Math 168  Weekly assignment #5
About vertex-to-vertex and edge-to-edge arrangements of cubes

In this assignment, you will pick one of several building options designated in bold below. For any build plan,
your budget is 250 boxes, chosen from among the eight colors we saw in class: white, hot pink, red, orange, yellow-
green, teal, purple, and gold. In addition to any specific written questions about the option you choose, you will
make a software model or models of the structure you are going to build (and submit the save files) and you
will prepare detailed build plans for your model for a team of two people, listing the inventory you need, and
the steps to produce the final structure. As before, keep in mind the need to utilize both team members and to
complete the build in 75 minutes. Also include a description of what mathematical aspect of the structure your
use of color highlights or corresponds to. When you come to class on Friday, Oct 12, the materials will already
be laid out. As soon as you have chosen a partner to work with and decided which of your two plans you mutu-
ally want to build, you should start immediately; no need to wait for further instruction or the “official” start of
class. You are encouraged to use the already-constructed units from last time, detaching them as necessary, to
save time where possible.

As we discussed in class on Oct 5, in seeking a three-dimensional arrangement of cubes that extends through a
significant region of space, it’s helpful to focus on the innermost “pocket” among the cubes. This has to be a
polyhedron with the property that at least two squares meet at every vertex. The fact that the exterior cubes
cannot impinge on each other at least intuitively enforces the condition that this pocket be convex (no inden-
tations, or more formally, the entire line segment between any two points in the pocket is also contained in the
pocket). However, I do not have a proof of this condition, which leads to

Option I: Construct a configuration containing a non-convex pocket.

The polyhedron comprising the pocket should be clearly defined by the square faces of the cubes adjacent to the
pocket and the edges of those cubes. That is, every vertex of the pocket must be a vertex of some cube, and ev-
ery edge of the pocket must be an edge of some cube. The configuration should be rigid, or it should be the case
that the pocket is non-convex in all states the configuration can physically reach. Warning: I am not sure this
option is possible; but if you do find such a configuration it definitely qualifies as mathematically interesting and
hence a worthy subject of a build in its own right.

In any case, if we do assume convexity, then there are two main possibilities: either we opt for maximal symme-
try and insist that all vertices of the basic pocket are identical, or we say that any convex polyhedron composed
of equilateral triangles, squares, and regular pentagons is OK.

In the former case, in class we enumerated the possibilities for the configuration at a vertex of the pocket, and
what polyhedron they corresponded to, as follows.

2 square, 1 triangle: triangular prism (not as full use of three-dimensionality, since it is just a “thickened” version
of a two-dimensional triangle); 2 square, 2 triangle: cuboctahedron; 3 square: cube; 3 square, 1 triangle: rhom-
bicuboctahedron; 2 square, 1 pentagon: pentagonal prism (not full use of three-dimensionality); 2 square, 1 pen-
tagon, 1 triangle: rhombicosidodecahedron.

What we merely alluded to in class, but did not have time to explore, is how the configuration of cubes sur-
rounding the initial pocket can be extended through a larger region of space. There are two basic possibilities I
have identified, leading to

Option II: Construct a third mode of extending the initial configuration.

That is to say, if you come up with a systematic way of taking the basic configuration of cubes around any of
the polyhedra above and extending it to cover a significant region of space, that does not fall into either of the
categories (A) or (B) below, then building a model of the resulting extended configuration is inherently mathe-
matically interesting. Warning: as with option I, it is not at all certain this is possible.



In any case, the two modes of extension I have identified are (A) using some of the cubes surrounding the initial
pocket as part of the configuration surrounding another pocket, or (B) considering the outer “skin” of the config-
uration of cubes surrounding the inner pocket as a polyhedron itself and connecting those polyhedra face-to-face
(or edge-to-edge). You can explore one of these possibilities in greater depth in one of the following options.

But first, here is an example of possibility (A) for cubical pockets. A cubical pocket looks like this:

(the space between all six cubes is hollow, which you can’t quite see for sure in this rendering). But now, if you
notice the two grey cubes at the upper right:

You can see that they could act as two of the cubes surrounding a second cubical pocket, so that we can add four
more green cubes like so:

And of course now you can continue surrounding more cubical pockets in any direction you like.

For an example of possibility (B) using the same basic pocket, imagine adding additional edges around the out-
side of the basic unit, like so:




The outer polyhedron is analogous to a rhombicuboctahedron, but it is not regular: there are square faces with

edge length 1, rectangles with edge length v/2 and 1, and equilateral triangles of edge length v/2, but otherwise

the faces are arranged the same way as in a rhombicuboctahedron. Now you can take two such units and attach
them so that two equilateral triangle faces coincide, like so:

and again, you can continue adding more units in this same fashion in any direction you like.
Option III: the cube-pocket shared lattice

In this option, you will explore the lattice created in the first example above.

1. Using a 3D plotting program or dynamic geometry software, such as Geogebra (under the top right menu
you can select Views and then 3D Graphics), plot the centers of all of the boxes in the final diagram above,
as well as all boxes that would share an edge with one of these if the pattern were extended. Connect two
of the centers if the cubes centered at those points share an edge. Submit your Geogebra save file or a screen
shot if you use some other program.

2. Identify the polyhedra formed by the edges you created in (1). There should be two types, and together
they fill space with no gaps or overlaps, creating what’s called a honeycomb, the three-dimensional analogue
of a tessellation in two dimensions. How do you know you’ve correctly identified the polyhedra? You should
be able to look up the mathematical properties of this honeycomb; submit a web link to a internet article
about the honeycomb.

3. For your build, select any mathematically interesting subset of the honeycomb and model it using the edge-
to-edge cubes from this cubical lattice. Note that the centers of the cubes correspond to the vertices of the
honeycomb, and the edges of the honeycomb correspond to imaginary line segments joining the centers of
adjacent cubes through the midpoint of the edge they share. Use similar criteria as for the face-to-face cube
assignment for “mathematically interesting”. Make sure to include enough of the honeycomb so that the
resulting edge-to-edge cube structure seems like it will be reasonably rigid, given that each edge-to-edge
joint can act as a hinge.

Option IV: the cuboctahedron-rhombicuboctahedron shared honeycomb

1. Create a model showing that if you share the cubes of a cuboctahedral pocket (or a rhombicuboctahedral
pocket), the adjacent pocket naturally takes on the structure of a rhombicuboctahedral one (alternately, a
cuboctahedral one). Submit your model.

2. If you extend this pattern, the cubes of the pattern together with the cuboctahedral and rhombicuboctahe-
dral cavities form a honeycomb called the cantellated cubic honeycomb. You can look this up on line. In the
overall honeycomb, what are the ratios of the numbers of cubes, cuboctahedra, and rhombicuboctahedra to
each other?



3. Another useful characteristic of a cantellated cubic honeycomb is that if you take only the cubical cells and
connect them vertex-to-vertex as in the honeycomb, the resulting structure is rigid (as long as it contains
an entire cells of the other polyhedral types). Choose a subset of this honeycomb that you feel results in an
attractive structure and model it and develop build instructions for it.

Option V: Rhombicosidodecahedron pocket face-to-face structures

Unfortunately, there is no uniform honeycomb which contains cubical and rhombicosidodecahedral cells. How-
ever, we can make a large variety of structures by connecting the outer polyhedra of such pockets formed by
cubes, as in method (B) above. Keeping in mind that your cube budget allows a maximum of eight rhombicosi-
dodecahedral pockets (each one takes 30 cubes), design and model an attractive structure composed of at least
three such units. Create build instructions for your model.

Option VI: Cubic pocket face-to-face structures

1. Note that if you connect the rectangular faces of the outer polyhedron from the example for method (B)
above, you will just be constructing a subset of the lattice from option III. Therefore, the only way to ob-
tain a new structure with this type of connection is to connect equilateral triangular faces. Plot the cen-
ters of several (circa 20) of these units connected in a clump, and connect the centers that correspond to
adjacent units with line segments. Submit your plot.

2. Do the vertices and edges you generated in (1) form a honeycomb? If so, what polyhedra are its cells? If
not, what honeycomb are they a subset of?

3. Choose a mathematically interesting subset of the honeycomb in (2) and model it with triangle-to-triangle
cubic pocket units. Submit the model and build instructions. Keep in mind your cube budget allows for a
maximum of 40 such units.

Option VII: (Rhombi)cuboctahedral pocket face-to-face structures

Rhombicuboctahedral pocket units connected via their hexagonal faces produce the structure from option IV.
However, any other means of connecting either cuboctahedral pocket units or rhombicuboctahedral pocket units
would produce a new structure. For this option, choose one pocket type and one way of connecting them, and
follow the outline of option VI for that combination.

Option VII: Lower-symmetry pockets

In addition to the cube, cuboctahedron, rhombicuboctahedron, and rhombicosidodecahedron, the following John-
son solids satisfy our criterion of having at least two squares at every vertex: J26, J27, J28, J29, J30, J31, J35,
J36, J37, J38, and J39. (You can look up what these look like on line.)

1. Choose one of these Johnson solids. Create a model of cubes connected so that they form a pocket of pre-
cisely the shape of your Johnson solid. Submit that model.

2. Extend your model to explore what happens when you try to extend the configuration of cubes from (1) to
extend through a region of space entirely surrounding that initial configuration, using either method (A)
or (B) from above. Does there seem to be a pattern which will extend indefinitely through space? Why
or why not? If so, what shapes are the other pockets in the resulting pattern, besides the intiial one you
chose? Submit the extended model.

3. Develop build instructions for your model and submit them.

Challenge problem

Prove that there is no non-convex polyhedral pocket formed by vertex-to-vertex cubes, in the manner described
in option I above. Warning: either this problem or option I is impossible, since they are direct logical negations
of each other.



