
Math 168 Weekly assignment #9

About Networks and Frameworks

Reminder: it does not suffice to simply provide answers, you need to justify/explain why your answers are cor-
rect. And do not forget your sources and acknowledgments.

Recall that a network is a set V of “vertices” together with a set E of two-element subset of V , called the “edges.”
In class we define (I will use present tense throughout, because whether it should be future or past tense de-
pends on when you are doing these problems) an edge-weighted network to be a network together with a function
l : E → R+, giving the “length” of each edge. If M is a metric space, then an M -framework (on a set of vertices
V ) is just a map p : V → M . The key definition: we say that an M -framework realizes an edge-weighted net-
work if for all {u, v} ∈ E, d(p(u), p(v)) = l({u, v}). We will really only use the two cases in which M is either the
Euclidean plane or Euclidean 3-space, in which case we just say refer to a “plane framework” or a “space frame-
work.” Important note: the “edges” of a Euclidean framework (i.e., the line segments connecting the images of
vertices that are connected by edges in the network) are allowed to intersect, or even completely overlap; a vertex
is allowed to lie on an edge it is not a part of, etc.

1. Choose any network you like that has at least one cycle containing four or more edges, and give an explicit
example of an edge-weighted network based on that network, and a space framework that realizes that
edge-weighted network.

An edge-weighted network is said to be globally M -rigid if for any two M -frameworks p(), q() realizing it, there
is a symmetry σ of M such that for all v ∈ V , σ(p(v)) = q(v). That turns out to be a very strong condition –
not many edge-weighted networks satisfy it. Hence, a more useful notion (because examples satisfying it come up
much more frequently) is the following: An M -framework p realizing an edge-weighted network N is said to be
locally rigid, or just rigid, if there is a a real number ε > 0 such that if q is any other framework realizing N such
that for all vertices v, d(p(v), q(v)) < ε, then there is a symmetry σ of M such that for all v ∈ V , σ(p(v)) = q(v).
The introduction of the parameter epsilon captures the fact that a framework will “hold its shape” if there are no
essentially different configurations “nearby” that framework.

2. Give an edge-weighted network with more than one edge which is both globally plane-rigid and globally space-
rigid.

3. Give a plane framework and associated edge-weighted network which is locally rigid but such that the edge-
weighted network is not globally plane-rigid. (Hint: the easiest example I can think of has exactly two re-
alizations, and consists of two parts, each globally rigid by itself, but which share one edge and so they can
fit together in two different ways. Remember to argue why the framework you designate is locally rigid.)

4. Give a space framework and associated edge-weighted network which is locally rigid, such that the edge-weighted
network is not globally space-rigid. (Hint: will basically the same trick, adapted to three dimensions, work?)

Once we have a plane or space framework, we can think about it moving around in space. A motion of a frame-
work is just an assignment of a direction (vector) m(v) to each vertex v of the underlying network. However,
some motions would tend to stretch or compress the edges. We’re interested in motions that don’t do this, at
least not initially. They are called “infinitesimal motions” of the framework. The details of this definition are mo-
tivated in class, but we need the dot product (also called the “inner product”) of two vectors. In two dimensions
this is (x, y) · (u, v) = xu + yv and in three it is (x, y, z) · (u, v, w) = xu + yv + zw. Then we say that a mo-
tion m of a framework is an infinitesimal motion for the underlying network if for all edges {u, v} in the network,
(p(u) − p(v)) · (m(u) − m(v)) = 0. However, some of the infinitesimal motions of a network are not interesting
because they come from a global infinitesimal motion of the entire space that always produces an infinitesimal
motion of every network. In class we show that the infinitesimal motions of a Euclidean space are the constant
motions, assigning the same vector to every point, and in the plane, infinitesimal rotations around a point (a, b)
given by g((x, y)) = (b − y, x − a), and in three dimensions, infinitesimal rotations around the line in direction d
through the point c, given by g(t) = (t − c) × d, where × is the usual “cross product” in three dimensions. If an
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infinitesimal motion m has the property that for all vertices u, m(u) = g(p(u)), then we say that m is a trivial
infinitesimal motion. Finally, we say that a framework is infinitesimally rigid if it has no non-trivial infinitesimal
motions. It has been proven that an infinitesimally rigid framework is rigid. On the other hand:

5. Show that the following plane framework is rigid, but not infinitesimally rigid. (Hint: since there are more
than two vertices, any motion in which the motion of only one vertex u is non-zero must be non-trivial (ex-
plain why). And then to check such a “singly supported” motion is an infinitesimal motion, you only need
to check the condition on the edges leaving that one vertex, which becomes (p(u) − p(v)) · m(u) = 0,
meaning that the direction of the motion of u is perpendicular to the direction of the edges connected to
u. And don’t forget to argue why the framework is actually rigid.) The underlying network has five ver-
tices {0, 1, 2, 3, 4}. The edges of the network are {{0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 4}, {3, 4}}. The edge
weighting is l({0, 1}) = 1,l({0, 2}) = l({0, 3}) =

√
2, l({1, 2}) = l({1, 3}) =

√
5, l({2, 4}) = l({3, 4}) = 1. And

finally, the position map of the framework is given by
vertex 0 1 2 3 4
position (0,1) (0,2) (-1,0) (1,0) (0,0)

.

6. Give an example of a space network that is rigid but not infinitesimally rigid. You don’t need to do a full-
blown detailed demonstration of both facts, but give intuitive arguments for both parts (why rigid, why not
infinitesimally rigid).

7. Let p be a plane framework with at least one edge, and pick any particular edge {u, v}. Show that p is in-
finitesimally rigid if and only if there is no non-zero infinitesimal motion m such that m(u) = m(v) = 0.
(Intuitively, this says that a plane framework is infinitesimally rigid if and only if it becomes completely
fixed if you “pin” two of its vertices connected by an edge.)

8. Intuitively, we can count the number of internal degrees of freedom of a framework by pinning two of its ver-
tices, and then counting the number of coordinates of the other m(w) values we have to specify before the
entire infinitesimal motion is uniquely determined. A plane framework with n vertices and no edges has
2n− 3 internal degrees of freedom, and typically each added edge reduces the number of degrees of freedom
by one, but it does not have to (intuitively, it might be “redundant” with other edges in determining the
configuration of the network). Formally, we can at least define “one internal degree of freedom”: say that
a plane framework has one internal degree of freedom if its network has an edge {u, v} , it has at least one
non-zero infinitesimal motion satisfying m(u) = m(v) = 0,(“{u, v} is pinned”) and if m1 and m2 are two
distinct non-zero infinitesimal motions satisfying this condition that {u, v} is pinned, then no non-zero co-
ordinates of m1(w) and m2(w) coincide for any vertex w of the network. Give an example of a plane frame-
work on five vertices with one internal degree of freedom, even though it has 7 edges. (That is interesting
because (10-3)-7=0, so at least one of the edges did not reduce the number of internal degrees of freedom.)
Can you describe why/how some edge or edges are redundant in determining the degrees of freedom?

We’d like to make the intuitive ideas of the previous example more definite. To do so, we need some basics of
linear algebra. A real vector space is a commutative group V of “vectors,” the binary operation and identity of
which are written “+” and “0,” respectively, together with a map from R\{0} to automorphisms (= symmetries)
of V ; we write just rv for the automorphism corresponding to r applied to the vector v. We extend this oper-
ation to all of R by setting 0v = 0 (where the left-hand 0 is a real number, and the right-hand 0 is the iden-
tity vector), and call that operation “scalar multiplication.” Further, these operations must satisfy two axioms:
r(sv) = (rs)v and (r + s)v = rv + sv, where r and s are real numbers and v is any vector.

9. Explain why, based on the above definition, in any vector space if v and w are vectors, and r is a real number,
then r(v + w) = rv + rw.

In any vector space, take any set of vectors S. The span of S is the set of vectors you can produce by finite lin-
ear combinations from S, namely {r1v1 + · · · + rnvn| r1, . . . , rn ∈ R, v1, . . . , vn ∈ S}. (The numbers r1, . . . , rn
are called the coefficients of the linear combination.) The set S is called (linearly) dependent if there is a finite
linear combination with coefficients not all equal to 0, such that this finite linear combination is the 0 vector, and
(linearly) independent otherwise. We show in class that if S is linearly independent, then every vector in span(S)
has a unique representation as a finite linear combination from S. If span(S) is the entire vector space, then we
say that S is a basis for the vector space.
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10. Show that if a vector space has a finite basis, then every basis for that vector space has the same number of
elements. (We call this number the “dimension” of the vector space.)

11. If a subset of a vector space is closed under vector addition and scalar multiplication, then it becomes a vec-
tor space in its own right, and is called a vector subspace. Show that a vector subspace of a finite-dimensional
vector space is also finite dimensional, with dimension less than or equal to the dimension of the original
space.

If we pick a basis {v1, . . . , vn} for a finite-dimensional vector space, then the coefficients r1, . . . , rn of the unique
linear combination r1v1 + · · · + rnvn = v are called the coordinates of v for that basis. For any n, Rn is a vector
space: we add elements (vectors) componentwise, and perform scalar multiplication by multiplying every compo-
nent by the scalar. It has a “canonical” basis, namely (1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1, 0), (0, . . . , 0, 0, 1).
With this basis, the coordinates of a vector are just its components. Finally, any vector space of dimension n is
isomorphic to Rn by choosing a basis and then mapping a vector to its vector of coordinates for that basis.

12. Show that the map described just above really is an isomorphism; in other words, show that it is bijective
and preserves vector sums and scalar products.

In general, a structure-preserving map of vector spaces (that preserves vector addition and scalar multiplication)
is called a linear map. Given a basis for each of the source and target vector spaces, say of dimension n and m,
respectively, such a map can always be represented by a matrix with m rows and n columns: the first column
consists of the coordinates of the image of the first basis vector of the source, the second column consists of the
coordinates of the image of the second basis vector, and so on. You can then calculate the value of the map on
any vector by writing the coefficients of that vector in a column, and performing ordinary multiplication of the
matrix by the column vector, to yield the coefficients of the image of the original vector. Let V and W be finite-
dimensional vector spaces, and l : V → W a linear map. Note that if l(v) = 0 and l(u) = 0, then l(u+ v) = 0 and
for any real r, l(rv) = 0. So the collection of vectors which map to 0 is a vector subspace of V , called the kernel
of l, which by problem 11 has a dimension less than or equal to that of V . Conversely, if w and t are two vectors
in the image of l,then t + w and rw are both in the image of l, so the image is a vector subspace of W . The di-
mension of the image is called the rank of l, and a key fact from linear algebra (the “rank-nullity law”) that we
need to use is that the dimension of the kernel of l plus the rank of l is always equal to the dimension of V . If M
is a matrix, then it represents a linear map, and we also call the rank of this linear map the rank of M.

The big payoff here is that there is a linear map R called the rigidity map from the vector space of all motions
of a framework to Re where e is the number of edges of the underlying network, such that the infinitesimal mo-
tions of the framework are exactly the kernel of R. The map is directly related to the condition (p(u) − p(v)) ·
(m(u) − m(v)) = 0 to be an infinitesimal motion. The matrix for R is very easy to write down. It has 2n or 3n
columns (depending on whether this is a plane or a space framework) and e rows. The first two or three columns
correspond to coordinates of the first vertex of the network, the next two or three to coordinates of the second
vertex, and so on. The ith row pertains just to the ith edge. And if the ith edge is {vj , vk},then the ith row con-
sists of all 0s except that in the columns for the jth vertex, you put the coordinates of p(vj) − p(vk) and in the
columns of the kth vertex, you put the coordinates of p(vk) − p(vj). Now you can investigate this matrix with
any linear algebra software. For example, you can compute its rank, and then use the rank-nullity law mentioned
above to determine the dimension of the kernel of R, from which you can immediately read off whether it is in-
finitesimally rigid (recall that the dimension of the trivial infinitesimal motions of the plane is 3, and of space is
6). Free packages you might use to do the rank computation include, but are not limited to, R (http://www.r-
project.org/), Octave (http://www.gnu.org/software/octave/), Euler (http://euler.rene-grothmann.de/), Maxima
(http://maxima.sourceforge.net/), and Sage (http://www.sagemath.org/).

13. Consider the following modified framework from problem 5. Compute the rank of its rigidity map. Is this
framework rigid? The underlying network is the same as in problem 5, but the edge-weighting is slightly
different: l({0, 1}) = 1,l({0, 2}) = l({0, 3}) =

√
2, l({1, 2}) = l({1, 3}) =

√
5, l({2, 4}) = l({3, 4}) =

√
2. And

finally, the position map of the framework is given by
vertex 0 1 2 3 4
position (0,1) (0,2) (-1,0) (1,0) (0,-1)

.

What’s interesting about edges {2, 4} and {3, 4} in the underlying network, particularly in light of your
conclusions about rigidity?
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14. Consider the following space framework. Compute the dimension of the kernel of its rigidity map, and hence
its internal number of degrees of infinitesimal freedom (which by the above is just the dimension of the ker-
nel minus six). Do you think this framework is rigid?
The underlying network has five vertices {0, 1, 2, 3, 4}. The edges of the network are
{{0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}. The edge weighting is
l({0, 1}) = l({0, 2}) = l({0, 3}) = l({1, 2}) = l({1, 3}) = l({2, 3}) = 1, l({1, 4}) = l({2, 4}) = l({3, 4}) =
1/
√
3.

And finally, the position map of the framework is given by
vertex 0 1 2 3 4
position (0, 0,

√
2/3) (1/

√
3, 0, 0) (−1/

√
12, 1/2, 0) (−1/

√
12,−1/2, 0) (0, 0, 0)

.

15. What software package did you use to compute the ranks/dimensions in problems 13 and 14? Had you used
the package prior to this course? Was it easy/hard to use? (Give some detail about your experience with
the package.)
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