the objective
distribution of histories H•(c ↑), the mean of observed X2 is µ•2, so we have

µM2 (c) = µ•2 + γ (µ•1 − E [X1|X1 ≤ c]) ,

which is the same as µ∗2(c). �

Remark 5. The inference about µ•1 is exactly correct. Agents can rationalize the lack of ex-
pected reversals between the two periods in two ways: either the second period fundamental
is low (so that the observed X2 are in fact above second-period mean), or the first period
fundamental is low (so that the rejected early draws are not much below first period mean
and not much improved luck is “due” in the second period). One might imagine that slightly
distorting belief about µ•1 downwards can help fit second-period data better at the expense
of a small cost in fitting first-period data. The intuition here is that the first-period data
is always observed while the second-period data is only sometimes observed, so this kind of
distortion always leads to a worse overall fit. �

3.3 Inference about Fundamentals under the Constraint µ•1 = µ•2

I now consider the natural special case where the true fundamentals are time-invariant,
µ•1 = µ•2 = µ• ∈ R. If agents have a full-support prior belief over the feasible subjective
models {Ξ(µ1, µ2; γ) : µ1, µ2 ∈ R} as before, then Proposition 1 continues to apply. But now
suppose agents know the fundamentals are time-invariant and only have uncertainty over
this common value. Formally, this means that agents’ prior belief about the fundamentals
is supported on the diagonal {(x, x) : x ∈ R}, instead of having full-support on R2. This
induces a prior belief supported on the constrained feasible subjective models, {Ξ(µ, µ; γ) :
µ ∈ R}.

Let µ∗(c) ∈ R stand for the fundamental that minimizes the KL divergence of the obser-
vation under this dogmatic belief, that is

µ∗12(c) := arg min
µ∈R

DKL(H•(c ↑) || H(Ξ(µ, µ; γ); c ↑))

The next lemma characterizes µ∗12(c).
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Lemma 3. µ∗12(c) = 1
1+P[X1≤c]·(1−γ)2µ

◦
1(c) + P[X1≤c]·(1−γ)2

1+P[X1≤c]·(1−γ)2µ
◦
2(c), where µ◦1(c) = µ• and

µ◦2(c) = µ• + γ
1−γ (µ• − E[X1|X1 ≤ c]).

The learner faces two kinds of data: observations of first-period draws and observations
of second-period draws. Subjective models Ξ(µ◦1(c), µ◦1(c); γ) and Ξ(µ◦2(c), µ◦2(c); γ) minimize
the KL divergence of these two kinds of data, respectively.10

The overall KL divergence minimizing estimator is a certain convex combination between
these two points. Through the term P[X1 ≤ c], the relative weight given to µ◦2(c) increases
as the cutoff c increases, because the second-period data is observed more often if previous
agents have used a more stringent cutoff in the first period.

We have µ◦2(c) < µ• while µ◦1(c) = µ•, which shows that for any cutoff c that the previous
generation may have used, the next generation underestimates the fundamental.

Compared with Proposition 1’s result about pseudo-true fundamentals without the equal-
ity constraint across periods, we have µ◦2(c) > µ∗2(c) since | γ

1−γ | < |γ|, hence µ
∗
12(c) > µ∗2(c).

In the setting where agents start with a dogmatic belief that the fundamentals are identi-
cal in both periods, their beliefs about second-period fundamental end up less pessimistic
relative to agents who can flexibly estimate different µ1 and µ2 for the two periods.

In general, µ∗12(c) does not always increase in c. This is because decreasing the censoring
threshold c now has two competing effects. First, similar to the intuition of Proposition 1,
a lower acceptance threshold c leads the gambler’s fallacy agents to expect greater reversal
towards better-than-average draws in the second period, conditional on first draw falling
below the threshold. Given the distribution of X2 is in fact independent of X1, a lower c
therefore leads to a more pessimistic second-period fundamental µ◦2(c). But at the same time,
a lower c decreases the relative weight given to µ◦2(c) rather than µ◦1(c), since the second-
period data is observed less frequently and so carries less weight in the overall divergence
minimizing procedure.

Indeed, Figure 1 shows, the effect of cutoff c on inference about the fundamental is in
general non-monotonic.

10Note that µ◦2(c) differs from the pseudo-true fundamental µ∗2(c) from Proposition 1. The estimator µ◦2(c)
minimizes the KL divergence of second-period draws under the constraint that the same fundamental must
be inferred for both periods, whereas µ∗2(c) minimizes this divergence when first-period fundamental is fixed
at its true value, µ•1.
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Figure 1: The pseudo-true fundamentals in constrained inference setting, with γ = −0.5 and
µ• = 0. The plot shows µ∗12(c) for different values of stopping thresholds c.

4 Illustrative Example: Learning Dynamics in a Search
Problem with µ•1 = µ•2

To illustrate the main intuition of how the censoring effect interacts with the gambler’s
fallacy bias in a dynamic setting, I begin with a toy example involving a particularly simple
optimal-stopping problem. I consider a simplified version of Example 1 where q = 0, that is
a two-period search problem without recall. I suppose the two search periods have the same
fundamental value µ•1 = µ•2 = µ•, so the average candidate qualities in the early and late
phases of the hiring season are equal.

In Section 4.1, I show that when agents (i.e. managers learning about the candidate
qualities) start with any full-support prior beliefs about µ•1 and µ•2 and the 0th generation
starts at the objectively optimal stopping strategy, a feedback loop emerges between distorted
inferences and distorted acceptances thresholds. Agents’ beliefs about the second-period
fundamental and stopping rule monotonically drift away their objectively correct values, so
that expected payoff is strictly decreasing across generations. In Section 4.2 I show that
these learning dynamics are unchanged when agents’ prior belief does not have full-support
on R2, but reflects a (correct) dogmatic belief that the fundamentals are the same in the two
periods. Finally, Section 4.3 shows the mislearning result relies crucially on the interaction
between the censoring effect and the gambler’s fallacy. Dropping either one of these elements
from the example leads to the drastically different conclusion that agents have correct beliefs
and play objectively optimal actions in every generation.
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4.1 Feedback Loop and Monotonic Mislearning Across Genera-
tions

I first record the explicit expression for C(µ1, µ2) in the search problem, which simply comes
from rearranging the indifference condition.

Lemma 4. In the two-period search problem given by the utility functions u1(x1) = x1,

u2(x1, x2) = x2, the cutoff is given by C(µ1, µ2) = µ2−γµ1
1−γ .

In the setting of µ•1 = µ•2 = µ•, let agents start with a full-support product prior belief
g : R2 → R++ about the fundamentals (µ1, µ2). Suppose the 0th generation of agents start
with the objectively optimal stopping strategy c• ↑ with c• = µ•. Writing µ1,[t], µ2,[t], c[t] for
the beliefs and stopping thresholds in generation t for t ≥ 1, I analyze the learning dynamics
across generations.

By Proposition 1, the censoring effect leads agents in the first generation to infer that
µ1,[1] = µ•, µ2,[t] < µ•2. From Lemma 4, under the subjective model Ξ(µ1,[1], µ2,[t]; γ), genera-
tion 1 agents will revise their acceptance threshold to c[t] = µ2,[t]−γµ•

1−γ < µ•. This decrease in
the cutoff rule between the 0th and 1st generation reflects the effect of distorted beliefs on
behavior.

Importantly, the early stopping behavior of the 1st generation further distorts the beliefs
of the next generation. By Proposition 1, the pseudo-true second-period fundamental is
strictly increasing in the stopping threshold that generates the dataset of histories. This
shows µ∗2(c[1]) < µ∗2(c[0]) since c[1] < c[0]. That is, as the second-generation agents face a more
severe censoring effect, their beliefs end up even more pessimistic compared with the already
distorted beliefs of the first-generation agents. Since the stopping threshold of Lemma 4
is strictly increasing in belief about the second-period fundamental, we conclude c[2] < c[1].

Figure 2 plots the beliefs and cutoff thresholds for generations 0 through 4 when γ = −0.5,
µ• = 0.

This feedback cycle between distorted stopping rule and distorted beliefs continues into
all future generations, which I summarize in the next Proposition.

Proposition 2. When the stage game is search without recall and µ•1 = µ•2 = µ•, suppose
the 0th generation starts with the objectively optimal stopping strategy c• ↑ . The sequence of
cutoff thresholds across different generations (c[t])t≥0 is strictly decreasing in t. So expected
welfare is also strictly decreasing in t.

Even though the 0th generation agents start at the objectively optimal play, the dynamics
of learning across generations traces out a downward spiral that moves further and further
away from it. The positive feedback between inference and behavior ensures that the mistake
of the t-th generation is not corrected by agents in generation t + 1, but leads to further
mislearning about the fundamental and further distortion away from the optimal behavior.
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Figure 2: Beliefs µ2,[t] and stopping thresholds c[t] of generations 1 ≤ t ≤ 5, in search
without recall with µ•1 = µ•2 = 0 and γ = −0.5.

4.2 When Agents Know That µ•1 = µ•2

In Section 4.1, even though objectively µ•1 = µ•2 = µ•, the agents are allowed to flexibly
infer different values for these two fundamentals. Indeed, we have seen that they correctly
infer µ∗1 = µ• each period but under-infer the second-period fundamental. I now show the
monotonic mislearning result obtained above not an artifact of this assumption.

Suppose agents know that µ•1 = µ•2 and have a full-support belief over the constrained
feasible subjective models, {Ξ(µ, µ; γ) : µ ∈ R}. As in Section 3.3, agents put full confidence
in the pseudo-true fundamental

µ∗12(c) = arg min
µ∈R

DKL(H•(c ↑) || H(Ξ(µ, µ; γ); c ↑))

after observing the dataset of histories H•(c ↑).
A challenge in establishing the monotonic mislearning result in this setting is that Lemma

3 shows dµ∗12
dc

is not everywhere positive. However, it turns out dµ∗12
dc

is only negative for certain
moderately negative values of c that will not be visited for a society starting at c[0] = c•. So
under assumptions analogous to those in Proposition 2, we again get the harmful learning
pattern that leads to worse welfare every generation.

Proposition 3. When the stage game is search without recall, suppose agents know that the
unknown fundamentals satisfy µ•1 = µ•2 = µ• and the 0th generation starts with the objectively
optimal stopping strategy c• ↑ . The sequence of cutoff thresholds across different generations
(c[t])t≥0 is strictly decreasing in t. So expected welfare is also strictly decreasing in t.
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4.3 Turning Off the Censoring Effect or the Gambler’s Fallacy

I now study some modifications of the baseline model to show that this harmful learning
results emerges from the interaction of the gambler’s fallacy and endogenous learning in the
dynamic stage game. The results in this section imply that if the agents do not suffer from
the gambler’s fallacy, then they will learn to use the objectively optimal cutoff even in the
presence of endogenous feedback (Proposition 4). I also consider a world where the generation
t+1 agents observe what X2 would have resulted in each of the previous generation’s games,
even those games where the early candidate was hired. Then even in the presence of the
gambler’s fallacy, the agents will learn to use the objectively optimal cutoff (Proposition 5).
These results show that neither the censoring effect nor the gambler’s fallacy is dispensable
for the mislearning dynamics.

Proposition 4. If γ = 0, then under the same assumptions as Proposition 2, c[1] = c• for
all t ≥ 1.

Proof. The objective model for (X1, X2) is within the class of feasible subjective models of
the agents when γ = 0. Regardless of the cutoff c[t−1] ∈ R used by the previous generation,
only the objective model matches the censored distribution of (X1, X2) and sets the KL
divergence to 0. So, µ2,[t] = µ•2 for all t ≥ 1. This means c[t] = c• for all t ≥ 1.

Now I introduce a new observability assumption where agents in generation t + 1 ob-
serve the draws that would have been realized in each period of each game in generation t,
regardless of the actual stopping choices of the generation t agents.

Definition 6. The full history of predecessor n consists of the pair of values hfn = (x1, x2),
where x1 is the realization of X1 in n’s decision problem and x2 is the value of X2 that would
have been realized had n continued into the second period.

Suppose generation t + 1 observe an infinite dataset (hfn)n∈[0,1] of full histories corre-
sponding to the hypothetical draws associated with all games in generation t. This full-
observability environment turns off the censoring effect, as the distribution of generation
t+ 1’s dataset is not affected by the stopping rule that generation t agents use. I now show
KL divergence in the new full-observability environment is minimized by the true fundamen-
tals, even though agents have a misspecified class of feasible subjective models.

Proposition 5. Under any full-support prior about the fundamentals, c[t] = c• for all t ≥ 1
under full observations.

Proof. Under full observations, regardless of the cutoff used by the previous generation, the
inferred fundamentals µ∗1 and µ∗2 minimize the full-observations KL divergence,

∫ ∞
−∞

{∫ ∞
−∞

φ(x1;µ•1, σ2) · φ(x2;µ•2, σ2) · ln
[

φ(x1;µ•1, σ2) · φ(x2;µ•2, σ2)
φ(x1;µ1, σ2) · φ(x2;µ2 + γ(x1 − µ1), σ2)

]
dx2

}
dx1.
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Note this integral is independent of c.
Performing rearrangements similar to the proof of Proposition 1, we find that µ∗1 and µ∗2

must minimize the objective function:

ξ(µ1, µ2) := (µ1 − µ•1)2

2 +
∫ ∞
−∞

φ(x1;µ•1, σ2) ·
[

(µ2 + γ(x1 − µ1)− µ•2)2

2

]
dx1

The unique pair solving the first-order conditions is µ∗1 = µ∗2 = µ•. This shows for all t ≥ 1,
we have µ1,[t] = µ2,[t] = µ•2. So by using Lemma 4, we conclude c[t] = µ• for every t ≥ 1.

5 General Learning Dynamics

In this section, I investigate general learning dynamics for any stopping problem satisfying
Assumption 1. Proposition 6 shows the positive feedback dynamics discussed in Section 4’s
example always obtains under these minimal assumptions. I then define the steady state of
the learning system and provide additional assumptions to ensure its existence and unique-
ness. When these additional assumptions are satisfied, I give a complete characterization
of the generational learning dynamics (Corollary 1), showing that from any prior g society
always converges to the same steady state monotonically. Finally, dropping the additional
restrictions ensuring a unique steady state, I show in Proposition 8 that all steady-state
stopping rules of the learning dynamics are strictly lower than the objectively optimal one.
This parallels Section 4’s search example where agents end up using suboptimally low stop-
ping thresholds. The overall picture is that the results and intuitions of Section 4’s example
remain qualitatively robust in the general environment.

I begin by showing the positive feedback phenomenon at the heart of Section 4’s example
holds generally. Changes in beliefs across successive generations are amplified, not dampened,
by the corresponding changes in behavior leading to changes in the severity of the censoring
effect.

Proposition 6. Consider any optimal-stopping problem satisfying Assumption 1 and ini-
tialize the 0th generation at any cutoff stopping strategy11 c[0] ↑. Then beliefs about second
period fundamental (µ∗2,[t])t≥1 and the stopping thresholds (c[t])t≥1 form monotonic sequences.

Proof. Suppose µ∗2,[2] ≥ µ∗2,[1]. Under Assumption 1, Lemma 2 applies, so C is strictly in-
creasing in its second argument. This shows c[2] = C(µ•1, µ∗2,[2]) ≥ C(µ•1, µ∗2,[1]) = c[1]. But

11Throughout I will assume that 0th generation agents start with a cutoff-based stopping strategy. Lemma
1 does not directly apply to them, since they have a non-degenerate prior belief over the feasible subjective
models and not a dogmatic belief in one model as agents in later generations. Online Appendix OA 2
provides sufficient conditions on the prior g to ensure the subjectively optimal stopping strategy in the 0th
generation involves a stopping threshold.
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by Proposition 1, µ∗2(c) increases in c, so µ∗2,[3] = µ∗2(c[2]) ≥ µ∗2(c[1]) = µ∗2,[2]. Continuing this
argument shows that (µ∗2,[t])t≥1 is a monotonically increasing sequence. Since C is strictly in-
creasing in its second argument, (c[t])t≥1 must also form a monotonically increasing sequence.

Conversely if µ∗2,[2] < µ∗2,[1], then the analogous arguments show that (µ∗2,[t])t≥1 and (c[t])t≥1

are monotonically decreasing sequences.

The key driving force behind the result is the pair of monotonicity results: the indifference
threshold C is strictly increasing in its second argument and the pseudo-true fundamental
strictly increases in the censoring threshold. The first comes from conditions in Assumption
1, ensuring that the cutoff choice of each generation increases with their belief about the
second period fundamental. The second is a consequence of the interaction between the
gambler’s fallacy and the censoring effect — higher thresholds used by the previous genera-
tion lead to less censored datasets for the present generation, hence more optimistic beliefs
about the second-period fundamental given the gambler’s fallacy reasoning.

Now I turn to the long-run implications of the generational learning model. I first define
the steady state, which depends on the stage game and the extent of the gambler’s fallacy,
but not on the prior. I then prove its existence and uniqueness under some additional
assumptions.

Definition 7. A steady state consists of fundamentals µ∞1 , µ∞2 ∈ R and a stopping strategy
c∞ ↑ such that:

1. the cutoff is rational for the subjective model Ξ(µ∞1 , µ∞2 ; γ), that is c∞ = C(µ∞1 , µ∞2 ).

2. beliefs correspond to the pseudo-true fundamentals given the dataset H•(c∞ ↑), that
is µ∞1 = µ∗1(c∞) and µ∞2 = µ∗2(c∞).

Note that the steady-state belief is endogenously determined by the steady-state stop-
ping strategy. Every steady state is an instance of Esponda and Pouzo (2016)’s Berk-Nash
equilibrium for an agent whose prior is supported on the feasible subjective models.

I now present a restriction on the stage-game payoff functions to ensure the existence
and uniqueness of a steady state.

Assumption 2. For every x1, x2 ∈ R and w > 0,

u1(x1)− u1(x1 − w) > u2(x1, x2)− u2(x1 − w, x2 − (1 + γ)w)

Essentially, this is a stronger version of Assumption 1’s Condition 2, which already implies
that

u1(x1)− u1(x1 − w) ≥ u2(x1, x2)− u2(x1 − w, x2)
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The new assumption requires that the inequality still holds even after the second argument
u2(x1 − w, x2) is lowered by (1 + γ)w, which makes the right-hand side larger.

For instance, Assumption 2 is satisfied for Example 1 for any q ∈ [0, 1), γ < 0.12

In Example 2, Assumption 2 is satisfied when the depreciation of the prototype value is
significant for entrepreneurs who choose to improve their early-stage startup, or when it is
easier to invent a high market-value prototype than it is to improve an existing prototype.
More precisely, suppose v1(x1) = b1x1, v2(x2) = b2x2 for b1, b2 > 0, then Assumption 2 holds
whenever b1 ≥ 1+γ

1−αb2. This condition is easier to satisfy if α ∈ (0, 1) is small or when b1 is
large relative to b2.

Proposition 7. When −1 < γ < 0, a unique steady state exists under Assumptions 1 and
2.

To prove the existence and uniqueness of steady state, I consider the following belief
iteration map on the second-period fundamental,

Υ(µ2) := µ•2 + γ (µ•1 − E [X1|X1 ≤ C(µ•1, µ2)]) .

For t ≥ 1, if the current generation of agents believe in fundamental values (µ∗1,[t], µ∗2,[t]) =
(µ•1, µ2), they would choose the cutoff C(µ•1, µ2) and, by Proposition 1, the next generation of
agents would come to believe in µ∗1,[t+1] = µ•1, µ∗2,[t+1] = µ•2 + γ (µ•1 − E [X1|X1 ≤ C(µ•1, µ2)]).
In short, the dynamics of beliefs about second-period fundamentals across successive gener-
ations are given by iterates of Υ.

Every fixed point µ̂2 of Υ, Υ(µ̂2) = µ̂2, is part of a steady state µ∞1 = µ•1, µ
∞
2 = µ̂2,

c∞ = C(µ•1, µ̂2). Conversely, in any steady state (µ∞1 , µ∞2 , c∞) we have to have µ∞1 = µ•1,
c∞ = C(µ∞1 , µ∞2 ) = C(µ•1, µ∞2 ), and µ∞2 = µ∗2(c∞) = µ•2 + γ (µ•1 − E [X1|X1 ≤ C(µ•1, µ∞2 )]).
So we see µ∞2 associated with any steady state must be a fixed point of Υ.

The main idea of the proof of Proposition 7 involves showing that Υ is a contraction
mapping. While there is a positive feedback loop between the censoring effect and gambler’s
fallacy, it turns out overall gain around the loop is positive but less than 1 provided the

12To see this, observe that

u1(x1)− u1(x1 − w) = (x1)− (x1 − w) = w

while

u2(x1, x2)− u2(x1 − w, x2 − (1 + γ)w)
= [q ·max(x1, x2) + (1− q) · x2]− [q ·max(x1 − w, x2 − (1 + γ)w) + (1− q) · (x2 − (1 + γ)w)]
≤q · (max(x1, x2)−max(x1 − w, x2 − w)) + (1− q) · (1 + γ)w
=qw + (1− q)(1 + γ)w < qw + (1− q)w = w.
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additional restrictions in Assumption 2 hold. So, this feedback does not cause beliefs and
actions to run off to infinity across generations.

As a corollary of Proposition 6, I now give a complete characterization of the generations-
based learning dynamics. When stopping problem satisfies the additional Assumption 2,
agents have bias −1 < γ < 0, and when the 0th generation starts with any stopping strategy
c[0] ↑, both beliefs and behavior converge monotonically to the unique steady-state values.
Thus the 0th generation stopping threshold c[0] affects the direction of convergence and the
short-run behavior, but not the long-run behavior of the society.

Corollary 1. Suppose Assumptions 1 and 2 hold, −1 < γ < 0, and 0th generation starts
with a cutoff stopping rule c[0] ↑. If µ∗2,[1] is larger than the unique steady-state belief µ∞2 , then
beliefs and stopping thresholds decrease monotonically across generations, µ∗2,[t] % µ∞2 , c[t] %
c∞. If µ∗2,[1] is smaller than µ∞2 , beliefs and stopping thresholds increase monotonically across
generations, µ∗2,[t] 1 µ∞2 , c[t] 1 c∞. The rate of convergence in beliefs is at least exponential
in t, with |µ∗2,[t] − µ∞2 | ≤

|γ|t
1−|γ| |µ

∗
2,[2] − µ∗2,[1]|.

Proof. Under these restrictions, by Proposition 7 there is a unique steady-state belief about
the second-period fundamental, µ∞2 . Since the sequence of beliefs across generations (µ∗2,[t])t≥1

are the Υ-iterates of µ∗2,[1], that is µ∗2,[t+1] = Υ(t)(µ∗2,[1]) for all t ≥ 1, the contraction mapping
property of Υ established in the proof of Proposition 7 shows that limt→∞ µ

∗
2,[t] = µ∞2 . The

monotonicity of this convergence was established in Proposition 6. Also, Lemma A.1 in the
Appendix used in the proof of Proposition 7 shows that

∣∣∣C(µ•1, µ
′
2)− C(µ•1, µ

′′
2)
∣∣∣ ≤ |µ′2−µ′′2 | for

all µ′1, µ
′′
2 ∈ R. This in particular implies C is a continuous function of its second argument,

so we may exchange the limit:

lim
t→∞

c[t] = lim
t→∞

C(µ•1, µ∗2,[t]) = C(µ•1, lim
t→∞

µ∗2,[t]) = C(µ•1, µ∞2 ) = c∞.

Finally, the proof of Proposition 7 showed that Υ has a modulus of |γ|, so the rate of
convergence in belief comes from a well-known property about contraction mappings with
modulus |γ|.

Finally, I compare the steady-state stopping threshold with the objectively optimal one.
Recall that the objectively optimal stopping strategy in the stage game has a cutoff form, as
Lemma 1 also applies to the objective model Ξ• specifying independent (X1, X2). Let this
objectively optimal cutoff be c• ∈ R. I show that c• > c∞ for every steady-state cutoff c∞.
(This result does not depend on uniqueness of the steady state and applies to all steady
states if there are multiple, allowing me to drop the additional restrictions in Assumption
2.) That is, the early-stopping phenomenon of the illustrative example is robust to general
stopping problems in the sense that it continues to obtain in the long-run.
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Proposition 8. Every steady-state stopping threshold c∞ is strictly lower than the objectively
optimal stopping threshold, c•.

Proof. Suppose stopping strategy c∞ ↑ is subjectively optimal under the steady-state beliefs
(µ•1, µ∞2 ). Indifference at c∞ under the subjective model Ξ(µ•1, µ∞2 ; γ) implies that

u1(c∞) = EX̃2∼N (µ∞2 +γ(c∞−µ•1),σ2)[u2(c∞, X̃2)].

By the definition of steady state, µ∞2 = µ∗2(c∞) = µ•2 + γ (µ•1 − E [X1|X1 ≤ c∞]) . This means

µ∞2 − γ(µ•1 − c∞) < µ∞2 − γ(µ•1 − E [X1|X1 ≤ c∞]) = µ•2

since c∞ > E [X1|X1 ≤ c∞].
Therefore, N (µ∞2 + γ(c∞ − µ•1), σ2) is first-order stochastically dominated by N (µ•2, σ2).

Since u2 is strictly increasing in its second argument by Assumption 1(a), we therefore have

u1(c∞) < EX̃2∼N (µ•2,σ2)[u2(c∞, X̃2)].

The LHS is the objective payoff of stopping at c∞ while the RHS is the objective expected
payoff of continuing at c∞. By the structure of the optimal stopping rule under the objective
model Ξ•, we must have c∞ < c•.

In the early generations, the comparison between the stopping behavior of biased agents
and the optimal behavior is ambiguous. Given the correct beliefs about the fundamentals,
a biased agent has a stronger incentive to continue after a below-average first-period draw
than a rational agent. If the objectively optimal stopping rule involves a stopping threshold
below the first-period fundamental, then this force pushes gambler’s fallacy agents to use a
higher stopping threshold than optimal. The content of this result is that in the long-run,
society’s pessimism about second-period fundamental always dominates and leads to the
unambiguous prediction of stopping too early.

The intuition of this result is the clearest if we return to the illustrative example from
Section 4. Under subjective model Ξ, agents choose a stopping threshold c to optimize
the wrong expected utility function UΞ(c) := P[X1 ≥ c] · E[X1|X1 ≥ c] · +P[X1 < c] ·
EΞ[X2|X1 < c]. The expression UΞ correctly describes the probability of hiring the early-
phase candidate and the expected quality of the early candidate conditional on being hired,
but is misspecified as to how the stopping threshold choice affects the quality of the late-phase
candidate conditional on not hiring the first one. Whereas in reality E[X2|X1 < c] = µ•2 does
not depend on c, the biased agents believe EΞ[X2|X1 < c] decreases with c. Outside of the
steady state, the agent’s expected continuation payoff given that the early-phase candidate
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falls below some threshold c is unrestricted by theory, so we can say little about how the
biased agents behave relative to their rational counterpart. But in the steady state, we must
have EΞ(µ•1,µ∞2 ;γ)[X2|X1 < c∞] = µ•2, combining the steady-state condition µ∗2(c∞) = µ∞2 with
the method-of-moments interpretation of the pseudo-true µ∞2 . So the biased agents correctly
know the expected second-period payoff if they use the steady-state cutoff c∞, but wrongly
believe that increasing this cutoff will lead to a worse second-period payoff, under-estimating
the expected benefits of a choosier stopping threshold. If the biased agents are indifferent at
X1 = c∞, rational agents must strictly prefer to increase the threshold.

The above discussion shows a connection between the structure of the steady state in
this learning problem and Esponda (2008)’s behavioral equilibrium. In Esponda’s world,
buyers in a bilateral trade situation offer a price p, which sellers with different quality goods
accept or reject. The buyer correctly knows the expected quality of the trade conditional on
a seller accepting the price p, but holds wrong beliefs about the quality consequences of a
deviation. Esponda (2008) had no explicit mechanism for how these beliefs are formed, but
in my learning problem these deviation beliefs are pinned down by the gambler’s fallacy.

6 Fictitious Variation and Censored Datasets

So far, I have considered agents who hold dogmatic and correct beliefs about the variance of
X1 and the conditional variance of X2|(X1 = x1). In this section, I turn to agents who are
uncertain about the variances of the draws and jointly estimate variance and fundamentals
using the histories of their predecessors.

Objectively, X1, X2 are independent Gaussian random variables each with a variance of
(σ•)2 > 0, so the true joint distribution of (X1, X2) is Ξ• = Ξ(µ•1, µ•2, (σ•)2, (σ•)2; 0). Suppose
agents have a full-support belief over the class of models

{
Ξ(µ1, µ2, σ

2
1, σ

2
2; γ) : µ1, µ2 ∈ R, σ2

1, σ
2
2 ≥ 0

}
.

Following Definition 5, DKL(H•(c ↑)||H(Ξ(µ1, µ2, σ
2
1, σ

2
2; γ); c ↑)) is given by

∫ ∞
c

φ(x1;µ•1, (σ•)2) · ln
(
φ(x1;µ•1, (σ•)2)
φ(x1;µ1, σ2

1)

)
dx1 (1)

+
∫ c

−∞

{∫ ∞
−∞

φ(x1;µ•1, (σ•)2) · φ(x2;µ•2, (σ•)2) · ln
[

φ(x1;µ•1, (σ•)2) · φ(x2;µ•2(σ•)2)
φ(x1;µ1, σ2

2) · φ(x2;µ2 + γ(x1 − µ1), σ2
2)

]
dx2

}
dx1.

The next proposition characterizes the pseudo-true parameters µ∗1, µ∗2, (σ∗1)2, (σ∗2)2 that
minimize the above expression.

32



Proposition 9. The pseudo-true parameters minimizing DKL(H•(c ↑)||H(Ξ(µ1, µ2, σ
2
1, σ

2
2; γ); c ↑

)) are µ∗1 = µ•1, µ
∗
2 = µ•2+γ (µ•1 − E [X1|X1 ≤ c]) , (σ∗1)2 = (σ•)2, (σ∗2)2 = (σ•)2+γ2Var[X1|X1 ≤

c].

Given any stopping rule c ↑, the agents’ inferences about the fundamentals remain the
same as in the case when they know the variances. Agents correctly estimate the first-period
variance, (σ∗1)2 = (σ•)2, but their estimate of the second-period variance is too high. The
magnitude of this distortion increases in the severity of the gambler’s fallacy but decreases
with the severity of the censoring, as Var[X1|X1 ≤ c] is smaller for lower c when X1 is
Gaussian.

The intuition for misinferring the second-period conditional variance is the following.
Whereas the objective conditional distribution of X2|(X1 = x1) is independent of x1, the
agent has a different subjective model for this conditional distribution for each x1. The agent’s
best-fitting belief about the second-period fundamental µ∗2 < µ•2 ensures her subjective model
aboutX2|X1 = x1 fits the data well following “typical” realizations of x1 under the restriction
X1 ≤ c. However, following unusually high X1 the agent is surprised by high values of X2,
while following unusually low X1 she is surprised by low values of X1. To better account
for these surprising observations of X2, the agent increases estimated conditional variance of
X2|(X1 = x1). The degree of overestimation increases in Var[X1|X1 ≤ c], for the frequency
of these surprising observations depends on how much X1 under the restriction X1 ≤ c tends
to deviate from its typical value, E[X1|X1 ≤ c]. And of course, the degree of overestimation
increases in severity of the gambler’s fallacy bias, which increases the size of these surprises.

An equivalent formulation of this result helps interpret the distorted (σ∗2)2. As in Remark
1, we may write the subjective model Ξ(µ1, µ2, σ

2
1, σ

2
2; γ), σ2

2 = σ2
1 + σ2

η, σ2
η ≥ 0 as

X1 = µ1 + ε1

X2 = µ2 + ζ + ε2

where ε1 ∼ N (0, σ2
1), ε2|ε1 ∼ ε2|ε1 ∼ N (−γε1, σ2

1), and ζ ∼ N (0, σ2
ζ ), with ζ independent of

ε1, ε2. In the context where X1 and X2 represent the quality realizations of two candidates
from the early and late applicant pools, ζ is a vacancy-specific shift in the average quality of
the second-period applicant. A positive σ2

ζ means there are some vacancies for which the late
applicants are an especially poor fit and some others for which they are especially suitable.
Proposition 9 says that in an environment where all jobs are objectively homogeneous with
respect to the fit of the late applicants, managers who find it possible that jobs are heteroge-
neous in this dimension will indeed estimate a positive amount of this heterogeneity, σ2

ζ > 0,
from the censored histories of their predecessors. This added heterogeneity allows agents to
better rationalize histories (X1, X2) where both candidates have unusually high/low qualities
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as vacancies that happen to be an especially good/bad fit for second-period applicants (i.e.
the realization of ζ is far from 0.)

This phenomenon relates to findings in Rabin (2002) and Rabin and Vayanos (2010), who
refer to this exaggeration of variance under the gambler’s fallacy as fictitious variation. The
key innovation of Proposition 9 is to show, in an endogenous learning setting, how the degree
of fictitious variation depends on the severity of the censoring. To highlight this point, I now
derive two results focusing on the interplay between fictitious variation and the endogenous
censoring.

The first result says that when the second-period payoff u2(x1, x2) is a linear or convex
function of x2, the positive feedback cycle from Section 5 continues to obtain — cutoffs,
beliefs about fundamentals, and beliefs about variances form monotonic sequences across
generations. This includes the case of search with recall in Example 1 for any recall proba-
bility 0 ≤ q < 1.

Definition 8. The optimal-stopping problem is convex if for every x1 ∈ R, x2 7→ u2(x1, x2)
is convex with strict convexity for x2 in a positive-measure set. The optimal-stopping problem
is concave if for every x1 ∈ R, x2 7→ u2(x1, x2) is concave with strict concavity for x2 in a
positive-measure set.

Proposition 10. Suppose the optimal-stopping problem is convex. Suppose agents start with
a full-support prior over {Ξ(µ1, µ2, σ

2
1, σ

2
2; γ) : µ1, µ2 ∈ R, σ2

1, σ
2
2 ≥ 0} and let generation 0 use

any cutoff stopping strategy c[0] ↑ with c[0] ∈ R. For t ≥ 1, denote the beliefs of generation
t as (µ∗1,[t], µ∗2,[t], (σ∗1,[t])2, (σ∗2,[t])2) and their stopping strategy as c[t] ↑. Then µ∗1,[t] = µ•1,
(σ∗1,[t])2 = (σ•)2 for all t, while (µ∗2,[t])t≥1, (σ∗2,[t])2

t≥1, and (c[t])t≥1 are monotonic sequences.

The intuition is straightforward. Suppose generation t uses a more relaxed hiring thresh-
old c[t] < c[t−1] than generation t − 1, resulting in a more severely censored dataset. By
the usual censoring effect with known variances, generation t+ 1 becomes more pessimistic
about second-period fundamental than generation t. In addition, by Proposition 9 we know
that generation t + 1 suffers less from fictitious variation than generation t. This implies
generation t+ 1 agents would perceive less continuation value than generation t agents even
if they held the same beliefs about the fundamentals, for a larger variance in X2|(X1 = x1)
improves the expected payoff when continuing after X1 = x1. Combining these two forces,
we deduce c[t+1] < c[t].

The second result compares the learning dynamics of two societies facing the same
optimal-stopping problem. One society knows the correct variances of X1 and X2|(X1 = x1).
The other society is uncertain about the variances and infers them from data. Proposition
11 shows that in generation 1, the two societies hold the same beliefs about the means of
the distributions, µ•1 and µ•2. But in all later generations t ≥ 2, the society that must infer
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variances also end up with a more pessimistic/optimistic belief about the second-period fun-
damental compared with the society that knows the variances, provided the optimal-stopping
problem is convex/concave. This divergence depends crucially on the endogenous-learning
setting, for Proposition 9 implies that the two societies make the same inferences about
the fundamentals when given the same dataset. But, since agents inferring variances end
up believing in fictitious variation, they perceive a different continuation value than their
peers in the same generation from the society that knows the variances. This causes the
variance-inferring agents to use a different cutoff threshold, which affects the dataset that
their successors observe. In short, allowing uncertainty on one dimension (variance) ends up
affecting society’s long-run inference in another dimension (mean).

Formally, consider two societies of agents, A and B. Agents in society A start with a full-
support prior over {Ξ(µ1, µ2, (σ•)2, (σ•)2; γ) : µ1, µ2 ∈ R}. Agents in society B start with a
full-support prior over {Ξ(µ1, µ2, σ

2
1, σ

2
2; γ) : µ1, µ2 ∈ R, σ2

1, σ
2
2 ≥ 0}. Fix the same generation

0 cutoff stopping strategy c[0] ↑ with c[0] ∈ R for both societies. For t ≥ 1, denote the beliefs
of generation t in society k ∈ {A,B} as (µ∗1,[k,t], µ∗2,[k,t], (σ∗1,[k,t])2, (σ∗2,[k,t])2) and their stopping
strategy as c[k,t] ↑.

Proposition 11. In the first generation, µ∗1,[A,1] = µ∗1,[B,1] and µ∗2,[A,1] = µ∗2,[B,1]. If the
optimal-stopping problem is convex, then µ∗2,[B,t] > µ∗2,[A,t] and c[B,t] > c[A,t] for every t ≥ 2.
If the optimal-stopping problem is concave,13 then µ∗2,[B,t] < µ∗2,[A,t] and c[B,t] < c[A,t] for every
t ≥ 2.

7 Extensions of the Baseline Model

In this section I show that results of the baseline model are robust to a number of extensions.
The Online Appendix OA 3 contains additional extensions.

7.1 Observing All Past Generations

As discussed in Section 2.4, an underlying assumption of the large-generations learning model
is that generation t agents only draw inference from the histories of generation t−1 agents, not
from their actions. This amounts to not assuming the rationality of other players. When the
stopping strategies associated with different generations converge, all late enough generations
would find the strategy used by the immediate predecessor generation approximately optimal,
given their own beliefs about the fundamentals. However, early generations may change their
stopping thresholds by a non-negligible amount if they were to assume their predecessors

13For instance, the start-up problem in Example 2 is a concave optimal-stopping problem with v2(x2) =
x− e−x.
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are rational and have the same payoff functions as they do, invert their predecessors’ actions
into their implied beliefs, then use this additional information in inferring the fundamentals.

I consider an extension where agents observe all stage-game histories from all previous
generations (APG). In this extension, learning dynamics do not depend on whether agents
know that others are rational and learn from their actions. Since generation t2 observes all
the histories that generation t1 < t2 saw, information sets are nested — generation t2 agents
can glean no additional information about the fundamentals from the strategy of generation
t1. In addition, generation t2 would agree that generation t1 played a subjectively optimal
stopping strategy given their information.

To formally define the APG observation structure, write hτ,n for the history of agent
n in generation τ. Each agent in generation t ≥ 1 observes an infinite dataset of histories
((hτ,n)n∈[0,1])t−1

τ=0. If for each 0 ≤ τ ≤ t − 1, generation τ agents the stopping strategy cτ ↑,
then the distribution of each sub-dataset of histories (hτ,n)n∈[0,1] is given by H•(cτ ). This
leads to the KL divergence objective to be minimized.

Definition 9. Under the APG observation structure, the pseudo-true fundamentals with
respect to stopping rules (cτ )t−1

τ=0 are minimizers of

t−1∑
τ=0

 ∫∞
cτ

φ(x1;µ•1, σ2) · ln
(
φ(x1;µ•1 ,σ

2)
φ(x1;µ1,σ2)

)
dx+∫ ck

−∞

{∫∞
−∞ φ(x1;µ•1, σ2) · φ(x2;µ•2, σ2) · ln

[
φ(x1;µ•1 ,σ

2)·φ(x2;µ•2 ,σ
2)

φ(x1;µ1,σ2)·φ(x2;µ̂2+γ(x1−µ1),σ2)

]
dx2

}
dx1

 (2)

across µ1, µ2 ∈ R.Denote these pseudo-true fundamentals as µA
1 (c0, ..., ct−1) and µA

2 (c0, ..., ct−1).

The next lemma expresses the APG pseudo-true parameters in terms of the pseudo-true
parameters in the baseline model. It shows that after observing data generated by cutoffs
c0, ..., ct−1 in generations 0, ... t − 1, generation t’s posterior belief about the fundamentals
can be computed by taking a weighted average of the t different beliefs that the histories
from each of the past t generations would have generated on their own.

Lemma 5. The pseudo-true parameters are given by µA
1 (c0, ..., ct−1) = µ•1 and

µA
2 (c0, ..., ct−1) = 1

t ·∑t−1
τ=0 P[X1 ≤ cτ ]

t−1∑
τ=0

P[X1 ≤ cτ ] · µ∗2(cτ ),

where µ∗2(cτ ) is the pseudo-true second-period fundamental associated with the datasetH•(cτ ↑
).

Intuitively speaking, generation t’s inference has to accommodate data from t previous
generations, which are censored using t potentially different cutoffs. While the biased gen-
eration t agents would draw the same inference about first-period fundamental using data
from any of these past generation, the data of different past generations lead to different
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beliefs about second-period fundamental. The relative influence of generation τ data on the
overall inference depends on the cutoff cτ generating it, since this cutoff affects how many
uncensored pairs (X1, X2) are observed in this generation relative to other generations.

Next, I characterize the learning dynamics in the APG observations environment. I show
that the positive feedback between distorted actions and distorted beliefs remains robust in
this setting for general stopping problems. Furthermore, under the additional restrictions
in Assumption 2 guaranteeing a unique steady state for the baseline model, APG learning
converges to the same steady state. That is, whether agents observe only the histories of
the immediate predecessor generation or all past generations has no effect on the long-run
learning outcome. The intuition is that as beliefs converges across generations, the stopping
thresholds converge as well. For agents in late enough generations, most of the histories in
their dataset are censored according to stopping thresholds very similar to the limit threshold.
So, the pseudo-true fundamental based on their APG dataset is similar to the pseudo-true
fundamental of a one-generation dataset based on the limit cutoff, allowing us to compare
inference under these two different observation structures.

While in the long-run both APG and the baseline models behave the same way, they can
differ in their short-run welfare. For example, in settings where learning leads generations
further and further astray from the objectively optimal strategy, the APG environment slows
down this harmful learning, as the less-censored datasets from the early generations partially
moderate the pessimistic inference about the second-period fundamental.

Proposition 12. Suppose 0th generation starts with any cutoff stopping strategy c[0] ↑ . Then
in the APG observations environment, beliefs about second period fundamental (µA

2,[t])t≥1 and
the stopping thresholds (cA

[t])t≥1 for generations t ≥ 1 form monotonic sequences.
If in addition Assumption 2 holds and −1 < γ < 0, then (µA

2,[t])t≥1 and (cA
[t])t≥1 monoton-

ically converge to µ∞2 and c∞, the belief and stopping threshold associated with the unique
steady state of the baseline model.

7.2 Uncertainty about γ

So far I have considered agents with a dogmatic belief in some γ < 0. Now I turn to the
generalization where agents jointly estimate µ1, µ2, and γ from data. While their prior beliefs
about µ1 and µ2 have full support on R, I assume their prior about γ is supported on some
finite interval [γ, γ̄]. The next result generalizes Proposition 1. It shows that when the draws
(X1, X2) have an objective distribution Ξ(µ•1, µ•2; γ•) with γ• /∈ [γ, γ̄], the KL-divergence
minimizing inference involves γ∗ equal to γ̂ ∈ {γ, γ̄}, boundary point of the support of γ
that is the closest to γ•. Given the estimated pseudo-true parameter γ̂, the estimates of the
first- and second-period fundamentals take similar forms to those in Proposition 1.
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Proposition 13. Suppose γ• /∈ [γ, γ̄]. Let γ̃ = γ̄ if γ• > γ̄, otherwise γ̃ = γ when γ• < γ.
The pseudo-true parameters minimizing KL divergence

min
µ1,µ2∈R,γ∈[γ,γ̄]

DKL(H(Ξ(µ•1, µ•2; γ•); c ↑) || H(Ξ(µ1, µ2; γ); c ↑))

is given by µ∗1(c) = µ•1, µ
∗
2(c) = µ•2 + (γ̃ − γ•) ·

(
µ•1 − EΞ(µ•1,µ•2;γ•)[X1|X1 ≤ c]

)
, γ∗(c) = γ̃.

Intuitively, we may expect the closest distance (in the KL divergence sense) from the set
of subjective models {Ξ(µ1, µ2; γ̂) : µ1, µ2 ∈ R} to the objective distribution Ξ(µ•1, µ•2; γ•) to
decrease in |γ̂ − γ•|. Proposition 13 confirms this intuition, showing that the pseudo-true
model from the set {Ξ(µ1, µ2; γ) : µ1, µ2 ∈ R, γ ∈ [γ, γ̄]} lies in the subset {Ξ(µ1, µ2; γ) :
µ1, µ2 ∈ R, γ = γ̃}, where γ̃ is the closest point (in the Euclidean sense) to γ• in the interval
[γ, γ̄].

As an immediate corollary, when X1 and X2 are objectively uncorrelated (γ• = 0) and
the agent’s belief about γ is supported on [γ, γ̄] with by γ̄ < 0, the learning dynamics are
exactly the same as in baseline the model where agent dogmatically believes in the value
γ = γ̄.

Corollary 2. Suppose γ• = 0 and agents have a prior belief about the correlation that is
supported on [γ, γ̄] with γ̄ < 0. For any initial stopping strategy c[0] ↑ in the 0th generation,
all generations t ≥ 1 believe with certainty that γ = γ̄. The dynamics of of beliefs and
behavior for generations t ≥ 1 are identical to those in the baseline model when agents have
a dogmatic belief in γ = γ̄ and 0th generation starts with the same strategy c[0] ↑ .

7.3 Population with Heterogeneity in Selection Neglect

In this section, I study an extension of the baseline model where a fraction 0 ≤ α < 1
of agents in each generation has full selection neglect, while the remainder are baseline
agents with the gambler’s fallacy. This mixture specification is inspired by Enke (2017)’s
experimental results, who finds heterogeneity in subjects’ degree of selection neglect with
the full-selection-neglect subjects and no-selection-neglect subjects together accounting for
a majority of the population. On the other hand, Enke (2017) does not find a significant
mass of subjects at any “intermediate” level of selection neglect.

To model agents with full selection neglect, I assume that when faced with a dataset of
histories (h1,n, h2,n)n∈[0,1], they treat (h1,n)n∈[0,1] as a sample from the unconditional distribu-
tion of X1, and (h2,n)n:h2,n 6=∅ as an independent sample from the unconditional distribution
of X2. Relative to the base line agents, they make the error of of the selection process behind
which h2,n appear in the dataset: they are not censored at random, but only censored when
h1,n exceeds the acceptance threshold used by the predecessors. In this environment, the
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gambler’s fallacy and selection neglect exactly cancel each other out, since in large datasets
the mean of h1,n is µ•1 and the mean of uncensored h2,n is µ•2. This shows that from the
dataset H•(c) for any c ∈ R, the selection neglecters correctly infer the fundamentals and
choose the stopping strategy with cutoff14 C(µ•1, µ•2).

Now consider a baseline agent with the gambler’s fallacy, facing a dataset of histories
generated by a heterogeneous population of predecessors. A fraction α of the histories are
generated by selection neglecters using the stopping strategy C(µ•1, µ•2) ↑. The remaining 1−α
fraction are generated by baseline predecessors using the stopping strategy c ↑ . The next
proposition characterizes the pseudo-true fundamentals maximizing the weighted-average
KL-divergence objective,

αDKL(H•(C(µ•1, µ•2))||H(Ξ(µ1, µ2; γ);C(µ•1, µ•2))) + (1− α)DKL(H•(c)||H(Ξ(µ1, µ2; γ); c)).
(3)

The proof is similar to that of Proposition 5, except replacing multiple previous generations
with two sub-populations within the immediate predecessor generation, and weighing these
sub-populations differently due to their relative sizes.

Proposition 14. The pseudo-true fundamentals minimizing Equation (3) when baseline
predecessors use the stopping strategy c ↑ is µSN1 = µ•1,

µSN2 (c) = αP[X1 ≤ C(µ•1, µ•2)]
αP[X1 ≤ C(µ•1, µ•2)] + (1− α)P[X1 ≤ c] · µ

∗
2(C(µ•1, µ•2))

+ (1− α)P[X1 ≤ c]
αP[X1 ≤ C(µ•1, µ•2)] + (1− α)P[X1 ≤ c] · µ

∗
2(c).

That is, with a mixture of selection-neglecter and baseline predecessors, baseline agents’
inference about the second-period fundamental is a convex combination between what they
would infer from the histories of the selection neglecters alone and what they would infer
from the histories of the baseline predecessors alone. The relative weights given to these two
pseudo-true second-period fundamentals depend on the relative sizes of the two subpopu-
lations, as well as on how frequently second-period draws are observed in each of the two
sub-datasets.

Since both µ∗2(C(µ•1, µ•2)) and µ∗2(c) are strictly below µ•2, we immediately conclude the
same holds for µSN2 (c) for any c ∈ R.

Next, I compare a baseline society with no selection neglecters with a second society
containing a positive fraction of selection neglecters. I show that when two societies start with
the same generation 0 behavior, the society with selection neglecters hold more optimistic

14This cutoff may nevertheless differ from the objectively optimal one, since the selection neglecters also
suffer from the gambler’s fallacy, so they believe in the joint distribution Ξ(µ•1, µ•2; γ).
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beliefs about the second-period fundamental and use a higher stopping threshold in every
generation t ≥ 1. So, the presence of a mixture of selection neglecters and basseline agents
moderates the over-pessimism in inference without completely eliminating it.

Corollary 3. Let 0 < α < 1. Consider two societies, 1 and 2, where society 1 has no
selection neglecters and society 2 has an α fraction of selection neglecters in each generation.
Suppose all agents in the 0th generation in both societies use the stopping rule c[0] ↑ . For
t ≥ 1, denote the baseline agents’ beliefs and cutoff thresholds in society k as µk1,[t], µk2,[t], ck[t].
Then for every t ≥ 2, µ2

2,[t] > µ1
2,[t] and c2

[t] > c1
[t].

8 A Finite-Population Foundation

In the analysis so far, I have assumed that each generation contains a continuum of agents.
After observing an infinite dataset of histories with the distribution H•(c[t−1]), I assume
that agents in each generation t ≥ 1 place full confidence in pseudo-true fundamentals
(µ∗1(c[t−1]), µ∗2(c[t−1])) which solve the KL divergence minimization problem

min
µ1,µ2

DKL(H•(c[t−1]) || H(Ξ(µ1, µ2; γ)) ). (4)

Agents in generation t then use the optimal stopping strategy under the subjective model
(X1, X2) ∼ Ξ(µ∗1(c[t−1]), µ∗2(c[t−1])).

The purpose of this section is to provide a finite-population foundation for this assump-
tion. Suppose there are N <∞ agents in each generation and agents in generation t− 1 use
the stopping strategy c[t−1] ↑. I show that as N grows large, the Bayesian posteriors of the
generation t agents about the fundamentals converge in mean the pseudo-true fundamentals
solving (4). In addition, I also prove that for any c′ ∈ R, generation t’s posterior mean belief
about the expected payoff to using stopping strategy c′ ↑ converges to its expected payoff
under (µ∗1(c[t−1]), µ∗2(c[t−1])). In particular, if agents in generation t contemplate between
the stopping threshold c∗ = C(µ∗1(c[t−1]), µ∗2(c[t−1])) and finitely other alternatives, then as
N →∞ they almost surely choosing c∗.

These results do not follow directly from the classical Berk (1966), because his result
only establishes that for any open set containing the pseudo-true fundamentals, the mass
that the posterior belief assigns to the open set almost surely converges to 1. Crucially, the
prior distribution in my setting has full support on an unbounded domain, (µ1, µ2) ∈ R2.

Indeed, one of the implications of my central inference result, Proposition 1, is that the
pseudo-true parameter becomes unboundedly pessimistic as censoring threshold decreases.
So, the weak mode of convergence in Berk (1966)’s conclusion leaves open the possibility
that the posterior belief for increasing N put decreasing mass on increasingly extreme values
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of µ2. If the magnitude of these extreme values grows more quickly in N than the speed
with which probability concentrates on the open set around the pseudo-true fundamentals,
then payoff convergence could fail as N →∞. In practical terms, this implies the probability
of generation t agents playing the stopping strategy c∗ ↑ as in my infinite-population model
could be bounded away from 1 for all arbitrarily large N . Instead, the key Lemma 6 uses
Bunke and Milhaud (1998) to derive the stronger convergence in mean that subsequently
allows for convergence of payoffs and hence behavior as generations grow large.

To formalize the finite-population environment, suppose an agent has a full-support prior
belief over the class of subjective models {Ξ(µ1, µ2, σ

2, σ2; γ) : µ1, µ2 ∈ R} for some σ2 > 0,
γ < 0. Suppose the agent’s prior over models is given by a density function with bounded
magnitude, g : R2 → (0, B) for some B <∞, over the fundamentals (µ1, µ2). Let this agent
observe N pairs (Xn, Yn)Nn=1 generated in the following way: predecessor n continues into
the second period if and only if her first-period draw X1,n falls below some c[t−1] ∈ R. If
X1,n < c[t−1], then Xn = X1,n and Yn = X2,n where (X1,n, X2,n) refers to pair of draws
in n’s decision problem. If X1,n ≥ c, then Xn = X1,n but Yn ∼ N (0, 1) is a white noise
term that is independent of the draws of any decision problem. The idea is that a censored
draw is replaced by noise that is uninformative about the fundamentals. The generation t
agent knows the cutoff c[t−1] used to generate the dataset, so she knows which Yn terms are
noise. The noise term is simply for notational convenience, allowing me to describe the joint
distribution of (Xn, Yn) with a full support density.15

Since N is finite, the agent will end up with a random, non-degenerate posterior density
g̃N = g(·|(Xn, Yn)Nn=1) about the fundamentals (µ1, µ2), where the randomness comes from
the randomness of the N draws in the agent’s finite sample. Lemma 6 shows that as N →∞,
the random posterior g̃N converges to the pseudo-true parameters in mean.

Lemma 6. Let g : R2 → (0, B) be a full-support prior density with bounded magnitude on
the fundamentals. Fix a censoring threshold c ∈ R and write g̃N := g(·|(Xn, Yn)Nn=1) for
the random posterior after a censored sample of size N. Almost surely (with respect to the
distribution of (X1,n, X2,n)∞n=1, the infinite sequence of (X1, X2) pairs), we have

lim
N→∞

E(µ1,µ2)∼g̃N (|µ1 − µ•1|+ |µ2 − µ∗2(c)|) = 0.

Next, I turn to the convergence of expected payoffs for different cutoff strategies as
sample size grows large. Let g again satisfy the assumptions before and pairs (Xn, Yn) are
still generated according to the censoring threshold c ∈ R. For any c

′ ∈ R and N ∈ N,
let UN(c′) := E(µ1,µ2)∼g̃N

[
U(c′ ;µ1, µ2)

]
where U(c;µ1, µ2) is the expected payoff of using

15The distribution of Yn can be replaced with any other distribution with a full-support density and all
the results in this section will still go through.
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the stopping strategy c′ ↑ when (X1, X2) ∼ Ξ(µ1, µ2; γ). Note that UN(c′) is a real-valued
random variable representing agent’s subjective expected payoff for the stopping strategy
c
′ ↑, under the (random) non-degenerate posterior belief after observing a sample of size N .
Proposition 15 shows that UN(c′) converges almost surely to the subjective expected payoff
of c′ ↑ with a dogmatic belief in the pseudo-true fundamentals, provided the payoff functions
u1, u2 of the optimal-stopping problem are Lipschitz continuous.

Proposition 15. Suppose there are constants K1, K2 > 0 so that |u1(x′1) − u1(x′′1)| < K1 ·
|x′1 − x

′′
1 | and |u2(x′1, x

′
2)− u2(x′′1 , x

′′
2)| < K2 · (|x

′
1 − x

′′
1 |+ |x

′
2 − x

′′
2 |) for all x′1, x

′′
1 , x

′
2, x

′′
2 ∈ R.

Then for every c′ ∈ R, almost surely UN(c′)→ U(c′ ;µ∗1(c), µ∗2(c)).

The Lipschitz continuity conditions are satisfied in the search problem (Example 1) for
any q ∈ [0, 1), as well as in the startup problem (Example 2) when initial value and later
improvements are linear in draws, v1(x1) = b1x1 + a1 and v2(x2) = b2x2 + a2 for some
b1, b2 > 0.

Suppose the agent contemplates between c∗ — the stopping threshold for generation t

agents after generation t − 1 uses the stopping strategy c[t−1] ↑ in the infinite-population
model — and another threshold c

′ 6= c∗. It is an immediate corollary that the agent will
choose c∗ with probability approaching 1 as sample size grows large.

Corollary 4. Let c∗ = C(µ•1, µ∗2(c)) and c
′ 6= c∗. Suppose an agent must choose between

cutoff strategies c∗ or c′, based on expected payoff, after seeing the finite dataset (Xn, Yn)Nn=1

generated with the censoring threshold Xn ≥ c. For every ε > 0, there exists an N ∈ N so
that there is probability at least 1− ε the agent chooses c∗ whenever N ≥ N .
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Appendix

A Omitted Proofs from the Main Text

A.1 Proof of Claim 1

Proof. For Example 1, clearly u1 and u2 are strictly increasing functions of x1 and x2 re-
spectively. We also have that u2(x′1, x̄2) − u2(x′′1 , x̄2) ≤ q(x′1 − x

′′
1) for x′1 > x

′′
1 and any

x̄2, while u
′
1(x1) = 1. This shows Assumption 1(b) holds. Finally, if x1 > 0 and x2 < 0,

then u2(x1, x2) = q · x1 + (1 − q)x2 ≤ x1 = u1(x1), and conversely x1 < 0, x2 > 0 imply
u2(x1, x2) ≥ u1(x1). This shows Assumption 1(c) holds.

For Example 2, Assumption 1(a) holds because v1, v2 are strictly increasing. Assumption
1(b) holds because for x′1 > x

′′
1 and any x̄2, u2(x′1, x̄2)−u2(x′′1 , x̄2) = α · (u1(x′1)−u1(x′′1)) > 0.

Finally, u1(x1)− u2(x1, x2) = (1− α)v1(x1)− v2(x2) + κ2. Since v1 increases without bound
as x1 →∞, we can find a large enough L1 > 0 so that (1−α)v1(L1) > v2(0)− κ2. Then, for
any L ≥ L1,

u1(L)− u2(L,−L) = (1− α)v1(L)− v2(−L) + κ2 ≥ (1− α)v1(L1)− v2(0) + κ2 > 0.

Also, since v2 increases without bound as x2 → ∞, there is a large enough L2 > 0 so that
(1− α)v1(0)− v2(L2) + κ2 < 0. Then for any L ≥ L2,

u1(−L)− u2(−L,L) = (1− α)v1(−L)− v2(L) + κ2 ≤ (1− α)v1(0)− v2(L2) + κ2 < 0.

Setting L = max(L1, L2) shows Example 2 satisfies Assumption 1(c).

A.2 Proof of Lemma 1

Proof. I first show that if the agent is indifferent between stopping at some x̄1 and continuing,
then he strictly prefers stopping at any x′1 > x̄1. The indifference at x̄1 means that u1(x̄1) =
E[u2(x̄1, X̃2)] where X̃2 ∼ N (µ2 + γ(x̄1 − µ1), σ2) is the conditional distribution X2|(X1 =
x̄1). The conditional distribution X2|(X1 = x

′
1) differs from X2|(X1 = x̄1) by shifting

the mean by γ(x′1 − x̄1). Since u2 is strictly increasing in x2 by Assumption 1(a), we get
E[u2(x′1, X̃2 + γ(x′1 − x̄1))] ≤ E[u2(x′1, X̃2)] seeing that γ(x′1 − x̄1) ≤ 0. Also, at any x2 ∈ R,
by Assumption 1(b) we know that

u1(x′1)− u1(x̄1) > u2(x′1, x2)− u2(x̄1, x2).
⇒ u1(x′1)− u2(x′1, x2) > u1(x̄1)− u2(x̄1, x2).
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This then shows u1(x′1)−E[u2(x′1, X̃2)] > u1(x̄1)−E[u2(x̄1, X̃2)]. Combining these two facts
with indifference at x̄1 gives us

u1(x′1)− E[u2(x′1, X̃2 + γ(x′1 − x̄1))] ≥ u1(x′1)− E[u2(x′1, X̃2)] > u1(x̄1)− E[u2(x̄1, X̃2)] = 0,

so stopping at x′1 is strictly preferable to continuing.
By an exactly symmetric argument, the agent also strictly prefers continuing at any

x1 < x̄1. So by continuity of u1, u2, the agent’s optimal stopping strategy can only take 3
forms: either there is some threshold c where he strictly prefers stopping for any x1 > c and
strictly prefers continuing for any x1 < c, or he strictly prefers to stop for all x1 ∈ R, or he
strictly prefers to continue for all x1 ∈ R. I now use Assumption 1(c) to rule out these last
two cases.

Under Assumption 1(c), there is some L > 0 so that u1(L)− u2(L,−L) ≥ 0. Combining
this with Assumption 1(a), u1(L) − u2(L,−L − 1) ≥ h for some h > 0. Again by (a),
limd→∞

{
EX2∼N (µ2−d,σ2)[u2(L,X2)]

}
≤ u2(L,−L− 1). That is to say, we can find some d̄ so

that d ≥ d̄ implies EX2∼N (µ2−d,σ2)[u2(L,X2)] ≤ u2(L,−L−1)+h/2 ≤ u1(L)−h/2. If L ≥ µ1−
d̄/γ, then E[X2|X1 = L] ≤ µ2−d̄, which means agent strictly prefers stopping than continuing
at X1 = L. Otherwise, we just need to conclude that u1(µ1− d̄/γ) > EX2∼N (µ2−d̄,σ2)[u2(µ1−
d̄/γ,X2)]. We do know that L ≤ µ1 − d̄/γ and that u1(L) > EX2∼N (µ2−d̄,σ2)[u2(L,X2)]. So
by Assumption 1(b), we get the desired inequality. This shows there is at least one value of
x1 such that X1 = x1 leads to strict preference for stopping.

Similar argument shows there is at least one value of x1 such that X1 = x1 leads to strict
preference for continuing.

A.3 Proof of Lemma 3

Proof. I start with the expression for the KL divergence from H•(c ↑) to H(Ξ(µ, µ; γ); c ↑).
As in the proof of Proposition 1, this expression can be written as

(µ− µ•)2

2 +
∫ c

−∞
φ(x;µ•, σ2) ·

[
σ2 + (µ+ γ(x1 − µ)− µ•)2

2 − 1
2

]
dx1.

Dropping constant terms not depending on µ, we get a simplified expression of the objective,

ξ(µ) := (µ− µ•)2

2 +
∫ c

−∞
φ(x;µ•, σ2) ·

[
(µ+ γ(x1 − µ)− µ•)2

2

]
dx1.

Taking the first-order condition, ξ′(µ) = (µ − µ•) + (1 − γ) ·
∫ c
−∞ φ(x1;µ•, σ2) · ((1 − γ)µ +

γx1 − µ•)dx1.

The term
∫ c
−∞ φ(x1;µ•, σ2) · ((1 − γ)µ + γx1 − µ•)dx1 may be rewritten as P[X1 ≤ c] ·
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E [(1− γ)µ+ γX1 − µ•|X1 ≤ c].
Setting the first-order condition to 0 and using straightforward algebra,

µ∗12(c) = 1
1 + P[X1 ≤ c] · (1− γ)2µ

• + P[X1 ≤ c] · (1− γ)2

1 + P[X1 ≤ c] · (1− γ)2µ
◦
2(c).

A.4 Proof of Proposition 3

Proof. Write µ∗[t] for the t’s generation’s belief about the (common) fundamental value. By
Lemma 4, under the subjective model Ξ(µ∗[t], µ∗[t]; γ), period t managers will choose c[t] = µ∗[t].

By Lemma 3, µ∗[1] < µ•, so c[1] < c[0]. Now assume we have c[0] > c[1] > ... > c[T ] for some
T ≥ 1. I will show that we also get c[T+1] < c[T ].

From the proof of Lemma 3, each µ∗[t] for t ≥ 1 minimizes the objective

ξ(µ; c) := (µ− µ•)2

2 +
∫ c

−∞
φ(x1;µ•, σ2) ·

[
(µ+ γ(x1 − µ)− µ•)2

2

]
dx1

with c = c[t−1]. The objective ξ has the derivatives:

∂ξ

∂µ
(µ; c) = (µ− µ•) + (1− γ) ·

∫ c

−∞
φ(x1;µ•, σ2)[(1− γ)µ+ γx1 − µ•]dx1,

∂2ξ

∂µ2 (µ; c) = 1 + (1− γ)2
∫ c

−∞
φ(x1;µ•, σ2)dx1 > 0,

∂2ξ

∂c∂µ
(µ; c) ∝ (µ− µ•)− γ(µ− c).

Since µ∗[T ] minimizes the objective ξ(·; c[T−1]), from the first-order condition we know ∂ξ
∂µ

(µ∗[T ]; c[T−1]) =
0. To show that µ∗[T+1] < µ∗[T ], we need only establish that for any µ ≥ µ∗[T ], we have
∂ξ
∂µ

(µ; c[T ]) > 0, so by first-order condition the objective ξ(·; c[T ]) cannot be minimized at any
belief weakly more optimistic than the generation T belief of µ∗[T ]. Since we already have
∂2ξ
∂µ2 > 0 everywhere, it suffices to establish that ∂2ξ

∂c∂µ
(µ∗[T ]; c) < 0 for all c ∈ (c[T ], c[T−1]) (here

c[T ] < c[T−1] by the inductive hypothesis). We have ∂2ξ
∂c∂µ

(µ∗[T ]; c) ∝ (µ∗[T ] − µ•)− γ(µ∗[T ] − c),
where (µ∗[T ] − µ•) < 0 by Lemma 3 and also µ∗[T ] − c = c[T ] − c < 0 for c in the range
(c[T ], c[T−1]). This shows the negativity of the cross partial derivative in the desired range,
and establishes µ∗[T+1] < µ∗[T ] and c[T+1 < c[T ]. Now by induction the sequence (c[t])t≥1 is
strictly decreasing.
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A.5 Proof of Proposition 7

Lemma A.1. Under under assumption 2, |C(µ•1, µ
′
2)−C(µ•1, µ

′′
2)| ≤ |µ′2−µ

′′
2 | for all µ

′
2, µ

′′
2 ∈

R.

Proof. Without loss of generality let µ′2 > µ
′′
2 with w = µ

′
2 − µ

′′
2 > 0. The cutoff C(µ•1, µ

′
2)

satisfies the indifference condition,

u1(C(µ•1, µ
′

2)) = EX̃2∼N (µ′2+γ(C(µ•1,µ
′
2)−µ•1),σ2)[u2(C(µ•1, µ

′

2), X̃2)]

I show that C(µ•1, µ
′′
2) > C(µ•1, µ

′
2)−w. To do this, consider the difference in between payoff

when stopping at C(µ•1, µ
′
2)− w and the expected payoff when continuing at C(µ•1, µ

′
2)− w

for an agent who believes in fundamentals (µ•1, µ
′′
2):

u1(C(µ•1, µ
′

2)− w)− EX̃2∼N (µ′2−w+γ(C(µ•1,µ
′
2)−w−µ•1),σ2)[u2(C(µ•1, µ

′

2)− w, X̃2)]

=u1(C(µ•1, µ
′

2)− w)− EX̃2∼N (µ′2+γ(C(µ•1,µ
′
2)−µ•1),σ2)[u2(C(µ•1, µ

′

2)− w, X̃2 − (1 + γ)w)]

By Assumption 2, for every x2 ∈ R we get

u1(C(µ•1, µ
′

2)− w)− [u2(C(µ•1, µ
′

2)− w, x2 − (1 + γ)w)] < u1(C(µ•1, µ
′

2))− [u2(C(µ•1, µ
′

2), x2)]

which, combined with the indifference condition for C(µ•1, µ
′
2), implies

u1(C(µ•1, µ
′

2)− w)− EX̃2∼N (µ′2−w+γ(C(µ•1,µ
′
2)−w−µ•1),σ2)[u2(C(µ•1, µ

′

2)− w, X̃2)] < 0.

That is, under belief (µ•1, µ
′′
2), the agent strictly prefers continuing at C(µ•1, µ

′
2) − w. Since

the optimal strategy at (µ•1, µ
′′
2) is given by a cutoff, above which the agent strictly prefers

stopping, we then have C(µ•1, µ
′
2)− w < C(µ•1, µ

′′
2).

I now prove Proposition 7.

Proof. Consider the map Υ as discussed in the text,

Υ(µ2) := µ•2 + γ (µ•1 − E [X1|X1 ≤ C(µ•1, µ2)]) .

I show Υ is a contraction mapping with modulus |γ|. We have

Υ(µ′2)−Υ(µ′′2) = −γ ·
(
E
[
X1|X1 ≤ C(µ•1, µ

′

2)
]
− E

[
X1|X1 ≤ C(µ•1, µ

′′

2)
])
.

By formula of the mean of a truncated Gaussian random variable, when X1 ∼ N (µ•1, σ2) and
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c ∈ R, we get E[X1|X1 ≤ c] = µ•1 −
(
φ((c−µ•1)/σ)
Φ((c−µ•1)/σ)

)
σ. Therefore,

Υ(µ′2)−Υ(µ′′2) = −γ ·
((

µ•1 −
φ((C(µ•1, µ

′
2)/σ))

Φ((C(µ•1, µ
′
2)/σ)) · σ

)
−
(
µ•1 −

φ((C(µ•1, µ
′′
2)/σ))

Φ((C(µ•1, µ
′′
2)/σ)) · σ

))

= γσ ·
(
φ(C(µ•1, µ

′
2)/σ)

Φ(C(µ•1, µ
′
2)/σ) −

φ(C(µ•1, µ
′′
2)/σ)

Φ(C(µ•1, µ
′′
2)/σ)

)
.

The function z 7→ φ(z)
1−Φ(z) is the Gaussian inverse Mills ratio and it is well-known that its

derivative is bounded by 1 in magnitude16. By symmetry this also applies to the function
z 7→ φ(z)

Φ(z) . This means
∣∣∣∣ φ(z′ )
Φ(z′ ) −

φ(z′′ )
Φ(z′′ )

∣∣∣∣ ≤ |z′ − z′′ |. So we have

∣∣∣∣∣φ(C(µ•1, µ
′
2)/σ)

Φ(C(µ•1, µ
′
2)/σ) −

φ(C(µ•1, µ
′′
2)/σ)

Φ(C(µ•1, µ
′′
2)/σ)

∣∣∣∣∣ ≤ 1
σ
·
∣∣∣C(µ•1, µ

′

2)− C(µ•1, µ
′′

2)
∣∣∣ ≤ 1

σ
· |µ′2 − µ

′′

2 |

by Lemma A.1. This then showing |Υ(µ′2)−Υ(µ′′2)| ≤ |γ| · |µ′2 − µ
′′
2 | for all µ

′
2, µ

′′
2 ∈ R. So Υ

is a contraction mapping with modulus |γ| ∈ (0, 1) and the proposition readily follows from
properties of contraction mappings.

A.6 Proof of Proposition 9

Proof. Rewrite Equation (1) as

∫ ∞
−∞

φ(x1;µ•1, (σ•)2) · ln
(
φ(x1;µ•1, (σ•)2)
φ(x1;µ1, σ2

1)

)
dx1

+
∫ c

−∞
φ(x1;µ•1, (σ•)2) ·

∫ ∞
−∞

φ(x2;µ•2, (σ•)2) ln
[

φ(x2;µ•2, (σ•)2)
φ(x2;µ2 + γ(x1 − µ1), σ2

2)

]
dx2dx1.

The KL divergence betweenN (µtrue, σ
2
true) andN (µmodel, σ

2
model) is ln σmodel

σtrue
+σ2

true+(µtrue−µmodel)2

2σ2
model

−
1
2 , so we may simplify the first term and the inner integral of the second term.

ln σ1

σ•
+ (µ1 − µ•1)2

2σ2
1

+ (σ•)2

2σ2
1
− 1

2

+
∫ c

−∞
φ(x1;µ•1, σ•) ·

[
ln σ2

σ•
+ (σ•)2 + (µ2 + γ(x1 − µ1)− µ•2)2

2σ2
2

− 1
2

]
dx1.

16See for example Corollary 1.6 in Pinelis (2018)
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Dropping terms not dependent on any of the four variables gives a simplified version of the
objective,

ξ(µ1, µ2, σ1, σ2) := ln σ1

σ•
+ (µ1 − µ•1)2

2σ2
1

+ (σ•)2

2σ2
1

+
∫ c

−∞
φ(x1;µ•1, (σ•)2) ·

[
ln σ2

σ•
+ (σ•)2 + (µ2 + γ(x1 − µ1)− µ•2)2

2σ2
2

]
dx1.

Differentiating under the integral sign,

∂ξ

∂µ2
=
∫ c

−∞
φ(x1;µ•1, (σ•)2) ·

[
(µ2 + γ(x1 − µ1)− µ•2)

σ2
2

]
dx1

∂ξ

∂µ1
= (µ1 − µ•1)

σ2
1

− γ
∫ c

−∞
φ(x1;µ•1, (σ•)2) ·

[
(µ2 + γ(x1 − µ1)− µ•2)

σ2
2

]
dx1

= (µ1 − µ•1)
σ2

1
− γ ∂ξ

∂µ2
.

At FOC (µ∗1, µ∗2, σ∗1, σ∗2), we have ∂ξ
∂µ2

(µ∗1, µ∗2, σ∗1, σ∗2) = 0, hence µ∗1 = µ•1. Similar arguments
as before then establish µ∗2 = µ•2 + γ (µ•1 − E [X1|X1 ≤ c]) , where expectation is taken with
respect to the true distribution of X1 (with the true variance (σ•)2). Then,

∂ξ

∂σ1
(µ∗1, µ∗2, σ∗1, σ∗2) = 1

(σ∗1) −
(σ•)2

(σ∗1)3 = 0,

this gives σ∗1 = σ• (since σ∗1 ≥ 0).
Finally, from the FOC for σ2,

∫ c

−∞
φ(x1;µ•1, (σ•)2) ·

[
1
σ∗2
− (σ•)2 + (µ∗2 + γ(x1 − µ∗1)− µ•2)2

(σ∗2)3

]
dx1 = 0.

Substituting in values of µ∗1, µ∗2 already solved for,

(σ∗2)2 = (σ•)2 + E[(µ∗2 + γ(X1 − µ•1)− µ•2)2|X1 ≤ c]
= (σ•)2 + E[(µ•2 + γ (µ•1 − E [X1|X1 ≤ c]) + γ(X1 − µ•1)− µ•2)2|X1 ≤ c]
= (σ•)2 + γ2E

[
[(X1 − µ•1)− (E [X1|X1 ≤ c]− µ•1)]2 |X1 ≤ c

]
= (σ•)2 + γ2Var[X1 − µ•1|X1 ≤ c]
= (σ•)2 + γ2Var[X1|X1 ≤ c]

as desired.
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A.7 Proof of Proposition 10

I start with a lemma that says, depending on the convexity of the decision problem, a
stronger belief in fictitious variation either increases or decreases the subjectively optimal
cutoff threshold.

Lemma A.2. Suppose that under the subjective model Ξ(µ1, µ2, σ
2
1, σ

2
2; γ), the agent is in-

different between stopping at c and continuing. Suppose σ̂2
2 > σ2

2. Then: (i) if x2 7→ u2(c, x2)
is convex with strict convexity for x2 in a positive-measure set, then under the subjective
model Ξ(µ1, µ2, σ

2
1, σ

2
2; γ) the agent strictly prefers continuing at c; (ii) if x2 7→ u2(c, x2) is

concave with strict concavity for x2 in a positive-measure set, then under the subjective model
Ξ(µ1, µ2, σ

2
1, σ

2
2; γ) the agent strictly prefers stopping at c.

Proof. Indifference at x1 = c under the model Ξ(µ1, µ2, σ
2
1, σ

2
2; γ) implies that

u1(c) = EX2∼N (µ2+γ(x1−µ1),σ2
2)[u2(c,X2)].

When hypothesis in (i) is satisfied,

EX2∼N (µ2+γ(x1−µ1),σ2
2)[u2(c,X2)] < EX2∼N (µ2+γ(x1−µ1),σ̂2

2)[u2(c,X2)]

since σ̂2
2 > σ2

2 implies that N (µ2+γ(x1−µ1), σ̂2
2) is a strict mean-preserving spread of N (µ2+

γ(x1−µ1), σ2
2). The RHS is the expected continuation payoff under model Ξ(µ1, µ2, σ

2
1, σ̂

2
2; γ),

so the agent strictly prefers continuing when X1 = c. The argument establishing (ii) is
analogous.

Now I give the proof of Proposition 10.

Proof. The result that µ∗1,[t] = µ•1, (σ∗1,[t])2 = (σ•)2 for all t follows from Proposition 9.
Suppose c[1] ≤ c[0]. From Proposition 9, µ∗2,[2] ≤ µ∗2,[1] and (σ∗2,[2])2 ≤ (σ∗2,[1])2. Let

c
′

[2] be the indifference threshold under the model Ξ(µ•1, µ∗2,[2], (σ•)2, (σ∗2,[1])2). By Lemma 2,
c
′

[2] ≤ c[1]. Also, from Lemma A.2, c[2] ≤ c
′

[2] as generation 2 actually believes in the subjective
model Ξ(µ•1, µ2,[2], (σ•)2, (σ∗2,[2])2) where (σ∗2,[2])2 ≤ (σ∗2,[1])2. This shows c[2] ≤ c[1]. Continuing
this argument shows that (c[t])t≥1 forms a monotonically decreasing sequence. Since the
pseudo-true parameters µ∗2 and (σ∗2)2 are monotonic functions of the censoring threshold c,
we have established the proposition in the case where c[1] ≤ c[0].

The argument for the case where c[1] ≥ c[0] is exactly analogous and therefore omitted.

A.8 Proof of Proposition 11

Proof. In the first generation, both societies A and B observe datasets censored according
to the cutoff rule c[0] ↑ . So, by Proposition 9, two societies make the same inferences about

51



the fundamentals.
Suppose the optimal-stopping problem is convex. Then due to fictitious variation in

generation 1 and the convexity of u2, it follows from Lemma A.2 that c[B,1] > c[A,1]. In
the second generation, µ∗2,[B,2] > µ∗2,[A,2] because the pseudo-true second-period fundamental
increases in the censoring cutoff. Together again with the existence of fictitious variation,
we conclude c[B,2] > c[A,2]. Continuing this argument establishes the proposition for the
case where the optimal-stopping problem is convex. The case of concave optimal-stopping
problems is analogous.

A.9 Proof of Lemma 5

Proof. By the same algebraic manipulations as in the proof of Proposition 1, we may rewrite
the objective in Equation (2) as:

(µ1 − µ•1)2

2σ2 + 1
t

t−1∑
τ=0

{∫ cτ

−∞
φ(x1;µ•1, σ2) ·

[
σ2 + (µ2 + γ(x1 − µ1)− µ•2)2

2σ2 − 1
2

]
dx1

}
.

Dropping terms not dependent on µ1, µ2 and multiplying through by σ2, we get the simplified
objective

ξA(µ1, µ2) := (µ1 − µ•1)2

2 + 1
t

t−1∑
τ=0

{∫ ck

−∞
φ(x1;µ•1, σ2) ·

[
(µ2 + γ(x1 − µ1)− µ•2)2

2σ2

]
dx1

}

The same argument as in the proof of Proposition 1 gives µ1 = µ•1 as the only value satisfy-
ing the first-order conditions, and following this the minimizing µ2 must satisfy ∂ξA

∂µ2
(µ•1, µ2) =

0. We now compute:

∂ξA

∂µ2
(µ•1, µ2) = 1

t

t∑
τ=0

P[X1 ≤ cτ ] · (µ2 − µ•2 + γ (E [X1|X1 ≤ cτ ]− µ•1)) .

Since the derivative ∂ξA

∂µ2
is a linear function of µ2, when ∂ξA

∂µ2
(µ•1, µ∗2) = 0 we can rearrange to

find

µ∗2 = 1
t ·∑t−1

τ=0 P[X1 ≤ cτ ]
·
t−1∑
τ=0

P[X1 ≤ cτ ] {µ•2 + γ (µ•1 − E [X1|X1 ≤ cτ ])}

= 1
t ·∑t−1

τ=0 P[X1 ≤ cτ ]

t−1∑
τ=0

P[X1 ≤ cτ ] · µ∗2(cτ ).
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This shows µ̂A
1 (c0, ..., ct−1) = µ•1 and

µA
2 (c0, ..., ct−1) = 1

t ·∑t−1
τ=0 P[X1 ≤ cτ ]

t−1∑
τ=0

P[X1 ≤ cτ ] · µ∗2(cτ ).

A.10 Proof of Proposition 12

Proof. Step 1: If cA
[1] > cA

[0], then (µ(t),A
2 )t≥1 and (cA

[t])t≥0 are two increasing sequence, whereas
cA

[1] ≤ cA
[0] implies (µA

2,[t])t≥1 and (cA
[t])t≥0 are two decreasing sequences.

Suppose cA
[1] > cA

[0]. Note that by Lemma 5, µA
2,[1] = µ∗2(cA

[0]), whereas µA
2,[2] is a weighted

average between µ∗2(cA
[0]) and µ∗2(cA

[1]) where the latter is larger because cA
[1] > cA

[0] and µ∗2(c)
is strictly increasing. This shows we have µA

2,[2] > µA
2,[1] and hence cA

[2] > cA
[1] as the cutoff is

strictly increasing in its second argument by Lemma 2. Now assume the partial sequences
(cA

[τ ])Tτ=0 and (µA
2,[τ ])Tτ=1 are both increasing. We show that µA

2,[T+1] > µA
2,[T ], which would also

imply cA
[T+1] > cA

[T ]. By comparing expressions for µA
2,[T+1] and µA

2,[t] given by Lemma 5,

µA
2,[T+1] = δ · µ∗2(cA

[T ]) + (1− δ) · µA
2,[t]

where δ = P[X1≤cA
[T ]]

(T+1)·
∑T

τ=0 P[X1≤c(τ),A]
> 0 and µA

2,[t] is itself a weighted average of the collection
{µ∗2(cA

[τ ])}τ≤T−1 by Lemma 5. Now by the first part of the inductive hypothesis, (cA
[τ ])Tτ=0

is strictly increasing, meaning µ∗2(cA
[T ]) > µ∗2(cA

[τ ]) for any τ < T , which are the components
making up µA

2,[t]. Since the weight δ on µ∗2(cA
[T ]) in the expression of µA

2,[T+1] is strictly positive,
this shows µA

2,[T+1] > µA
2,[t]. So by induction, we have shown Step 1. (The other case of

cA
[1] < cA

[0] is symmetric.)
For the rest of this proof, suppose Assumption 2 holds and −1 < γ < 0.
Step 2: (µA

2,[t])t≥1 is bounded and converges.
In the case that cA

[1] ≥ cA
[0] (so µA

2,[2] ≥ µA
2,[1]), Step 1 implies that (µA

2,[t])t≥1 forms an
increasing sequence. Since µ∗2(·) is bounded above by µ•2 by Proposition 1 and µA

2,[t] for any
t ≥ 1 is a convex combinations of such terms, we also have µA

2,[t] ≤ µ•2 for every t. So in this
case the sequence (µA

2,[t])t≥1 is bounded between µA
2,[1] and µ•2.

In the case that cA
[1] ≤ cA

[0] (so µA
2,[2] ≤ µA

2,[1]), we notice that cA
[0] = c(0), cA

[1] = c[1], so
by Corollary 1 the baseline model gives the learning dynamics µ∗2,[t] % µ∞2 , c[t] % c∞, where
(µ∞2 , c∞) are associated with the unique steady state of the baseline model. So we have
µA

2,[1] = µ∗2,[1] while µA
2,[2] ≥ µ∗2,[2] since µA

2,[2] is a convex combination between µ∗2(c[0]) and

53



µ∗2(c[1]) = µ∗2,[2], with the latter being lower. This means cA
[2] ≥ c[2]. In the third generation,

µA
2 (cA

[0], c
A
[1], c

A
[2]) ≥ µA

2 (c[0], c[1], c[2]) ≥ µ∗2(c[2])

where the last inequality follows because µA
2 (c[0], c[1], c[2]) is a weighted average between

µ∗2(c[0]), µ∗2(c[1]), and µ∗2(c[2]), with the last one being the lowest since c[t] decreases in t. This
shows µA

2,[3] ≥ µ∗2,[3] and cA
[3] ≥ c[3]. Iterating this argument shows that µA

2,[t] ≥ µ∗2,[t] for every
t in this case. Seeing as (µA

2,[t])t≥1 forms a decreasing sequence by Step 1, it is bounded
between µ∞2 and µA

2,[1].
Since (µA

2,[t])t≥1 is a bounded, monotonic sequence, it must converge. I denote this limit as
µA

2,[t] → µ∞,A2 . Also, Lemma A.1 shows that under Assumption 2, the indifference threshold
C is a continuous function of the second argument, so the sequence cA

[T ] must also converge.
I denote this limit by cA

[T ] → c∞,A.
Step 3: µ∞,A2 is a fixed point of Υ, so in particular µ∞,A2 = µ∞2 and c∞,A = c∞ by

uniqueness of the fixed point of Υ.
The proof of Proposition 7 showed that under Assumption 2 and when −1 < γ < 0, Υ is

a contraction mapping and hence must be continuous. Now let any ε > 0 be given. I show
there exists t̄ so that |Υ(µA

2,[t])−µA
2,[t]| < ε for all t > t̄. As this holds for all ε > 0, continuity

of T then implies Υ(µ∞,A2 )− µ∞,A2 = 0, that is µ∞,A2 is a fixed point of Υ.
We may write by Lemma 5,

µA
2,[T ] = 1

t ·∑t−1
τ=0 P[X1 ≤ cA

[τ ]]

t−1∑
τ=0

P[X1 ≤ cA
[τ ]] · µ∗2(cA

[τ ]).

The probabilities P[X1 ≤ cA
[τ ]] are bounded below since the beliefs (µA

2,[t])t≥1 are bounded by
Step 2. Also, since µ∗2(·) is continuous, there exists t̄1 so that |µ∗2(cA

[T ]) − µ∗2(c∞,A)| < ε/2
for all t > t̄1, that is to say |Υ(µA

2,[T ]) − µ∗2(c∞,A)| < ε/2. When t → ∞, the weight
assigned to terms µ∗2(cA

[τ ]) with τ ≥ t̄1 in the expression for µA
2,[T ] grows to 1, which means

lim supt→∞ |µA
2,[T ]−µ∗2(c∞,A)| < ε/2. Combining these facts give lim supt→∞ |Υ(µA

2,[t])−µA
2,[t]| <

ε as desired. This establishes that µ∞,A2 is a fixed point of Υ, which combined with the
uniqueness of Υ’s fixed point implies it is equal to the unique steady-state belief about
second-period fundamental in the baseline model. By continuity of C under Assumption 2,
c∞ = C(µ•1, µ

∞,A
2 ) = C(µ•1, µ∞2 ) = c∞.
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A.11 Proof of Proposition 13

Proof. In the true model, X2|(X1 = x1) ∼ N (µ•2 + γ•(x1 − µ•1), σ2), while the agents’ sub-
jective model Ξ(µ1, µ2; γ) has X2|(X1 = x1) ∼ N (µ2 + γ(x1 − µ1), σ2). So, we can write

DKL(H(Ξ(µ•1, µ•2; γ•); c ↑) || H(Ξ(µ1, µ2; γ); c ↑))

as the following:

∫ ∞
c

φ(x1;µ•1, σ2) · ln
(
φ(x1;µ•1, σ2)
φ(x1;µ1, σ2)

)
dx1

+
∫ c

−∞


∫ ∞
−∞

φ(x1;µ•1, σ2) · φ(x2;µ•2 + γ•(x1 − µ•1), σ2)·
ln
[
φ(x1;µ•1,σ2)·φ(x2;µ•2+γ•(x1−µ•1),σ2)
φ(x1;µ1,σ2)·φ(x2;µ2+γ(x1−µ1),σ2)

] dx2

 dx1.

Performing rearrangements similar to those in the proof of Proposition 1 and using the
closed-form expression of KL divergence between two Gaussian distributions, the above can
be rewritten as

(µ1 − µ•1)2

2σ2 +
∫ c

−∞
φ(x1;µ•1, σ2) · (µ2 + γ(x1 − µ1)− µ•2 − γ•(x1 − µ•1))2

2σ2 dx1.

Multiplying through byσ2 and dropping terms not depending on µ1, µ2, γ, we get a simplified
objective with the same minimizers:

ξ(µ1, µ2, γ) = (µ1 − µ•1)2

2 +
∫ c

−∞
φ(x1;µ•1, σ2) · 1

2 · [µ2 + γ(x1 − µ1)− µ•2 − γ•(x1 − µ•1)]2dx1.

We have the partial derivatives by differentiating under the integral sign,

∂ξ

∂µ2
=
∫ c

−∞
φ(x1;µ•1, σ2) · [µ2 + γ(x1 − µ1)− µ•2 − γ•(x1 − µ•1)]dx1,

∂ξ

∂µ1
= (µ1 − µ•1)− γ

∫ c

−∞
φ(x1;µ•1, σ2) · [µ2 + γ(x1 − µ1)− µ•2 − γ•(x1 − µ•1)]dx1

= (µ1 − µ•1)− γ ∂ξ
∂µ2

,

∂ξ

∂γ
=
∫ c

−∞
φ(x1;µ•1, σ2) · [x1 − µ1] · [µ2 + γ(x1 − µ1)− µ•2 − γ•(x1 − µ•1)]dx1.

Suppose (µ∗1, µ∗2, γ∗) is the minimum. By the first-order conditions for µ1 and µ2, we have:

∂ξ

∂µ1
(µ∗1, µ∗2, γ∗) = ∂ξ

∂µ2
(µ∗1, µ∗2, γ∗) = 0⇒ µ∗1 = µ•1.
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Substituting this into the first-order condition for µ2,

∂ξ

∂µ2
(µ•1, µ∗2, γ∗) = 0⇒ µ∗2 = µ•2 + (γ∗ − γ•) · (µ•1 − E[X1|X1 ≤ c]) .

It remains to show γ∗ = γ̃. We have

∂ξ

∂γ
(µ∗1, µ∗2, γ∗) = P[X1 ≤ c] · E[(X1 − µ∗1) · (µ∗2 + γ∗(X1 − µ∗1)− µ•2 − γ•(X1 − µ•1))|X1 ≤ c].

We rearrange the expectation term as:

E[(X1 − µ∗1) · (µ∗2 + γ∗(X1 − µ∗1)− µ•2 − γ•(X1 − µ•1))|X1 ≤ c]
=E[(X1 − µ∗1)|X1 ≤ c] · E[(µ∗2 + γ∗(X1 − µ∗1)− µ•2 − γ•(X1 − µ•1))|X1 ≤ c]

+ Cov(X1 − µ∗1, µ∗2 + γ∗(X1 − µ∗1)− µ•2 − γ•(X1 − µ•1)|X1 ≤ c].

The first-order condition for µ2 implies E[(µ∗2+γ∗(X1−µ∗1)−µ•2−γ•(X1−µ•1))|X1 ≤ c] = 0 at
the optimum (µ∗1, µ∗2, γ∗). Also, we may drop terms without X1 in the conditional covariance
operator, and we get:

∂ξ

∂γ
(µ∗1, µ∗2, γ∗) = P[X1 ≤ c] · (γ∗ − γ•) · Cov(X1, X1|X1 ≤ c).

We have P[X1 ≤ c] > 0 and Cov(X1, X1|X1 ≤ c) > 0, hence we conclude

∂ξ

∂γ
(µ∗1, µ∗2, γ∗)


> 0 for γ∗ > γ•

= 0 for γ∗ = γ•

< 0 for γ∗ < γ•

.

In case that γ̄ < γ•, at the optimum we must have ∂ξ
∂γ

(µ∗1, µ∗2, γ∗) < 0. By Karush-Kuhn-
Tucker condition, this means the optimum is γ∗ = γ̄. Conversely, when γ > γ•, at the
optimum we must have ∂ξ

∂γ
(µ∗1, µ∗2, γ∗) > 0. In that case, the optimum is γ∗ = γ. So in both

cases, γ∗ = γ̃ as desired.

A.12 Proof of Proposition 14

Proof. Let w1 = α,w2 = 1−α, c1 = C(µ•1, µ•2), c2 = c. By the same argument as in the proof
of Proposition 5, we may rewrite the weighted KL divergence as

(µ1 − µ•1)2

2σ2 +
2∑

k=1
wk

{∫ ck

−∞
φ(x1;µ•1, σ2) ·

[
σ2 + (µ2 + γ(x1 − µ1)− µ•2)2

2σ2 − 1
2

]
dx1

}
.
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Dropping terms not dependent on µ1, µ2 and multiplying through by σ2, we get the simplified
objective

ξSN(µ1, µ2) := (µ1 − µ•1)2

2 +
2∑

k=1
wk

{∫ ck

−∞
φ(x1;µ•1, σ2) ·

[
(µ2 + γ(x1 − µ1)− µ•2)2

2σ2

]
dx1

}
.

The same argument as in the proof of Proposition 5 shows that the first-order condition is
only satisfied at µSN1 = µ•1,

µSN2 = 1
w1P[X1 ≤ c1] + w2P[X1 ≤ c2]

2∑
k=1

wkP[X1 ≤ ck] {µ•2 + γ (µ•1 − E [X1|X1 ≤ ck])} .

This shows, in terms of expressions for pseudo-true fundamentals in the baseline model µ∗2,

µSN2 (c) = αP[X1 ≤ C(µ•1, µ•2)]
αP[X1 ≤ C(µ•1, µ•2)] + (1− α)P[X1 ≤ c] · µ

∗
2(C(µ•1, µ•2))

+ (1− α)P[X1 ≤ c]
αP[X1 ≤ C(µ•1, µ•2)] + (1− α)P[X1 ≤ c] · µ

∗
2(c).

A.13 Proof of Corollary 3

Proof. From Proposition 14 (and Proposition 1 for the case of t = 1), µ1
1,[t] = µ1

1,[t] = µ•1 for
every t ≥ 1. Also, in the first generation, µ1

2,[1] = µ2
2,[1] and c1

[1] = c2
[1] since both societies face

the same dataset H•(c[0]). Since µ1
2,[1] < µ•2, we must have c1

[1] = C(µ•1, µ1
2,[1]) < C(µ•1, µ•2)

by Lemma 2. In the second generation, µ1
2,[2] = µ∗2(c1

[1]) and µ2
2,[2] is a convex combination

between µ∗2(c2
[1]) and µ∗2(C(µ•1, µ•2)). As µ∗2(c1

[1]) = µ∗2(c2
[1]) < µ∗2(C(µ•1, µ•2)) due to Proposition

1, we conclude µ2
2,[2] > µ1

2,[2] and hence c2
[2] > c1

[2]. But when c2
[t] > c1

[t] and C(µ•1, µ•2) > c1
[t] we

have µ∗2(c1
[t]) < µ∗2(c2

[t]), which shows in the next generation, µ2
2,[t+1] is the convex combination

of two terms both exceeding µ∗2(c1
[t]). This implies µ2

2,[t+1] > µ1
2,[t+1] and c2

[t+1] > c1
[t+1]. By

induction, the corollary holds for all t ≥ 2.

A.14 Proof of Lemma 6

Proof. I check conditions A1 through A5 in Bunke and Milhaud (1998). The lemma follows
from their Theorem 2 when these conditions are satisfied.
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The parameter space is Θ = R2. The data-generating density of observation (x, y) is:

f •(x, y) =

φ(x;µ•1, σ2) · φ(y;µ•2, σ2) if x < c

φ(x;µ•1, σ2) · φ(y; 0, 1) if x ≥ c

where φ(·;µ, σ2) is the Gaussian density with mean µ and variance σ2. Under parameters
(µ̂1, µ̂2) (and with dogmatic belief in γ < 0), the same observation has density:

fµ̂1,µ̂2(x, y) =

φ(x; µ̂1, σ
2) · φ(y; µ̂2 + γ · (x− µ̂1), σ2) if x < c

φ(x; µ̂1, σ
2) · φ(y; 0, 1) if x ≥ c.

A1. Parameter space is a closed, convex set in R2 with nonempty interior. The density
fµ̂1,µ̂2(x, y) is bounded over (µ̂1, µ̂2, x, y) and its carrier, {(x, y) : fµ̂1,µ̂2(x, y) > 0} is the same
for all µ̂1, µ̂2.

Evidently R2 is closed in itself. The density fµ̂1,µ̂2(x, y) is bounded by the product of
the modes of Gaussian densities with variance σ2 and variance 1. The density fµ̂1,µ̂2(x, y) is
strictly positive on R2 for any parameter values µ̂1, µ̂2.

A2. For all µ̂1, µ̂2, there is a sphere S[(µ̂1, µ̂2), η] of center (µ̂1, µ̂2) and radius η > 0 such
that:

Ef•

 sup
(µ′1,µ

′
2)∈S[(µ̂1,µ̂2),η]

∣∣∣∣∣∣ln f •(X, Y )
fµ′1,µ

′
2
(X, Y )

∣∣∣∣∣∣
 <∞.

Pick say η = 1. Consider the rectangle R[(µ̂1, µ̂2), η] consisting of points (µ′1, µ
′
2) such that

|µ′1− µ̂1| < η and |µ′2− µ̂2| < η. Since the the Gaussian distribution is single-peaked, for any

(x, y) ∈ R2 the absolute value of the log likelihood ratio
∣∣∣∣∣ln f•(X,Y )

f
µ
′
1,µ
′
2
(X,Y )

∣∣∣∣∣ on all of R[(µ̂1, µ̂2), η]

must be bounded by its value at the 4 corners. That is to say,

sup
(µ′1,µ

′
2)∈S[(µ̂1,µ̂2),η]

∣∣∣∣∣∣ln f •(X, Y )
fµ′1,µ

′
2
(X, Y )

∣∣∣∣∣∣
≤ sup

(µ′1,µ
′
2)∈R[(µ̂1,µ̂2),η]

∣∣∣∣∣∣ln f •(X, Y )
fµ′1,µ

′
2
(X, Y )

∣∣∣∣∣∣
≤
∣∣∣∣∣ln f •(X, Y )

fµ̂1−η,µ̂2−η(X, Y )

∣∣∣∣∣+
∣∣∣∣∣ln f •(X, Y )

fµ̂1−η,µ̂2+η(X, Y )

∣∣∣∣∣+
∣∣∣∣∣ln f •(X, Y )

fµ̂1+η,µ̂2−η(X, Y )

∣∣∣∣∣+
∣∣∣∣∣ln f •(X, Y )

fµ̂1+η,µ̂2+η(X, Y )

∣∣∣∣∣ .
It is easy to see that for any fixed parameter Ef•

[∣∣∣∣∣ln f•(X,Y )
f
µ
′
1,µ
′
2
(X,Y )

∣∣∣∣∣
]
is finite, so the sum of these

4 terms gives a finite upper bound.
A3. For all fixed (x0, y0) ∈ R2, the map from parameters to density (µ1, µ2) 7→ fµ1,µ2(x0, y0)
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has continuous derivatives with respect to parameters (µ1, µ2) 7→ ∂f
∂µ1

(x0, y0;µ1, µ2), (µ1, µ2) 7→
∂f
∂µ2

(x, y;µ1, µ2). There exist positive constants κ0 and b0 with

∫ ∫ ∥∥∥∥∥∥[fµ1,µ2(x, y)]−1 ·

 ∂f
∂µ1

(x, y;µ1, µ2)
∂f
∂µ2

(x, y;µ1, µ2)

∥∥∥∥∥∥
12

· fµ1,µ2(x, y) · dydx < κ0(1 + ||(µ1, µ2)||b0)

satisfied for every (µ1, µ2) ∈ R2, where || · || is a norm on R2.
Let’s choose the max norm, ||v|| = max(|v1|, |v2|). For uncensored data (x0, y0) with

x0 < c, we can compute

∂f

∂µ1
(x0, y0;µ1, µ2) = fµ1,µ2(x0, y0) ·

[
(1 + γ2)
σ2 · (x− µ1)− γ

σ2 · (y − µ2)
]

and
∂f

∂µ2
(x0, y0;µ1, µ2) = fµ1,µ2(x0, y0) ·

[
− γ

σ2 · (x− µ1)− 1
σ2 · (y − µ2)

]
.

While for censored data (x0, y0) where x0 > c, the likelihood of the data is unchanged by
parameter µ2 since it neither changes the distribution of the early draw quality nor the
distribution of the white noise term, meaning ∂f

∂µ2
(x0, y0;µ1, µ2) = 0. Also, for the censored

case
∂f

∂µ1
(x0, y0;µ1, µ2) = fµ1,µ2(x0, y0) · 1

σ2 (x− µ1).

This means the integral to be bounded is:

∫ x=c

x=−∞

∫ ∞
−∞

∥∥∥∥∥∥
 (1+γ2)

σ2 · (x− µ1)− γ
σ2 · (y − µ2)

− γ
σ2 · (x− µ1)− 1

σ2 · (y − µ2)

∥∥∥∥∥∥
12

· fµ1,µ2(x, y) · dy

 dx
+
∫ x=∞

x=c

[∫ ∞
−∞

( 1
σ2 (x− µ1))12 · fµ1,µ2(x, y) · dy

]
dx.

Since the inner integrals are non-negative, this expression is smaller than the version where
the domains of the outer integrals are expanded and the densities fµ1,µ2(x, y) are simply
replaced with the joint density on R2 of the subjective model for Ξ(µ1, µ2), which I denote
as f̃µ1,µ2(x, y).

∫ ∞
−∞

∫ ∞
−∞

∥∥∥∥∥∥
 (1+γ2)

σ2 · (x− µ1)− γ
σ2 · (y − µ2)

− γ
σ2 · (x− µ1)− 1

σ2 · (y − µ2)

∥∥∥∥∥∥
12

· f̃µ1,µ2(x, y) · dy

 dx
+
∫ ∞
−∞

[∫ ∞
−∞

( 1
σ2 (x− µ1))12 · f̃µ1,µ2(x, y) · dy

]
dx.

The second summand is a 12th moment of the joint normal random variable with distribution
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Ξ(µ1, µ2), so for all µ1, µ2 it is given by some 12th order polynomial P2(µ1, µ2). Similarly the
first summand is also given by a 12th order polynomial P1(µ1, µ2). Therefore by choosing
b0 = 12 and choosing κ0 appropriately according to the coefficients in P1 and P2, we achieved
the desired bound.

A4. For some positive constants b1 and κ1, the affinity function

A(µ1, µ2) :=
∫ ∫

[fµ1,µ2(x, y) · f •(x, y)]1/2dydx

satisfies A(µ1, µ2) < κ1 · ||(µ1, µ2)||−b1 for all µ1, µ2.
We have A(µ1, µ2) ≤ [

∫ ∫
[fµ1,µ2(x, y) · f •(x, y)]dydx]1/2, so it’s sufficient to find some κ1

and b1 that works to bound
∫ ∫

[fµ1,µ2(x, y) · f •(x, y)]dydx. We have:
∫ ∫

[fµ1,µ2(x, y) · f •(x, y)]dydx

=
∫ c

x=−∞

∫ ∞
−∞

φ(x;µ1, σ
2) · φ(x;µ•1, σ2) · φ(y;µ2 + γ(x− µ1), σ2) · φ(y;µ•2, σ2)dydx

+
∫ ∞
x=c

∫ ∞
−∞

φ(x;µ1, σ
2) · φ(x;µ•1, σ2) · φ(y; 0, 1) · φ(y; 0, 1)dydx

≤
∫ ∞
−∞

∫ ∞
−∞

φ(x;µ1, σ
2) · φ(x;µ•1, σ2) · φ(y;µ2 + γ(x− µ1), σ2) · φ(y;µ•2, σ2)dydx

+
∫ ∞
−∞

∫ ∞
−∞

φ(x;µ1, σ
2) · φ(x;µ•1, σ2) · φ(y; 0, 1) · φ(y; 0, 1)dydx.

I show how to find κ1 and b1 to bound the first summand in the last expression above. It is
easy to similarly bound the second summand. By Bromiley (2003), the product of Gaussian
densities φ(y;µ2 +γ(x−µ1), σ2) ·φ(y;µ•2, σ2) is itself a Gaussian density in y, φ̃(y), multiplied
by a scaling factor equal to (4πσ2)−1/2 · exp

(
− γ2

4σ2 · [x− (µ1 + µ•2
γ
− µ2

γ
)]2
)
. So we have

∫ ∞
−∞

∫ ∞
−∞

φ(x;µ1, σ
2) · φ(x;µ•1, σ2) · φ(y;µ2 + γ(x− µ1), σ2) · φ(y;µ•2, σ2)dydx

=
∫ ∞
−∞

φ(x;µ1, σ
2) · φ(x;µ•1, σ2) ·

(
4πσ2

)−1/2
· exp

(
− γ2

4σ2 · [x− (µ1 + µ•2
γ
− µ2

γ
)]2
)
·
∫ ∞
−∞
·φ̃(y)dydx

=
(
4πσ2

)−1/2
·
∫ ∞
−∞

φ(x;µ1, σ
2) · φ(x;µ•1, σ2) · exp

(
− γ2

4σ2 · [x− (µ1 + µ•2
γ
− µ2

γ
)]2
)
· dx.

Again applying Bromiley (2003), product of the two Gaussian densities φ(x;µ1, σ
2)·φ(x;µ•1, σ2)

is another Gaussian density with mean µ•1+µ1
2 , variance σ2

2 , and multiplied to a scaling factor
of (4πσ2)−1/2 exp

(
− (µ1−µ•1)2

4σ2

)
. So above expression is:

K1 · exp
(
−(µ1 − µ•1)2

4σ2

)
·
∫ ∞
−∞

φ(x; µ
•
1 + µ1

2 ,
σ2

2 ) · exp
(
− γ2

4σ2 · [x− (µ1 + µ•2
γ
− µ2

γ
)]2
)
· dx
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where K1 is a constant not dependent on µ1, µ2. Also, we may write

exp
(
− γ2

4σ2 · [x− (µ1 + µ•2
γ
− µ2

γ
)]2
)

= K2 · φ(x; (µ1 + µ•2
γ
− µ2

γ
), σ2

B)

where σ2
B = 2σ2

γ2 and K2 = (2πσ2
B)1/2. Applying Bromiley (2003) one final time, the product

φ(x; µ
•
1+µ1

2 , σ
2

2 ) · φ(x; (µ1 + µ•2
γ
− µ2

γ
), σ2

B) is a Gaussian density in x scaled by K4 exp(−K3 ·
(µ
•
1−µ1

2 + µ2−µ•2
γ

)2) where K3, K4 > 0 are constants not dependent on µ1, µ2. So altogether,
the second summand we are bounding is a constant multiple of exp

(
− (µ1−µ•1)2

4σ2

)
· exp(−K3 ·

(µ
•
1−µ1

2 + µ2−µ•2
γ

)2). For |µ1| ≥ |µ2|, the max norm ||(µ1, µ2)|| = |µ1| and exp
(
− (µ1−µ•1)2

4σ2

)
decreases exponentially fast in the norm. For |µ1| < |µ2|, and |µ2|

2 −
|µ•1|

2 −
|µ•2|
γ
> 0,

exp(−K3 · (
µ•1 − µ1

2 + µ2 − µ•2
γ

)2) ≤ exp(−K3 · (
|µ2|
2 − |µ

•
1|

2 − |µ
•
2|
γ

)2).

So for large enough |µ2|, exp(−K3 · (µ
•
1−µ1

2 + µ2−µ•2
γ

)2) will decrease exponentially fast in the
norm. These two facts imply that there is some K > 0 so that whenever ||(µ1, µ2)|| > K,∫ ∞
−∞

∫ ∞
−∞

φ(x;µ1, σ
2) · φ(x;µ•1, σ2) · φ(y;µ2 + γ(x− µ1), σ2) · φ(y;µ•2, σ2)dydx < ||(µ1, µ2)||−1.

Now put κ1 = K−1 and we can ensure for any value of ||(µ1, µ2)|| we will have∫ ∞
−∞

∫ ∞
−∞

φ(x;µ1, σ
2) ·φ(x;µ•1, σ2) ·φ(y;µ2 +γ(x−µ1), σ2)·φ(y;µ•2, σ2)dydx < κ1 ·||(µ1, µ2)||−1.

A5. There are positive constants b2, b3 so that for all (µ′1, µ
′
2) and r > 0 it holds that

g(S[(µ′1, µ
′
2), r]) ≤ crb2(1 + (||(µ′1, µ

′
2)|| + r)b3). Moreover, g assigns positive mass to every

sphere with positive radius.
Since we have assumed that density g is bounded by B, the prior mass assigned to the

sphere S[(µ′1, µ
′
2), r] is bounded by B2 times its Euclidean volume. So, take b2 = 2 and

c = πB2 and the first statement is satisfied. Since we have assumed that g is strictly positive
everywhere, the second statement is satisfied.

A.15 Proof of Proposition 15

I start with a lemma that shows when the optimal-stopping problem’s payoff functions u1, u2

are Lipschitz continuous, then (µ1, µ2) 7→ U(c′ ;µ1, µ2), the expected payoff of the stopping
strategy c′ ↑ under the subjective model Ξ(µ1, µ2; γ), is locally Lipschitz continuous.

Lemma A.3. Suppose there are constants K1, K2 > 0 so that |u1(x′1)−u1(x′′1)| < K1·|x
′
1−x

′′
1 |

and |u2(x′1, x
′
2)− u2(x′′1 , x

′′
2)| < K2 · (|x

′
1 − x

′′
1 |+ |x

′
2 − x

′′
2 |) for all x′1, x

′′
1 , x

′
2, x

′′
2 ∈ R. For each
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chosen center (µ◦1, µ◦2) ∈ R2 and each c′ ∈ R, there corresponds a constant K > 0 so that for
any µ1, µ2 ∈ R, |U(c′ ;µ1, µ2)− U(c′ ;µ◦1, µ◦2)| < K · (|µ1 − µ◦1|+ |µ2 − µ◦2|).

Proof. Let (µ◦1, µ◦2) ∈ R2 and c′ ∈ R be given. For any µ1, µ2 ∈ R, we have

U(c′ ;µ1, µ2) =
∫ ∞
c′

u1(x1)φ(x1;µ1, σ
2)dx1

+
∫ c
′

−∞

[∫ ∞
−∞

u2(x1, x2)φ(x2;µ2 + γ(x1 − µ1), σ2)dx2

]
· φ(x1;µ1, σ

2)dx1

where φ(x;µ, σ2) is the Gaussian density with mean µ, variance σ2, evaluated at x.
We first bound |

∫∞
c′ u1(x1)φ(x1;µ1, σ

2)dx1 −
∫∞
c′ u1(x1)φ(x1;µ◦1, σ2)dx1| by a multiple of

|µ1 − µ◦1|. Suppose first µ1 = µ◦1 + ∆ for some ∆ > 0. We have∫ ∞
c′

u1(x1)φ(x1;µ1, σ
2)dx1 =

∫ ∞
c′−∆

u1(x1 + ∆)φ(x1;µ◦1, σ2)dx1.

By Lipschitz continuity of u1, |u1(x1)−u1(x1 +∆)| ≤ K1∆ for all x1 ∈ R. Thus we conclude

|
∫ ∞
c′

u1(x1)φ(x1;µ1, σ
2)dx1 −

∫ ∞
c′

u1(x1)φ(x1;µ◦1, σ2)dx1| ≤ K1∆ + |
∫ c
′

c′−∆
u1(x1)φ(x1;µ◦1, σ2)dx1|.

Again by Lipschitz continuity of u1, for any x1 ∈ R, |u1(x1)φ(x1;µ1, σ
2)| ≤ (|u1(c′)|+K1|x1−

c
′|) ·φ(x1;µ◦1, σ2). Since the Gaussian density decreases to 0 exponentially fast as x1 → ±∞,
the RHS is uniformly bounded for all x1 by some constant, say J1 > 0. This shows that
|
∫ c′
c′−∆ u1(x1)φ(x1;µ◦1, σ2)dx1| ≤

∫ c′
c′−∆ |u1(x1)φ(x1;µ◦1, σ2)|dx1 ≤ J1∆. So altogether,

|
∫ ∞
c′

u1(x1)φ(x1;µ1, σ
2)dx1 −

∫ ∞
c′

u1(x1)φ(x1;µ◦1, σ2)dx1| ≤ (K1 + J1)∆.

If instead µ1 = µ◦1 −∆, then a similar argument shows that

|
∫ ∞
c′

u1(x1)φ(x1;µ1, σ
2)dx1 −

∫ ∞
c′

u1(x1)φ(x1;µ◦1, σ2)dx1| ≤ K1∆ + |
∫ c
′+∆

c′
u1(x1)φ(x1;µ◦1, σ2)dx1|,

and again we may bound the second term by J1∆ as before.
We now turn to bounding the difference in the second summand making up U(c′ ;µ1, µ2).

First consider the case where µ2 = µ◦2. For each x1, µ1 ∈ R, let I(x1;µ1) :=
∫∞
−∞ u2(x1, x2)φ(x2;µ◦2+

γ(x1 − µ1), σ2)dx2, the expected continuation utility after X1 = x1, in the subjective model
Γ(µ1, µ

◦
2). The second summand in U(c′ ;µ1, µ2) is given by

∫ c′
−∞ I(x1;µ1)φ(x1;µ1, σ

2)dx1.
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For x′′1 = x
′
1 + d1, µ

′′
1 = µ

′
1 + d2, we have

I(x′′1 ;µ′′1) =
∫ ∞
−∞

u2(x′′1 , x2)φ(x2;µ◦2 + γ(x′′1 − µ
′′

1), σ2)dx2

=
∫ ∞
−∞

u2(x′1 + d1, x2 + γ(d1 − d2))φ(x2;µ◦2 + γ(x′1 − µ
′

1), σ2)dx2.

Lipschitz continuity of u2 implies that

|u2(x′1 + d1, x2 + γ(d1 − d2))− u2(x′1, x2)| ≤ K2((1 + |γ|) · |d1|+ |γ| · |d2|)
≤ K2(1 + |γ|) · (|d1|+ |d2|),

which shows |I(x′′1 ;µ′′1)−I(x′1;µ′1)| ≤ K2(1+ |γ|) ·(|x′1−x
′′
1 |+ |x

′
2−x

′′
2 |). That is, I is Lipschitz

continuous.
Suppose µ1 = µ◦1 + ∆ for some ∆ > 0. Similar to the above argument bounding the first

summand in (c′ ;µ1, µ2), we have

∫ c
′

−∞
I(x1;µ1)φ(x1;µ1, σ

2)dx1 =
∫ c
′−∆

−∞
I(x1 + ∆;µ◦1 + ∆)φ(x1;µ◦1, σ2)dx1.

By Lipschitz continuity of I, |I(x1;µ◦1)− I(x1 + ∆;µ◦1 + ∆)| ≤ 2K2(1 + |γ|)∆ for all x1 ∈ R.
Thus we conclude

|
∫ c
′

−∞
I(x1;µ1)φ(x1;µ1, σ

2)dx1 −
∫ c
′

−∞
I(x1;µ◦1)φ(x1;µ◦1, σ2)dx1|

≤ 2K2(1 + |γ|)∆ + |
∫ c
′

c′−∆
I(x1;µ◦1)φ(x1;µ◦1, σ2)dx1|.

Since x1 7→ I(x1;µ◦1) is Lipschitz continuous, there exists J2 > 0 so that |I(x1;µ◦1)φ(x1;µ◦1, σ2)| ≤
J2 for all x1 ∈ R, which means |

∫ c′
c′−∆ I(x1;µ◦1)φ(x1;µ◦1, σ2)dx1| ≤ J2∆. The case of µ1 =

µ◦1 −∆ is symmetric and we have shown that

|
∫ c
′

−∞
I(x1;µ1)φ(x1;µ1, σ

2)dx1 − I(x1;µ◦1)φ(x1;µ◦1, σ2)dx1| ≤ (2K2(1 + |γ|) + J2) · |µ1 − µ◦1|.

Finally, we investigate the difference in the second summand of U(c′ ;µ1, µ2) between param-
eters (µ1, µ

◦
2) and (µ1, µ2) for µ1, µ2 ∈ R. This difference is bounded by

∫ c
′

−∞

∣∣∣∣∫ ∞
−∞

u2(x1, x2)φ(x2;µ◦2 + γ(x1 − µ1), σ2)dx2 −
∫ ∞
−∞

u2(x1, x2)φ(x2;µ2 + γ(x1 − µ1), σ2)dx2

∣∣∣∣φ(x1;µ1, σ
2)dx1.

(5)
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But for every x1 ∈ R,∫ ∞
−∞

u2(x1, x2)φ(x2;µ2+γ(x1−µ1), σ2)dx2 =
∫ ∞
−∞

u2(x1, x2+(µ2−µ◦2))φ(x2;µ◦2+γ(x1−µ1), σ2)dx2,

and |u2(x1, x2 + (µ2 − µ◦2)) − u2(x1, x2)| ≤ K2|µ2 − µ◦2| by Lipschitz continuity of u2. This
shows that, for all values µ1, µ2 ∈ R, (5) is bounded by K2|µ2 − µ◦2|.

Applying the triangle inequality to the second term, we conclude that

|U(c′ ;µ1, µ2)−U(c′ ;µ◦1, µ◦2)| ≤ (K1 +J1)|µ1−µ◦1|+(2K2(1+ |γ|)+J2) · |µ1−µ◦1|+K2|µ2−µ◦2|.

So we see that setting K = K1 + J1 + (2K2(1 + |γ|) + J2 establishes the lemma.

Now I prove Proposition 15.

Proof. Let c, c′ ∈ R be given and let µ◦1 = µ•1, µ
◦
2 = µ∗2(c). Lemma A.3 implies there is a

constant K > 0 so that |U(c′ ;µ1, µ2) − U(c′ ;µ◦1, µ◦2)| ≤ K · (|µ1 − µ◦1| + |µ2 − µ◦2|) for all
µ1, µ2 ∈ R, so for ν a joint distribution about the fundamentals (µ1, µ2), we get

|E(µ1,µ2)∼ν
[
U(c′ ;µ1, µ2)− U(c′ ;µ◦1, µ◦2)

]
| ≤ E(µ1,µ2)∼ν

[
|U(c′ ;µ1, µ2)− U(c′ ;µ◦1, µ◦2)|

]
≤ K · E(µ1,µ2)∼ν [|µ1 − µ◦1|+ |µ2 − µ◦2|].

By Lemma 6, almost surely

lim
N→∞

E(µ1,µ2)∼g(·|(Xn,Yn)Nn=1)[|µ1 − µ◦1|+ |µ2 − µ◦2|] = 0.

But along any realized sequence of (Xn, Yn)∞n=1 where the above limit holds, by putting
ν = g̃N we also have limN→∞ |UN(c′) − U(c′ ;µ◦1, µ◦2)| = 0. This shows UN(c′) converges to
U(c′ ;µ∗1(c), µ∗2(c)) almost surely as N →∞.

B General Subjective Joint Distribution of (X1, X2) with
Method of Moments Inference

The analysis so far has assumed that both the objective joint distribution of (X1, X2) as well
as all of the subjective models of (X1, X2) that the agent deems plausible are Gaussian. The
Gaussian assumption makes the agents’ inference problem analytically tractable, since the
KL divergence between a pair of Gaussian distributions has a simple closed-form expression.
However, the intuition that when an agent holds negatively correlated beliefs about the fun-
damentals, the censoring effect enables a positive feedback loop between distorted stopping
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rules and distorted beliefs holds more generally. To show this, I modify the inference pro-
cedure of the agents to a simpler but natural alternative: agents infer fundamentals as to
match observed dataset of histories in terms of certain moments. As discussed in Remark
4, under the Gaussian assumption this method-of-moments (MOM) estimation procedure is
identical to KL divergence minimization.

B.1 Subjective Models for (X1, X2)
Each agent starts with a family of subjectively models {M(·; θ1, θ2) : θ1 ∈ Θ1, θ2 ∈ Θ2} for
the joint distribution of (X1, X2), with parameter spaces Θ1 ⊆ R and Θ2 ⊆ R. For each
(θ1θ2), M(·; θ1, θ2) is a full-support measure on the rectangle I1 × I2, where each I1, I2 is a
possibly infinite interval of R. By “full-support” I mean that for every open ball B ⊆ I1×I2,

M(B; θ1, θ2) > 0.
For each joint distribution M(·; θ1, θ2), let M1(·; θ1, θ2) denote its marginal on I1, and let

M2|1(·|θ1, θ2;x1) denote its conditional distribution of X2 given X1 = x1. I will make the
following assumptions on the family of distributions M:

Assumption A.1. M1(·; θ1, θ2) is only a function of θ1 and EM1(·;θ1,θ2)[X1] is strictly in-
creasing in θ1.

In light of this assumption, the marginal distribution on X1 can be just written as
M1(·; θ1), omitting θ2.

Assumption A.2. For each x1 ∈ I1 and θ1 ∈ Θ1, EM2|1(·;θ1,θ2|x1)[X2] strictly increases in θ2.

Assumption A.3. For any θ1 ∈ Θ1 and θ2 ∈ Θ2, EM2|1(·;θ1,θ2|x1)[X2] strictly decreases in x1.

Assumption A.3 is the substantive assumption capturing the gambler’s fallacy psychology.
Every subjective distribution in the family is such that the agent predicts a lower mean for
X2 after a higher realization of X1.

Here are some examples satisfying these assumptions. The first example shows the family
of Gaussian distributions I have been working with satisfies these assumptions.

Example A.1. Let I1 = I2 = R and let Θ1 = Θ2 = R. Fixing some σ2 > 0, γ < 0,
let M(·; θ1, θ2) be Ξ(θ1, θ2, σ

2, σ2; γ) for each θ1, θ2 ∈ R. The marginal distribution on X1

is N (θ1, σ
2) and does not depend on θ2. Its mean is θ1 so it strictly increases in θ1. The

conditional mean of X2|X1 = x1 is θ2 + γ(x1 − θ1), which is strictly increasing in θ2 and
strictly decreasing in x1 since γ < 0. So Assumptions A.1, A.2, and A.3 are satisfied.

The next example features bivariate exponential distributions supported on the half-line
[0,∞).
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Example A.2. Gumbel (1960) proposes the following family of bivariate exponential distri-
butions, parametrized by α ∈ [−1, 1] : consider a joint distribution with the density function
(x̃1, x̃2) 7→ e−x̃1−x̃2 ·[1+α(2e−x̃1−1)·(2e−x̃2−1)] on x̃1, x̃2 ≥ 0. If (X̃1, X̃2) are random variables
with this density, then they have full support on [0,∞)× [0,∞), each X̃j has the marginal
distribution of an exponential random variable with mean 1, E[X̃2|X̃1 = x̃1] = 1− 1

2α−αe
−x̃1 .

The correlation between X̃1 and X̃2 is α/4.
Let I1 = I2 = [0,∞) and let Θ1 = Θ2 = (0,∞). Fixing some −1 ≤ α < 0, let M(·; θ1, θ2)

be the joint distribution generated by X1 = θ1 · X̃1 and X2 = θ2 · X̃2 where (X̃1, X̃2) have
the Gumbel bivariate distribution with parameter α. Since (X̃1, X̃2) have full support on
I1 × I2, the same holds for (X1, X2) for any θ1, θ2 > 0. The marginal distribution of X1

is exponential with a mean of θ1, so Assumption A.1 is satisfied. The conditional mean of
X2|X1 = x1 is given by E[θ2X̃2|θ1X̃1 = x1] = θ2 ·E

[
X̃2|X̃1 = x1

θ1

]
= θ2 ·

(
1− 1

2α− αe
−(x1/θ1)

)
.

As α < 0, the term inside the bracket is strictly positive. So this conditional expectation
is strictly increasing in θ2, showing that Assumption A.2 is satisfied. Also, since θ1, θ2 > 0,
x1 7→ −αθ2e

−(x1/θ1) is strictly decreasing and so Assumption A.3 is satisfied.

Finally I give another example where I1 = I2 = [0, 1] are bounded intervals.

Example A.3. Let Θ1 = Θ2 = (0,∞) and consider the family of distribution M(·; θ1, θ2)
such that under parameters (θ1, θ2), X1 ∼ Beta(θ1, 1) and X2|X1 = x1 ∼ Beta((1−x1)θ2, 1).
For any values of θ1, θ2 > 0, X1 has full support on [0, 1]. Conditional on any x1 ∈ (0, 1), X2

has full support on [0, 1]. This shows the distribution M(·; θ1, θ2) has full-support on [0, 1]2

for every (θ1, θ2) ∈ Θ1×Θ2. The mean of X1 is θ1
θ1+1 , which only depends on θ1 and is strictly

increasing in it. So Assumption A.1 is satisfied. The conditional mean of X2|X1 = x1 is
(1−x1)θ2

(1−x1)θ2+1 , which is strictly increasing in θ2 and strictly decreasing in x1. So, Assumptions
A.2 and A.3 are satisfied.

Finally, I give a general class of examples that allows any pair of given marginal distribu-
tions for X1 and X2 to be joined together using a copula as to induce negative dependence
for the joint distribution.

Example A.4. Consider two families of distribution functions Q1(·; θ1) : I1 → [0, 1],
Q2(·; θ2) : I2 → [0, 1], such Q1 and Q2 are supported on I1, I2 respectively under all parame-
ters. Suppose the mean of Q1 is increasing in θ1, and Q2 is increasing in stochastic dominance
order for θ2. Fix a differentiable copula: that is, a differentiable function C : [0, 1]2 → [0, 1]
so that C(u, 0) = C(0, v) = 0, C(u, 1) = u, C(1, v) = v for all u, v ∈ [0, 1], and so that for
u1 ≤ u2, v2 ≤ v2 ∈ [0, 1], we get C(u2, v2)−C(u2, v1)−C(u1, v2)−C(u1, v1) ≥ 0. Consider the
family of joint distributions M(·; θ1, θ2) generated by joining together Q1(·; θ1) with Q2(·; θ2)
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using the copula C, namely

M((−∞, x1]× (−∞, x2]; θ1, θ2) = C(Q−1
1 (x1|θ1), Q−1

2 (x2|θ2)).

Then M(·; θ1, θ2) has marginal distributions on X1 and X2 given by distribution functions
Q1(·; θ1), Q2(·; θ2), and:

Lemma A.4. Provided ∂C
∂u

(u, v) is an increasing function in u, Assumptions A.1, A.2, and
A.3 are satisfied for the family of distributions M(·; θ1, θ2).

The condition that ∂C
∂u

(u, v) increases in u is satisfied by, for example, the Gaussian
copula with any negative correlation. The derivative of the Gaussian copula is given by
∂C
∂u

(u, v) = P[X2 ≤ Φ−1(v)|X1 = Φ−1(u)] where Φ is the standard Gaussian distribution
function and (X1, X2) are jointly Gaussian with correlation −1 < ρ < 0 and each with
an unconditional variance of 1. As it is known that X2|X1 = x1 ∼ N (ρx1, 1 − ρ2), it
is clear that X2|X1 = x1 decreases in FOSD order as x1 increases, so for any v we have
P[X2 ≤ Φ−1(v)|X1 = Φ−1(u)] increases in u.

B.2 Method of Moments Inference

For a distribution H on the space of histories H, let m1[H] represent the average first-period
draw under this distribution and let m2[H] represent the average second-period draw (when
uncensored). Suppose that objectively X1, X2 are drawn from two independent distributions
and denote the true distribution of histories under censoring by cutoff stopping rule c ∈ R
as H•(c ↑). Then by independence, m1[H•(c ↑)] and m2[H•(c ↑)] do not in fact depend on c.

Given the family of subjective models {M(·; θ1, θ2) : θ1 ∈ Θ1, θ2 ∈ Θ2} about the joint
distribution of (X1, X2), let H(θ1, θ2; c ↑) := H(M(·; θ1, θ2); c ↑) denote the distribution on
histories under joint distribution M(·; θ1, θ2) and censoring cutoff c. I now define the method
of moments estimator.

Definition A.1. The method-of-moments (MOM) estimator derived from an infinite
dataset with history distribution H•(c ↑) is any pair (θM1 , θM2 ) ∈ Θ1 ×Θ2 such that:

1. m1[H(θM1 , θM2 ; c ↑)] = m1[H•(c ↑)]

2. m2[H(θM1 , θM2 ; c ↑)] = m2[H•(c ↑)]

I will sometimes write θM1 (c), θM2 (c) to emphasize the dependence of the MOM estimators
on the censoring threshold c. The MOM estimator need not exist — for example, if all values
of θ1 ∈ Θ1 generate a marginal distribution on X1 that is smaller than m1[H•(c ↑)]. However,
when it exists, it is unique under the assumptions I made.
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Lemma A.5. When the family of distributions M satisfies Assumptions A.1, A.2, and A.3,
the MOM estimator is unique when it exists.

Now I show the MOM estimators have the same monotonicity property in c as the pseudo-
true fundamentals minimizing KL divergence for Gaussian distributions, a result comparable
with the final statement of Proposition 1. So, this key ingredient driving the positive feedback
cycle in biased agents’ learning does not depend on the Gaussian assumption per se. Rather,
the crucial assumption is the generalized notion of negative dependence between X1 and X2,

as articulated by Assumption A.3 for arbitrary joint distributions. Along with regularity
conditions in Assumptions A.1 and A.2, agents using a natural method of moments procedure
will end up with more pessimistic beliefs about the second-period fundamental when the
dataset is more severely censored.

Proposition A.1. Suppose Assumptions A.1, A.2, and A.3 hold. Suppose c′ < c
′′ are two

different interior values in I1 and that MOM estimators (θM1 (c′), θM2 (c′)) and (θM1 (c′′), θM2 (c′′))
exist. Then θM1 (c′) = θM1 (c′′) and θM2 (c′) < θM2 (c′′).

As a corollary, I characterize the large-generations learning dynamics for method of mo-
ments agents using a general class of subjective models about (X1, X2). The key idea is that
the positive feedback between distorted stopping rules and distorted beliefs continue to hold,
with the parametric version of gambler’s fallacy interpreted as γ < 0 in a specific Gaussian
setup replaced with the general notion of negative dependence as in Assumption A.3.

One caveat: we must now ensure the MOM estimator exists in each generation when the
previous generation uses any cutoff stopping rule that has a positive probability of continuing
into the next period. To guarantee existence, I impose an additional restriction on how M
relates to the true distribution of (X1, X2).

Assumption A.4. (a) The objective supports of X1 and X2 are I1 and I2, respectively.

(b) The range of θ1 7→ EM1(·;θ1)[X1] is I1.

(c) For every θ1 ∈ Θ1 and x1 ∈ I1, the range of θ2 7→ EM2|1(·;θ1,θ2|x1)[X2] is I2.

Assumption A.4(a) is a consistency requirement, saying that the supports for the objec-
tive distributions of X1 and X2 match their supports under the agents’ subjective models.
Assumption A.4(b) and Assumption A.4(c) ensures the agents can always match the two
moment conditions. It is easily verified that Examples A.1, A.2, and A.3 satisfy Assump-
tion A.4 when the true joint distribution of (X1, X2) is supported on R2, [0,∞)2, and [0, 1]2

respectively.
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Corollary A.1. Fix some objective, independent distribution for (X1, X2) and suppose
agents have a family of subjective models {M(·; θ1, θ2) : θ1 ∈ Θ1, θ2 ∈ Θ2} satisfying As-
sumptions A.1, A.2, A.3, and A.4. Suppose the stopping problem is such that the payoff
function u2(x1, x2) is linear in x2. Suppose each generation t ≥ 1 believes in the model
estimated using MOM from previous generation’s cutoff stopping strategy c[t−1] ↑, namely
M(·; θM1 (c[t−1]), θM2 (c[t−1])), provided c[t−1] > inf(I1).

Let the 0th generation choose an arbitrary cutoff c[0] in the interior of I1. Then, up until
the first period T where c[T ] ≤ inf(I1) (and MOM becomes undefined subsequently), beliefs
and cutoff rules (µM1,[t])Tt=1, (µM2,[t])Tt=1, and (c[t])Tt=1 form monotonic sequences.

This corollary establishes the monotonicity of the beliefs and cutoffs up until when some
generation decides to always stop. If this happens, MOM is no longer well-defined since
second-period draw is never observed.

C Optimal-Stopping Problems with L Periods

C.1 An L-Periods Model of the Gambler’s Fallacy

In an optimal-stopping problem with L periods, the agent observes a draw x` ∈ R in each
period 1 ≤ ` ≤ L. At the end of period `, the agent must decide between stopping and
receiving a payoff u`(x1, ..., x`) that depends on the profile of draws (xi)`i=1 observed so far,
or continuing into the next period. If the agent continues into period L without stopping,
then his payoff will be uL(x1, ..., xL).

I first introduce notation for a class of joint distributions of the L possible draws (Xi)Li=1.

Definition A.2. Let σ2 > 0 be fixed. For every vector µ = (µi)Li=1 and triangular array
γ = (γi,j)2≤i≤L,1≤j≤i−1 with each γi,j ∈ R, the subjective model Ξ(µ;γ) denotes the joint
distribution of (Xi)Li=1 where X1 ∼ N (µ1, σ

2) and, for all i ≥ 2 and (xj)i−1
j=1 ∈ Ri−1,

Xi|(X1 = x1, ..., Xi−1 = xi−1) ∼ N (µi +
i−1∑
j=1

γi,j · (xj − µj), σ2).

Under Ξ(µ;γ), (Xi)Li=1 are jointly Gaussian,17 such that the conditional mean of Xi given
the previous draws X1 = x1, ..., Xi−1 = xi−1 depends linearly on these realizations. I consider
agents who entertain a set of subjective models, {Ξ(µ;γ) : µ ∈ RL} for a fixed array γ where
each γi,j < 0. The negative γi,j capture the gambler’s fallacy, as higher realizations of earlier

17An equivalent description of the subjective model Ξ(µ;γ) is to consider a set of L independent Gaussian
random variables Zi ∼ N (µi, σ2) for 1 ≤ i ≤ L. Let X1 = Z1 and iteratively define Xi = Zi+

∑i−1
j=1 γi,j(Xj−

µj). Using induction, one can show that every Xi is a linear function of the Zi’s, so they are jointly Gaussian.
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draws lead agents to predict lower means for future draws. The greater the magnitude of
γi,j, the more that the agent’s prediction of Xi depends on realization of Xj. Agents hold
a dogmatic belief in the correlation structure between (Xi)Li=1, but can flexibly estimate
(µi)Li=1, the fundamentals of the environment. Objectively, (Xi)Li=1 are independent, so the
true joint distribution is Ξ• = Ξ(µ•; 0) for some (µ•i )Li=1.

A useful functional form to keep in mind is γi,j = −α · δi−j−1 for α > 0, 0 ≤ δ ≤ 1, which
corresponds to Rabin and Vayanos (2010)’s specification of gambler’s fallacy in multiple
periods. Here, α relates to the severity of the bias and δ captures how quickly the influence
of past observations decay in predicting future draws.

C.2 Inference from Censored Datasets in L Periods

In general, a stopping strategy in an optimal-stopping problem over L periods is a set of
functions si : Ri → {Stop,Continue} for 1 ≤ i ≤ L − 1, where si(x1, ..., xi) maps the
realizations of the first i draws to a stopping decision. I consider stopping strategies where
si is a cutoff rule in xi after each partial history (x1, ..., xi−1), that is there exist (ci)L−1

i=1 with
c1 ∈ R and for i ≥ 2, ci(x1, ..., xi−1) ∈ R for every (x1, ..., xi−1) ∈ Ri−1, so that the agent
stops after (x1, ...xi) if and only if xi ≥ ci(x1, ..., xi−1). A stopping strategy with stopping
regions characterized by a profile of cutoff rules c = (ci)L−1

i−1 will be abbreviated as c ↑ .
For subjective model Ξ and cutoff rule c ↑, let H(Ξ; c ↑) represent the distribution of

histories when applying rule c ↑ to draws (Xi) ∼ Ξ. More precisely, consider a procedure
where X1, X2, ..., XL is drawn according to Ξ and revealed one at a time. At the earliest
1 ≤ ī ≤ L − 1 such that Xī ≥ cī(X1, ..., Xī−1), the process stops and the history records
(X1, ..., Xī,∅, ...,∅), with L − ī instances of the censoring indicator ∅ replacing the unob-
served subvector (Xī+1, ..., XL). If no such ī exists, then history records the entire profile of
draws, (X1, ..., XL). The distribution of histories generated this way is denoted H(Ξ; c ↑).

Definition A.3. For cutoff strategy c ↑ and fundamentals µ̂, the KL divergence between
objective distribution of histories and the predicted distribution under censoring is the sum
of L integrals,

DKL( H(Ξ•; c ↑) || H(Ξ(µ;γ); c ↑) ) :=
L∑
i=1

Ii,

where
I1 =

∫ ∞
c1

φ(x1;µ•1, σ2) ln
(
φ(x1;µ•1, σ2)
φ(x1;µ1, σ2)

)
dx1,

and for 2 ≤ i ≤ L− 1, integral Ii is

∫ c1

−∞
...

∫ ci−1(x1,...,xi−2)

−∞

∫ ∞
ci(x1,...,xi−1)

i∏
k=1

φ(xk;µ•k, σ2) ln
( ∏i

k=1 φ(xk;µ•k, σ2)∏i
k=1 φ(xk;µk +

∑k−1
j=1 γk,j · (xj − µj), σ2)

)
dxi...dx1.
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Finally, IL is given by

∫ c1

−∞
...
∫ cL−1(x1,...,xL−2)

−∞

∫ ∞
−∞
·

i∏
k=1

φ(xk;µ•k, σ2) ln
( ∏i

k=1 φ(xk;µ•k, σ2)∏i
k=1 φ(xk;µk +∑k−1

j=1 γk,j · (xj − µj), σ2)

)
dxi...dx1.

To interpret, consider a history h = (x1, ..., xi,∅, ...,∅) where xk < ck(x1, ..., xk−1) for all
k ≤ i− 1 and xi ≥ ci(x1, ..., xi−1). This history is possible under the stopping strategy c ↑.
It has a likelihood of Πi

k=1φ(xk;µ•k, σ2) under Ξ• and a likelihood of Πi
k=1φ(xk;µk+∑k−1

j=1 γk,j ·
(xj − µj), σ2) under Ξ(µ;γ). So, the integral Ii calculates the contribution of all possible
histories of length i to the KL divergence from H(Ξ(µ;γ); c ↑) to H(Ξ•; c ↑). In the case of
L = 2, this definition reduces to Definition 5, the KL divergence in the two-periods baseline
model, with γ = γ2,1 and c1 ∈ R as the censoring threshold.

The KL-divergence minimizers

min
µ∈RL

DKL( H(Ξ•; c ↑) || H(Ξ(µ;γ); c ↑) )

are the pseudo-true fundamentals with respect to stopping strategy c ↑ . The next
proposition gives an explicit characterization of them.

Proposition A.2. Let stopping strategy c ↑ be given. For each i ≥ 1, let Ri represent the
region

{(x1, ..., xi) : x1 < c1, x2 < c2(x1), ..., xi < ci(x1, .., xi−1)} ⊆ Ri.

The pseudo-true fundamentals with respect to c ↑ are µ∗1 = µ•1 and, iteratively,

µ̂∗i = µ•i +
i−1∑
j=1

γi,j · (µ∗j − EΞ• [Xj|(Xk)i−1
k=1 ∈ Ri−1]).

The expression for µ∗i in the general L-periods setting resembles the expression for µ∗2
in the two-period setting. Relative to the truth µ•i , the estimate µ∗i is distorted by the fact
that Xi is only observed when previous draws (X1, ..., Xi−1) fall into the continuation region
Ri−1 ⊆ Ri−1 associated with c ↑ . The agent uses this censored empirical distribution of
(X1, ..., Xi−1, Xi) to infer the period-i fundamental, under a dogmatic belief about the corre-
lation structure between the draws given by γ. Importantly, whether a certain realization Xj

for j < i should be judged as below-average (and thus predict a higher Xi) or above-average
(and thus predict a lower Xi) depends on agent’s belief about the period j fundamental, µ∗j ,
which gives the iterative structure of the expression for µ̂∗i .

The proof of this result follows two steps. First, recall thatDKL(H(Ξ•; c ↑)||H(Ξ(µ;γ); c ↑
)) is defined as the sum ∑L

i=1 Ii, where Ii is the KL-divergence contribution from histories
with length i. I rewrite this expression as the sum of L different integrals, ∑L

i=1 Ji, where
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Ji is the KL-divergence contributions from histories containing Xi. So, Ji is a function of
µ1, ..., µi. The second step is similar to the proof of Proposition 1, where I show ∂Ji

∂µj
is a

linear multiple of ∂Ji
∂µi

whenever j < i. First-order condition at µ∗ allows for a telescoping
rearrangement, yielding ∂Ji

∂µi
(µ∗) = 0 for every i. The proposition readily follows.

Now I turn to a special class of cutoff-based stopping rules where ck is independent of
history. So, a stopping rule of this kind c ↑ can be viewed simply as a list of L constants,
c1, ..., cL ∈ R, such that the agent stops after the draw X` = x` if and only if x` < c`. I
show that the expression for the pseudo-true fundamentals greatly simplifies and admits a
path-counting interpretation.

Definition A.4. For 1 ≤ j < i ≤ L, a path p from i to j is a sequence of pairs p =
((i0, i1), ..., (iM−1, iM)) with M ≥ 1, i0 = i, iM = j, and im+1 < im for all m = 0, 1, ...,M −1.
The length of p is #(p) := M . The weight of p is W (p) := Π0≤m≤M−1γi`,i`+1 . Denote the set
of all paths from i to j as P [i→ j].

That is, we may imagine a network with L nodes, one per period of the optimal-stopping
problem. There is a directed edge with weight γi,j for all pairs i > j. A path from i to j is
a concatenation of edges, starting with i and ending with j. Its weight is the product of the
weights of all the edges used.

The next proposition differs from Proposition A.2 in that the expression for the pseudo-
true fundamental µ∗i does not involve other pseudo-true fundamentals µ∗j . It shows that the
distortion of µ∗i from the true value µ•i depends on terms µ•j −EΞ• [Xj|Xj ≤ cj] and the total
number of paths from i to j in the network that γ defines.

Proposition A.3. For stopping strategy c ↑= (c1, ..., cL) ∈ RL, the pseudo-true fundamen-
tals are given by

µ∗i = µ•i +
i−1∑
j=1

 ∑
p∈P [i→j]

W (p)
 · (µ•j − E[Xj|Xj ≤ cj]

)
.

As a corollary, suppose L ≥ 3 and γ have the Rabin and Vayanos (2010) functional form
of γi,j = −α · δi−j−1 for α > 0, 0 ≤ δ ≤ 1. I show that all pseudo-true fundamentals are
too pessimistic in every dataset censored with c ↑= (c1, ..., cL) ∈ RL if and only if δ > α.
The idea is the influence of the gambler’s fallacy psychology must not decay “too quickly”
relative to the influence of the most recent observation. This condition is satisfied in all
the calibration exercises in Rabin and Vayanos (2010) and in the structural estimations of
Benjamin, Moore, and Rabin (2017).

Corollary A.2. Suppose L ≥ 3 and γi,j = −α · δi−j−1 for α > 0, 0 ≤ δ ≤ 1. If δ > α,
then for all stopping strategies c ↑= (c1, ..., cL) ∈ RL, the pseudo-true fundamentals satisfy
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µ∗i < µ•i for all i. If δ < α, then there exists a stopping strategy c ↑= (c1, ..., cL) ∈ RL such
that µ∗i > µ•i for at least one i.

To understand the intuition, consider an example that violates the condition of the
corollary, α = 0.5, δ = 0, so that γ2,1 = −0.5, γ3,2 = −0.5, and γ3,1 = 0. The agent expects
reversals between the pairs (X1, X2) and (X2, X3), but his expectation forX3|(X1 = x1, X2 =
x2) does not vary with x1. By the same logic as the two-periods censoring effect, inference
about the second-period fundamental µ∗2 decreases as c1 decreases, with limc1→−∞ µ

∗
2(c1) =

−∞. This has an important indirect effect on µ∗3, since a very pessimistic µ∗2 leads the
agent to interpret objectively typical draws of X2 as greatly above average. Expecting low
values of X3 after these surprisingly high draws of X2, the agent infers the fundamental µ∗3
to be above the sample mean of X3 in the dataset, hence overestimating it as c1 → −∞.
When δ is strictly positive, however, there is an opposite effect where lower sample mean of
X1 in observations containing uncensored X3 lead to more pessimistic inference about the
third-period fundamental. When δ > 0.5, overoptimistic inference never happens because
this second effect dominates.

D The Censoring Effect in a Finite-Urn Model

Rabin (2002) Section 7 discusses an example with endogenous observations. There is an
infinite population of financial analysts, each with quality θ ∈ {1

4 ,
1
2 ,

3
4}. Conditional on

quality θ, an analyst generates either a good (signal a) or bad (signal b) return each period,
with probabilities θ and 1−θ and independently across periods. The agent, however, believes
successive returns from the same analyst are generated through a finite-urn model. Consider
an urn with N balls where N is a multiple of 4. For an analyst with quality θ, initialize
the urn with θN balls labeled “a” and (1 − θ)N balls labeled “b”. Successive returns are
successive draws without replacement from the urn. The urn is refreshed every two draws.
Rabin (2002) calls an agent with this finite-urn model an “N -Freddy”. Since the urn is not
refreshed between draws 2k− 1 and 2k for k = 1, 2, 3, ..., such pairs of draw exhibit negative
correlation in agent’s subjective model, generating the gambler’s fallacy.

Returning to Rabin (2002) Section 7’s example, objectively all financial analysts have
quality θ = 1

2 . The agent samples a financial analyst at random and observes his returns over
two periods. Depending on the realizations of these two returns, the agent either observes the
same analyst for two more periods before sampling a new analyst, or immediately samples
a new analyst. This procedure is infinitely repeated. Rabin (2002) investigates a 4-Freddy
agent’s long-run belief about the proportions of analysts with the three levels of quality in
the population.
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The endogenous observation in the example is distinct from what I term the “censoring
effect” in this paper. The main mechanism behind the censoring effect is that the some rows
of the dataset omits signals (X2) which the biased agent judges to be negatively correlated
with signals that are always observed (X1). This then leads to distorted inference. However,
in Rabin (2002)’s finite-urn model, the urn is refreshed every two periods. This means
an N -Freddy agent judges the part of the data that is sometimes censored (the analyst’s
returns in periods 3 and 4) to be independent of the part of the data that is always observed
(the analyst’s returns in periods 1 and 2). Therefore the driving force behind Rabin (2002)
Section 7’s example is not the interaction between censoring and the gambler’s fallacy, but
rather between censoring and the Bayesian aspect of N -Freddy’s quasi-Bayesian inference.

In this section, I study a related problem where an N -Freddy agent observes each analyst
for either one or two periods, depending on whether the analyst generates a bad first-period
return. This setup features the censoring effect, because the finite-urn model generates
negative correlation between the first and second draws from each urn. I find that the
agent’s inference under this censoring structure tends to be too optimistic. This conclusion
is in line with predictions about the censoring effect in the baseline model of this paper,
for the basic inference result in Proposition 1 shows that when the dataset is censored in
the opposite way (i.e. censored when the first draw is good), the resulting inference is too
pessimistic18. That is, I demonstrate the robustness of my censoring effect to an alternative
model of the gambler’s fallacy in a binary-signals setting, showing that it is not an artifact
of the continuous-signals setup in my baseline model.

Table A.1 displays the likelihood of all signals of length 2 for the 4-Freddy and 8-Freddy
agents, for different values of θ ∈ {1

4 ,
1
2 ,

3
4}. The last row of each table also shows the

likelihoods of simply observing the signal b in the first period, under the censoring rule that
stops observing an analyst if his first return is bad.

I first discuss inference without censoring. After aa, Freddy exaggerates the relative
likelihood of θ = 3

4 to θ = 1
2 compared to a Bayesian, whereas after ab Freddy’s relative

likelihoods of these two qualities are the same as a Bayesian’s. Overall, given a sample with
an equal number of aa and ab signals, Freddy exaggerates the relative likelihood of θ = 3

4 to
θ = 1

2 . This phenomenon is analogous to the continuous version of gambler’s fallacy where a
biased observer “partially forgives” a mediocre outcome following an outstanding outcome.
Here, even though the average outcome in the second period is mediocre, the fact that they
follow the best possible outcome a in the first period lead to an overly optimistic estimate
about the analyst’s ability. By the same logic, observing an equal number of ba and bb signals
would lead to exaggeration of the likelihood of θ = 1

4 relative to θ = 1
2 .

18Proposition OA.5 in the Online Appendix shows that when the dataset is censoring using a strategy
that stops when X1 ≤ c for some c ∈ R, inference about second-period fundamental is always too high.
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4-Freddy θ = 1
4 θ = 1

2 θ = 3
4

aa 0 1
6

1
2

ab 1
4

1
3

1
4

ba 1
4

1
3

1
4

bb 1
2

1
6 0

b∅ 3
4

1
2

1
4

8-Freddy θ = 1
4 θ = 1

2 θ = 3
4

aa 1
28

6
28

15
28

ab 6
28

8
28

6
28

ba 6
28

8
28

6
28

bb 15
28

6
28

1
28

b∅ 3
4

1
2

1
4

Table A.1: The likelihoods of observations under different analyst qualities, for 4-Freddy and
8-Freddy agents.

However, now suppose the second observation is censored when the first observation is
b. The otherwise symmetric situation becomes asymmetric. Following the observation of b∅
(where the second draw is censored), Freddy’s inference is the same as a Bayesian’s. So we
have turned off the channel that exaggerates the probability of θ = 1

4 but kept the channel
that exaggerates the probability of θ = 3

4 . This is analogous to the censoring effect in my
model, where censoring second period draw following unfavorable first period draws would
lead to overly optimistic beliefs.

In the long-run, the agent observes a distribution of returns across different analysts:
25% of the time aa is observed, 25% of the time ab is observed, and 50% of the time b∅
is observed. To calculate the agent’s long-run beliefs, first suppose Freddy’s prior specifies
either all analysts have θ = 1

4 or all analysts have θ = 3
4 . Then Freddy’s long-run inference

is given by the parameter maximizing expected log-likelihood of the data. For 4-Freddy, the
log-likelihood likelihood under θ = 1

4 is −∞. For 8-Freddy, The log-likelihood under θ = 1
4

is
1
4 ln(1/28) + 1

4 ln(6/28) + 1
2 ln(3/4) ≈ −1.362

and the log-likelihood under θ = 3
4 is

1
4 ln(15

28) + 1
4 ln( 6

28) + 1
2 ln(1/4) ≈ −1.234.

So in both cases, Freddy will come to believe θ = 3
4 over θ = 1

4 for all analysts.
Now consider a 4-Freddy who dogmatically believes some 1 − κ ∈ (0, 1) fraction of the

analysts have θ = 1
2 , but the remaining analysts either have θ = 1

4 or θ = 3
4 . So, the agent

estimates qa ∈ [0, 1 − κ], the fraction of analysts who have θ = 3
4 . Straightforward algebra

shows that the q∗a maximizing expected log-likelihood of the data is q∗a = 7
18κ+ 1

9 for κ ≥ 2
11 ,

q∗a = κ otherwise. Since 7
18κ + 1

9 > 1
2κ for all κ ∈ ( 2

11 , 1), we see that no matter what
fraction of analysts 4-Freddy believes to be average, he will end up believing there are more
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above-average than below-average analysts in the population. That is, his overall belief will
be too optimistic.

E The Gambler’s Fallacy and Attentional Stability

Many studies of learning with behavioral agents, including this paper, can be phrased as
agents with a prior (or “misspecified theory”) over states of the world whose support excludes
the true, data-generating state. Agents in my baseline model, for example, start with a prior
supported on the class of subjective models {Ξ(µ1, µ2, σ

2, σ2; γ) : µ1, µ2 ∈ R} for some γ < 0,
with different models viewed as different states of the world. But the true state of the world
is the objective distribution (X1, X2) ∼ Ξ(µ•1, µ•2, σ2, σ2; 0), which does not belong to the
previous set. As the agent’s data size grows, the misspecified theory can appear infinitely
less likely in the limit than an alternative prior belief (or “light-bulb theory”) that includes
the true state in its support.

Gagnon-Bartsch, Rabin, and Schwartzstein (2018) offer an explanation for why such
misspecified theories persist with learning – attentional stability. Under a misspecified theory,
some coarsened information may be sufficient for decision-making. When agents only pay
attention to this coarsened information, the part of the data that they attend to may be so
coarse that their misspecified theory no longer appears infinitely less likely than the light-
bulb theory.

In this section, I investigate attentional stability of the gambler’s fallacy bias in my learn-
ing setting. The main intuition is that when agents are dogmatic about γ, they are dogmatic
about the negative correlation between X1 and X2. As such, under their misspecified the-
ory agents do not find it necessary to separately keep track of the conditional distributions
X2|(X1 = x1) for different values of x1. Agents believe certain moments of the dataset are
sufficient for decision-making, and this process of compressing the entire dataset into these
sufficient statistics removes aspects of the dataset that would have led the agents to question
the validity of their theory.

My setting differs slightly from the setting of Gagnon-Bartsch, Rabin, and Schwartzstein
(2018) as each of my agents acts once after observing an infinitely large dataset, while their
agents observe one signal each period over an infinite number of periods. So, I begin by
defining the key concepts surrounding attentional stability in my setting.

E.1 A Definition of Attentional Stability for Large Datasets

Recall that each agent in generation t ≥ 1 observes an infinite dataset of histories (hn)n∈[0,1]

from the previous generation, where each hn ∈ H = R × (R ∪ {∅}) is the history of a
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predecessor. Since there is a continuum of predecessors, I will think of each agent as directly
observing a distribution on H, i.e. directly observing H(Ξ•; c ↑) when their predecessors use
the stopping rule c ↑ .

Definition A.5. Let π, λ be beliefs over the joint distribution of (X1, X2). Say π is in-
explicable relative to λ, conditional on the objective model Ξ• and cutoff rule c ↑, if
H(Ξ•; c ↑) = H(Ξ; c ↑) for some Ξ ∈ supp(λ), but H(Ξ•; c ↑) 6= H(Ξ; c ↑) for any
Ξ ∈ supp(λ).

That is, each subjective model Ξ and cutoff rule c ↑ induces a distribution over histories,
H(Ξ; c ↑). When predecessors in generation t − 1 use the stopping rule c ↑, agents in
generation t observe an infinite dataset of histories with the distribution H(Ξ•; c ↑). If this
distribution can be explained by some subjective model of (X1, X2) in the support of the
light-bulb theory λ, but not by any distribution in the support of the misspecified theory π,
then I call π inexplicable.

I now define a particular kind of limited attention. Given an infinite dataset (i.e. a
distribution over histories), the agent maps the entire distribution to a finite number of
real numbers, an extreme form of data coarsening. If there is a strategy optimal under the
misspecified theory π that only makes use of these finitely many statistics, then we have a
sufficient-statistics strategy.

Definition A.6. A sufficient-statistics strategy (SSS) in large datasets consists of a
statistics map S : ∆(H)→ RK for some finite K <∞ and a cutoff map σ : Im(S)×R→ R,
such that agents in every generation t ≥ 1 find it optimal (under the prior Ξ ∼ π) to use
the stopping strategy with cutoff σ(S(H), c[t−1]) when they observe a dataset (hn)n∈[0,1] from
their predecessors censored using their stopping threshold c[t−1].

An agent following the strategy (S, σ) first extracts K statistics (i.e. real numbers) from
the infinite dataset (hn)n∈[0,1] of predecessor histories. Then, she applies σ to choose a cut-
off strategy that only depends on the dataset (hn)n∈[0,1] through its K extracted statistics
S((hn)n∈[0,1]) . The idea is that the agent only pays attention to the finitely many statistics,
which is perhaps more realistic than paying full attention to the entire infinite dataset con-
taining the histories from a continuum of agents. If such a strategy is optimal for an agent
believing the true joint distribution of (X1, X2) is drawn according to her (misspecified) prior
Ξ ∼ π, I call the pair (S, σ) an SSS.

A related definition of sufficiency works with finite datasets instead of infinite datasets.
While I will mostly work with these large-dataset concepts, the finite-dataset analog of a
large-dataset SSS I look at in the next subsection is optimal in the way I formalize here.

Definition A.7. A sufficient-statistics strategy (SSS) in datasets of size N < ∞
consists of a statistics map SN : HN → RK for some finite K < ∞ and a cutoff map
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σN : Im(SN) × R × N → R, such that the subjectively optimal cutoff threshold (under the
prior π over Ξ, given by a prior density g : R2 → R++ over (µ1, µ2)) is σN(SN((hn)Nn=1), c, N1)
after observing a dataset (hn)Nn=1 censored using cutoff strategy c ↑, where N1 ≤ N is the
number of histories with an uncensored second-period draw.

Finally, I combine these concepts to define attentional stability. Roughly speaking, the
theory π is attentionally stable if we can find an (S, σ) pair that pays “fine” enough attention
to be an SSS under π, but “coarse” enough attention so that the resulting statistics can be
explained by some model in the support of π.

Definition A.8. Theory π is attentionally stable, conditional on the objective model Ξ•

and cutoff rule c ↑, if there exists an SSS (S, σ) such that S(H(Ξ•; c ↑)) = S(H(Ξ; c ↑)) for
some Ξ in the support of π.

E.2 Two Sufficient-Statistics Strategy for Gambler’s Fallacy

Fix γ < 0. Let π be any full-support belief over {Ξ(µ1, µ2, σ
2, σ2; γ) : µ1, µ2 ∈ R}. In the

baseline model, I consider agents with a prior density g : R2 → R++ over (µ1, µ2) that
is everywhere strictly positive, which clearly induces such a π. Let λ be any belief with
Ξ• = Ξ(µ•1, µ•2, σ2, σ2; 0) in its support. I first show without channeled attention, agents will
come to realize that their misspecified theory π is wrong after seeing a large dataset.

Claim A.1. π is inexplicable relative to λ conditional on Ξ• and any stopping rule c ↑ .

Proof. This is because Ξ• ∈ supp(λ) but every Ξ ∈ supp(π) has KL divergence bounded
away from 0 relative to Ξ• in terms of the histories they generate under c ↑ censoring, that
is to say

min
Ξ∈supp(π)

DKL(H(Ξ•; c ↑)||H(Ξ; c ↑))

= min
µ1,µ2∈R

DKL(H(Ξ•; c ↑)||H(Ξ(µ1, µ2, σ
2, σ2; γ); c ↑)) > 0.

Next, I exhibit two different SSS that establish the attentional stability of the gambler’s
fallacy psychology in my setting. Both SSS have the additional property that they lead
agents to believe the pseudo-true fundamentals and hence use the same cutoff strategy in
large datasets as the full-attention Bayesian agents in the baseline model. So, not only do
these SSS provide a justification for agents not discarding their misspecified theory after
seeing large datasets, they also justify the learning dynamics that I investigate in the main
text of the paper.
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E.2.1 First SSS: Sample Means of Each Period

The first SSS relates to the method-of-moments interpretation of the pseudo-true funda-
mentals from Remark 4. Suppose K = 2 and let S(H) return the sample mean of X1

and the uncensored sample mean of X2 in the history distribution H. Let σ(s1, s2, c) =
C(s1, s2 + γ(s1 − E[X̃1|X̃1 ≤ c])), where X̃1 ∼ N (s1, σ

2) and C(µ1, µ2) is the indifference
threshold with dogmatic belief in Ξ(µ1, µ2; γ). To see that this is an SSS, note that for any
c ∈ R, Ξ 7→ S(H(Ξ; c)) is a one-to-one function on the support of π. The unique µ1, µ2

generating the two moments s1, s2 are µ1 = s1, µ2 = s2 + γ(s1−E[X̃1|X̃1 ≤ c]). So an agent
who thinks only models in the support of π are feasible will believe she exactly identifies the
data-generating model using just the two statistics given by S(H), and subsequently use the
subjectively optimal cutoff strategy C(s1, s2 + γ(s1 − E[X̃1|X̃1 ≤ c])).

This SSS makes π attentionally explicable conditional on the objective model Ξ• and
stopping strategy c ↑, because

S(H(Ξ•; c ↑)) = S(H(Ξ(µ•1, µ∗2(c)); c ↑)),

where µ∗2(c) ∈ R is the pseudo-true fundamental with censoring c ↑, by the method-of-
moments interpretation of pseudo-true fundamentals.

E.2.2 Second SSS: Sample Mean of Re-Centered Second-Period Draws

The second SSS has an even stronger sufficiency property, in the sense that its finite-sample
analog is SSS in finite datasets.

Again let K = 2. In a dataset of size N, let

SN((hn)Nn=1) =
 1
N

N∑
n=1

h1,n,
1

#(n : h2,n 6= ∅)
∑

n:h2,n 6=∅
(h2,n − γh1,n)

 .
The first statistic is the sample mean of the first-period draws. The interpretation of the
second statistic is that the agent forms the “re-centered” observation wn := h2,n − γh1,n for
each history hn where h2,n 6= ∅. The agent only pays attention to the sample averages of
x1,n = h1,n and wn. Under the subjective model Ξ(µ1, µ2; γ), we may write the distributions
of X1, X2 as

X1 = µ1 + ε1

X2 = µ2 + γε1 + z2

where ε1, z2 ∼ N (0, σ2), are independent. Defining W := X2 − γX1, we see that under
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Ξ(µ1, µ2; γ), W = µ2 − γµ1 + z2. So, observations of first-period draws are signals about µ1,

while observations of re-centered second-period W are signals about µ2 − γµ1.

Claim A.2. SN is part of an SSS in datasets of size N .
Roughly speaking ,this is because the subjective joint distribution between (X1,W ) is

Gaussian and the mean of a sequence of Gaussian random variables is a sufficient statistic
for the likelihood of the entire sequence.

Consider now large-sample analog of SN . Again with K = 2, the statistic map S sends
each distribution H to Eh∼H[hi,1] and Eh∼H[hi,2 − γhi,1|hi,2 6= ∅]. I first show that S makes
π attentionally explicable.

Claim A.3. For any censoring threshold c ∈ R, S(H(Ξ•; c ↑)) = S(H(Ξ(µ•1, µ∗2(c)); c ↑)), with
S2(H(Ξ•; c ↑)) = µ•2 − γE[X1|X1 ≤ c].

Under the theory Ξ = Ξ(µ1, µ2; γ), agents expect the second statistic to be

EΞ[X2 − γX1|X1 ≤ c] = EΞ[X2|X1 ≤ c]− γEΞ[X1|X1 ≤ c]
= EΞ[µ2 + γ(X1 − µ1)|X1 ≤ c]− γEΞ[X1|X1 ≤ c]
= µ2 − γµ1.

It is clear then Ξ 7→ S(H(Ξ; c)) is a one-to-one function on the support of π, and that we
may put σ(s1, s2) = C(s1, s2 + γs1) to make (S, σ) an SSS. By Claim A.3, S2(H(Ξ•; c ↑)) =
µ•2 − γE[X1|X1 ≤ c], so this means the agents will play

C(µ•1, µ•2 − γE[X1|X1 ≤ c] + γµ•1) = C(µ•1, µ•2 + γ(µ•1 − E[X1|X1 ≤ c])) = C(µ•1, µ∗2(c))

when faced with the dataset H•(c), same as full-attention Bayesian agents in the baseline
model.

80


