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Abstract

For duration data two fundamental features are censoring and time-varying regressors. The

popular Cox proportional hazards model and other conventional duration models are highly

restrictive in modelling how regressors affect the conditional duration distribution. Endogeneity

such as selective compliance is also common in duration data, which cannot be accommodated

by the Cox model and the associated partial likelihood approach. In this paper, we develop a

quantile regression framework that allows for censoring, time-varying regressors and endogeneity,

and we propose an easy-to-implement two-step quantile regression estimator. We present large

sample results. Monte Carlo experiments indicate that our estimator performs well in finite

samples.

1 Introduction

For duration data two fundamental features are censoring and time-varying regressors. Censoring

occurs when not all spells are completed at the time of observation or follow-up; for example unem-

ployment spells are often censored at 26 weeks when unemployment benefits run out. Time-varying

regressors are very common in duration data and many important economic variables such as the

nature of policy intervention, weekly unemployment benefit levels and local unemployment rates,

among others, may change over time. In addition, endogeneity is also prevalent in duration analy-

sis; for job training programs aimed at reducing unemployment duration, the treatment variable is

likely to be endogenous due to, for example, selective compliance. In the context of time-invariant

regressors, Powell (1991), Koenker and Geling (2001) and Fitzenberger and Wilke (2005), among

others, argued that quantile regression model (QR), which is particularly well-equipped to deal

with censoring, provides a flexible and yet comprehensive semiparametric approach to modeling

the entire conditional duration distribution, with different regions of the conditional duration dis-

tribution characterized by different quantile regression coefficients; in particular, short-term and

long-term unemployment phenomena can be modelled by lower and upper quantile regressions sep-

arately, without being unduly influenced by global features of the model specification. As a result,
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the quantile regression framework allows researchers to fit parsimonious models to an entire con-

ditional distribution. In the existing literature, however, there is no effective method to conduct

quantile regression analysis in the presence of censoring, time-varying regressors, and endogeneity.

Our paper fills this important gap.

In economic duration analysis, conventional methods, both parametric and semiparametric,

while being able to accommodate a broader class of covariates, typically impose stringent conditions

on how the covariates are permitted to influence the conditional duration distribution. Consider, for

example, the Cox proportional hazards model. By focusing on the conditional hazard function, the

Cox proportional hazards model offers a natural way to deal with both censoring and time-varying

regressors. Specifically, the Cox model specifies the conditional hazard function as

(|) = () exp(0 ())

where  () denotes the baseline hazard function and  () includes both time-invariant or time-

varying regressors. Accordingly, the well known Cox partial likelihood estimation approach, which

involves a concave maximization problem, offers a straightforward and reliable estimation and

inference mechanism for the regression coefficients and baseline hazard. In particular, censoring does

not lead to much complication for the partial likelihood method. However, the Cox proportional

hazards model suffers from some serious drawbacks.

As pointed out by Koenker and Geling (1994) and Koenker and Balias (2001), the proportional

hazards model imposes rather drastic constraints on the way that covariates are permitted to

influence the duration distribution. For example, for the case with time-invariant regressors, the

implied conditional duration quantile function takes the form

 ( |) = −10
³
(1− )1()

´
where () = −

0 and 0() denotes the baseline survival function. Consequently, the marginal

quantile effects are of the form

 ( |)


= ( )

where ( ) =
(1−) log(1−)()

00( ( |)) . So in the proportional hazards model the quantile marginal ef-

fects of the various covariates, viewed as functions of  , are all identical up to the scalar factors

determined by the components of the same global vector, . In particular, the implicit quantile

treatment effects for the Cox model must have the same sign as  for all  , which effectively rules

out any form of quantile treatment effect that would lead to crossings of survival functions for

different settings of the covariates. Furthermore, the ratio of the quantile marginal effects for two

different components remain constant for all  as
 ( |)



 ( |)


=  , which is highly implau-

sible in typical empirical settings. Furthermore, these restrictive features of the Cox proportional

hazards model carry over to mixed proportional hazards model (MPH) and other common duration

models.
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The Cox proportional hazards model also suffers from another serious drawback; the partial

likelihood approach does not allow the presence of endogeneity1. Endogeneity arises frequently in

duration analysis. For example, a randomized experiment may suffer from selective compliance,

which is likely to be correlated with outcome variables and thus gives rise to endogeneity. For the

Illinois unemployment bonus experiment, which has been studied by Woodbury and Spiegelman

(1987), Meyer (1996), Bijwaard and Ridder (2005), about 15% of the claimant bonus and 35% of

the employer bonus group refused participation. Bijwaard and Ridder (2005) noted that there is

evidence of selective compliance and endogeneity.

The censored quantile regression framework proposed in this paper overcomes the shortcomings

associated with the Cox proportional hazards model in particular, and other conventional duration

models in general. Rather than making global assumptions about how covariates influence different

regions of conditional duration distribution, quantile regression allows us to focus on the estimation

of particular local features of the conditional duration distribution. Thus we may explore the effect

of covariates on just the upper or lower tails, or the middle regions, of the conditional distribution

without being distorted by modeling assumptions about the rest of the conditional distribution.

For example, in the analysis of unemployment duration, comparison of the quantile regressions

for lower and upper tails of the duration distribution provides important insights on how different

determinants affect short or long-term unemployment. Quantile regression constitutes a natural

and flexible framework for the analysis of duration data.

For the case with time-invariant regressors, censored quantile regression with endogeneity has

been a very active area of research. Blundell and Powell (2007) and Chernozhukov et. al (2015)

proposed two-step control function based estimators. The control function-based approach, how-

ever, requires fully parametric specification of the joint distribution the endogenous variables and

the outcome duration variable, and thus impose very strong structural restrictions on the under-

lying model.2 Typically, the econometrician does not have a good understanding of the nature

of endogeneity to propose a reasonably accurate model. As a result, the control function based

approach is likely to lead to inconsistent estimates and misleading inference when the exact nature

of endogeneity is misspecified. Furthermore, the control function approach requires the endogenous

variables to be continuously distributed, thus ruling out censored and discrete endogenous vari-

ables. Indeed, the control function approach is not applicable to most program evaluation studies

where the leading case typically involves binary, or multi-valued but discrete, endogenous treatment

variables. In addition, it is not clear how to extend the control function based approach to the case

with time-varying regressors. On the other hand, Hong and Tamer (2003) and Khan and Tamer

(2010) considered moment inequalities based approaches. However, their estimation methods and

1While it is possible to accommodate some continuous endogenous variable through a control function approach
in the context of the mixed proportional hazard model, it requires complete parametric specification for the joint
generating process for the endogenous variable and the outcome variable; in addition, the control function approach
does not apply to discrete endogenous variable such as the binary treatment variable. Furthermore, it is not clear
how to accommodate time-varying regressors for the control function approach.

2As it was pointed out by Honoré and Hu (2004) that in a linear model, a reduced form in the first stage can
be thought of as a linear projection, and as such it is essentially always well-defined and consistently estimated by
the OLS estimator. This is not the case in a nonlinear model where it is typically assumed that the first stage is a
conditional expectation and that the error is independent of the instruments. Other control function based approaches
also require similar strong restrictions.
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related inference procedures are quite complicated and difficult to implement. Furthermore, it is

also difficult to incorporate time-varying regressors in constructing unconditional moment inequal-

ities. More recently, Chen (2018) proposed a sequential instrumental variable censored quantile

regression estimation procedure for the structural quantile regression. Chen’s (2018) approach,

however, only deals with the time-invariant regressors.

When all the regressors are exogenous, by combining the insights behind the standard quantile

regression techniques (Koenker and Bassett, 1978) and the accelerated life time (AFT) model

with time-varying regressors (Cox and Oaks, 1984), recently Chen (2019) proposed a quantile

regression framework that accommodates time-varying regressors in a natural way. Chen (2019)

further proposed a censored quantile regression estimator with time-varying regressors. Unlike the

standard QR problem, which can be implemented through efficient linear programming, Chen’s

(2019) estimator, however, involves nonconvex and nonlinear optimization, which can be difficult

to implement. In addition, Chen (2019) only considered the case where all regressors are exogenous.

In this paper, we develop a quantile regression framework that can accommodate censoring,

time-varying regressors and endogeneity and further propose a quantile regressor estimator3. When

all regressors are exogenous, our model reduces to the Cox-Oaks AFT model when all the quantile

coefficients are parallel, and reduces the Koenker-Bassett QR model when all the regressors are

time-invariant. When endogenous regressors are also present, our model reduces to the AFT model

with endogeneity of Bijwarrd and Ridder (2005) when the structural quantile coefficients are all

parallel. On the other hand, our model reduces to the structural quantile regression model of

Chernozhukov and Hansen (2006, 2008) when all regressors are time-invariant.

An important insight behind our estimation method is the recognition that an appropriate

transformation of the duration time leads to a linear quantile regression framework in terms of the

time-invariant regressors, whose quantile coefficients can thus be estimated by the standard QR.

Consequently, we propose a two-step method by profiling over the quantile regression coefficients

for the time-varying regressors; the computational burden of our estimator essentially depends on

the dimension of the endogenous variables and time-varying regressors. In addition, we deal with

the complication caused by censoring based on the insight behind the sequential quantile regression

approach by Chen (2018). In typical empirical settings, our estimators are easy to implement.

The paper is organized as follows. In Section 2 we discuss the model and our two-step censored

quantile estimator with exogenous time-varying regressors. In Section 3 we extend the model and

our estimator to allow for endogeneity. Section 4 contains some simulation results. Section 5

concludes. All the proofs are in the appendix.

3Bijwaard and Ridder (2005) proposed a two-stage estimator in a generalized AFT setting. However, their ap-
proach requires full compliance for the control group; in addition, like the Cox proportional hazards model, their
model is also very restrictive in how covariates are permitted to influence the duration distribution. It is interest-
ing to note that even though Bijwaard and Ridder (2005) does not consider a quantile regression framework, they
nevertheless interpret their regression coefficients estimates in terms of the covariate effects on the quantiles of the
distribution of the transformed duration relative to the reference individual.
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2 Censored Quantile Regression with Time-Varying Regressors

To fix ideas, we consider the following model

Z ∗

0

exp(− 0() ()) = 1 (2.1)

where  ∗ is the duration time, ()0 () =  0
1()1() +  0

22(),  has a uniform (0 1)

distribution,  = (12) with two types of regressors 1 and 2, where 1 = {1 () ,   0} is
1-dimensional time-varying regressors and 2 denotes a 2-dimensional time-invariant regressors,

respectively. The above model corresponds to the following quantile representation

Z ∗( |)

0

exp(− 0()()) = 1 (2.2)

where ∗( |) denotes the th conditional quantile function of  ∗ conditional on .

When  () = ( ()  ̃), model (2.1) reduces to the AFT model with time-varying regressors

of Cox-Oaks (1984), Z ∗

0

exp(−̃ 0()̃ − ()) = 1 (2.3)

where with () = (1 ̃ 0())0. The corresponding conditional quantile function satisfies

Z ∗( |)

0

exp(−̃ 0()̃ − ()) = 1; (2.4)

in other words, in the Cox-Oaks AFT model all the quantile coefficients are identical other than

a pure location shift, which is highly restrictive in allowing how covariates affect the conditional

duration distribution.

When all the regressors are time-invariant, on the other hand, model (2.1) reduces to the

standard QR model, Z ∗

0

exp(− 0 ()) = 1 (2.5)

or equivalently,

ln ∗ =  0 () 

In particular, the conditional quantile function satisfies

Z ∗( |)

0

exp(− 0 ()) = 1 (2.6)

or equivalently,

ln∗( |) =  0 () 
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The Cox-Oaks AFT model provides a natural mechanism to accommodate time-varying re-

gressors, whereas the standard QR model (Koenker and Bassett, 1978) provides a flexible and

yet comprehensive approach to modelling the conditional duration distribution. By combining the

attractive features of these two models, our model (2.1) and (2.2) offers a natural framework to

conduct quantile regression for duration data with time-varying regressors

To gain some further insight into the model (2.1). First consider the standard AFT model with

time-invariant regressors:

ln ∗ =  0 − 

in which case the conditional survival function satisfies

(|) = Pr( ∗  | = ) = 
¡
 exp(0)

¢


Consider some reference point 0 and note that

(|) = 
¡
 exp(0)

¢
= ( exp((− 0)

0)|0)

Therefore, the duration times corresponding to  and 0 differ by an accelerating factor exp((−
0)

0) for the standard AFT model with time-invariant regressors.

Within the framework of the Cox-Oaks AFT model with time-varying regressors (2.3-2.4), we

now consider the impact of sustained exposure to different air qualities or other environmental

hazards on life expectancy. Recently there have been several influential studies on the impact of

sustained exposure to air pollution on life expectancy in China. Several decades of rapid economic

growth has also brought widespread deterioration of air quality and general environment in China.

For example, Ebenstein et al. (2015) suggests that China’s modest growth in life-expectancy for

the period 1991-2012 is mainly due to the country’s severe problems with air pollution; even though

China’s income growth has improved health outcomes, but failed to do so for pollution-sensitive

causes of death. In China, some of the most polluted cities are located in the north, especially

in regions surrounding Beijing, and the cities in the south are generally less polluted, with those

on the Hainan Island having some of the best air quality. Consider a representative individual

who has lived in Beijing, Shanghai, and Sanya (a city in Hainan), with air qualities represented

by  ,  and  respectively. Suppose the life expectancy for this individual follows (2.3-2.4)

with a common slope coefficient , and further assume that the corresponding relative accelerating

factors satisfy
exp()

exp()
= 1

09
and

exp()

exp()
= 1

08
; in other words, if this person were to live to

80 years in Beijing, she could have lived to 90 years in Shanghai or 100 years in Sanya. On the

other hand, if this person lives to 90 years, with 30 years in each of these three cities, then she

would have lived to 30 + 30 ∗ 8
9
+ 30 ∗ 8

10
= 8067 years in Beijing, 30 ∗ 9

8
+ 30 + 30 ∗ 9

10
= 9075 in

Shanghai or 30 ∗ 10
8
+ 30 ∗ 10

9
+ 30 = 10083 years in Sanya if she were to live in one of these cities

exclusively. Therefore, one major drawback of model (2.3-2.4) is that the model implies a uniform

accelerating factor, ruling out the fact that individual with different health conditions would have

experienced differently. Indeed, people more sensitive to air quality are much more likely to be
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affected adversely by poor air quality. But the Cox-Oaks AFT model cannot handle this type of

heterogeneity.

On the other hand, the quantile regression model with time-varying regressor (2.1-2.2) provides

a natural framework to accommodate various types of heterogeneity. Let  denote the unobservable

measure of an individual’s general health condition normalized to uniform distribution (0 1) in the

population and let  () denote the th quantile coefficients for individuals with health condition

at the th quantile in the general population. Then for any given , the corresponding accelerating

factors would be

 =
exp(0())
exp(0())

,  =
exp(0())
exp(0())

and  =
exp(0())
exp(0())

between Beijing and Shanghai, Beijing and Sanya, and Shanghai and Sanya respectively, and the

above three terms can be thought of relative quantile accelerating factors, which can be different

for people with different health condition. Clearly, one major advantage of the quantile regression

model (2.1-2.2) allows for different  () for different , and indeed,  () is expected to decrease

as  increases if poor air quality affects those with poor health disproportionately. More generally,

consider an individual with health condition  and exposed to air quality  () at time ; suppose

her life span is ( ) and has lived in a city during the period [ +1) with air quality  (),

where 0 = 0  1  2   = ( ). Now consider the counterfactual question: how long

would be this person’s life expectancy if she were to live in a city entirely with air quality 0?

We answer this question from two angles. According to the Koenker and Bassett (1978) quantile

regression framework, this person would have her lifespan equal to exp(00 ()); on the other hand,
based on the relative accelerating factors for individual with health condition , the answer would

be
X
=0

∆
exp(00 ())
exp(0() ())

where ∆ = +1 − , with  = ( ). Taking limits yields

lim
∆→0

X
=0

∆
exp(00 ())
exp(0() ())

=

Z ()

0

exp(00 ())
exp(0() ())



By equating the two answers, we obtain

Z ()

0

exp(00 ())
exp(0() ())

 = exp(00 ())

and eliminating the common factor exp(00 ()) yields model (2.1-2.2).

We now provide some additional remarks on model (2.1-2.2).

Remark 1: Marginal effects play a fundamental role in understanding an econometric model.

Chen (2019) has shown that for a small policy change of ∆ for the th policy variable during the
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time period [0 1], the corresponding marginal effect takes the form

 = ( 0 1)× exp(0(∗))× ()

where ∗ = ∗( |),

( 0 1) =

Z ∗( |)

0

exp(0() ())1 {1    0})

Here the magnitude of the proportionality factor ( 0 1) depends on the duration of the policy

change. For the special case of a permanent policy change, namely, 0 = 0 and 1 = ∞, then
( 0 1) = 1, which implies

 = exp(
0(∗))× ()

which is clearly a natural extension of the case with time-invariant regressors. On the other hand,

when the policy change that lasts a short time period, namely, [0 1] is a small time interval,

then ( 0 1) takes a small value and consequently the impact of a short-term policy change is

minimal.

Remark 2: In quantile regression models, an important property is quantile monotonicity (no

crossing). For the quantile regression with time-invariant regressors, quantile monotonicity requires

that

0 (2)  0 (1) for 2  1 (2.7)

For the quantile regression model with time-varying regressors (2.1-2.2), it is straightforward to

demonstrate that quantile monotonicity would require

Z 

0

exp(−0()(1)) 
Z 

0

exp(−0()(2)) for any  (2.8)

which is similar to the first order stochastic dominance condition, or equivalently,

1



Z 

0

exp(−0()(1))  1



Z 

0

exp(−0()(2)) for any 

which suggests that condition (2.8) holds in an average sense. Note that a sufficient condition for

(2.8) is that

0() (2)  0() (1) for 2  1 and any 

We now turn to the estimation of the quantile regression model (2.1-2.2). In duration models,

censoring is a common phenomenon, where the duration time  ∗ is subject to censoring. We

consider the fixed censoring case when we observe  = min{  ∗}, and for simplicity we assume
that  is a known constant. Extensions to the random censoring case is straightforward. For a
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random sample { },  = 1 2   , Chen (2019) recently proposed an integrated maximum

score estimator, a special case of which solves

min
1



X
=1

 (ln −min{ln ( ) ln}) (2.9)

where  () = ( − 1 {  0}),  ( ) satisfiesZ  ()

0

exp(−01()1 − 022) = 1 (2.10)

and in particular

 (  ()) = ∗( |).

One major drawback, however, associated with Chen’s (2018) estimator is that it requires solving

a nonlinear nonconvex minimization problem, which can be very demanding computationally. In

this paper, we propose a computationally attractive alternative. In particular, the computational

difficulty of our new estimator essentially depends on the dimension of the time-varying regressors.

To motivate our new approach, define the following transformation of the duration time

 ∗1 (1) =
Z ∗

0

exp(−01()1) (2.11)

With some algebra we can show that

ln∗1 (1())( |) =  0
22 () (2.12)

In other words, if 1 () were known and there is no censoring, then 2 () can be estimated by

standard quantile regression of ln ∗1 (1 ()) on 2.

(2.11) and (2.12) suggest the following two-step method when there is no censoring. In the first

step, for any given 1, let ̂2 (1) be a solution to the minimization problem

min
2

X
=1

 (ln
∗
1(1)− 0

22)

Then in the second step, 1 () can be estimated by ̂1 , which solves

min
1

1



X
=1

 (ln
∗
 − ln ( 1 ̂2 (1)))

and then we estimate  () by ̂() = ( ̂1  ̂2 ), where ̂2 = ̂2

³
̂1

´
.

To extend the above two-step method to the censored case, we exploit the equivariance property

of the conditional quantile function under monotone transformation. Specifically, we have

9



ln1(1())( |) = min
©
1(1 ())

0
22 ()

ª
(2.13)

and

ln ( |) = min {ln (1 1 ()) ln}  (2.14)

where

1(1) = min { ∗1 (1) 1(1)} =
Z 

0

exp(− 0
1()1)

with

1(1) =

Z 

0

exp(− 0
1()1)

To deal with the problem caused by censoring, we define the subsample selector ( ()) =

1 { ( ())  }, and note that ( ()) = 1 if and only if

ln

Z 

0

exp(− 0
1()1())   0

22()

or equivalently, Z 

0

exp(− 0
1()1()− 0

22())  1

Therefore, when ( ()) = 1, we have

ln1(1 )( |) = ln∗1(1 )( |) =  0
22()

and

ln( |) = ln∗ ( |) = ln ( ())

Consequently, we can design an infeasible two-step estimation procedure based on the subsample

for which  = (  ()) = 1. In the first step, for any given 1, let ̂2 (1) be a solution to the

minimization problem

min
2

1



X
=1

 (ln1(1)− 0
22)

and then in the second step, we estimate 1 () by ̂1 , which solves

min
1

1



X
=1

 (ln − ln ( 1 ̂2 (1)))

and we estimate  () by ̂() = ( ̂1  ̂2 ), where ̂2 = ̂2

³
̂1

´
. However, this procedure is

clearly not feasible as the subsample selector itself depends on the unknown parameters.
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Based on the insights behind the above two-step method and sequential estimation method

for censored quantile regression of Chen (2018), we are now ready to develop a feasible, easy-to-

implement estimation procedure for the entire family of quantile regression coefficients for censored

duration data with time-varying regressors. First, define a grid of  -values,  = {0  1  · · · 
 = } and we set 0 = 001 and  is set to be highest quantile for which there is adequate

sample information for reasonably precise estimation of the corresponding quantile coefficients.

Note that when data are censored from below, the amount of information at the top of the

conditional duration distribution or at the right tail, is reduced; however, in a typical setting the

information at the left tail is not affected. Therefore, if we pick a bottom quantile 0 = 001,

typically it is reasonable to assume that censoring does not affect the 001th quantile regression.

This assumption is satisfied if censoring level does not exceed 99% for any demographic group; of

course, if necessary, we can restrict quantile regression estimation by removing demographic groups

for which censoring level exceeds 99%.

We now describe the details of our sequential estimation procedure. For  = 0, for any given

1, let ̂20 (1) be a solution to the minimization problem

min
2

X
=1

0(ln1(1)− 0
22)

then in the second step, we estimate 1 (0) by ̂10 = ̂10 , which solves

min
1

1



X
=1

0(ln − ln ( 1 ̂20 (1)))

and we estimate  (0) by ̂(0) = ( ̂10  ̂20), where ̂20 = ̂20

³
̂10

´
.

Once ̂ (0) is available, we turn to the estimation of  (1), and in particular we make use of

̂ (0) to construct the subsample for the 1th quantile regression as  () changes gradually with

 , and thus  (1) ≈  (0) when 0 and 1 are close to each other. Specifically, define

̂1 = 1
n
ln1(̂10)− 0

2̂20  

o
= 1

½
ln

Z 

0

exp(− 0
1()̂10 − 0

2̂20)  

¾


where  is chosen to go to zero slowly as  increases. In particular, when the sample size increases,

with large probability,
n
ln1(̂10)− 0

2̂20  

o
implies

©
ln1(11)− 0

221  0
ª
when

1 − 0 =  (). Once we have selected the subsample with ̂1 = 1, for any given 1, we define

̂2 (1) as a solution to

min
2

X
=1

̂11(ln1(1)− 0
22)

11



and then we proceed to estimate 1 (1) by ̂11 , which solves

min
1

1



X
=1

̂11(ln − ln ( 1 ̂21 (1)))

and we estimate  () by ̂() = ( ̂11  ̂21), where ̂21 = ̂21

³
̂11

´
.

As part of our sequential estimation procedure, for  = 1   − 1, given ̂( ), we define

̂+1 = 1
n
ln1(̂1 )− 0

2̂2  

o
and we can estimate  ( +1) using the above two-step method based on the subsample with

̂+1 = 1. Finally, once we have obtained estimates for quantile regression coefficients on the grid,

then for any  ∈ (    +1), for  = 1  , we can estimate  () with the two-step method based

on the subsample with ̂ = 1 where ̂ = 1
n
ln1(̂1 )− 0

2̂2  

o
.

We now describe the large sample properties of our estimator. We make the following assump-

tions.

Assumption 1: { ∗ ,,:  = 1 2 } is a random sample generated from model (2.1) where

 ∼ (0 1), independent of .

Assumption 2: The duration time  ∗ is continuously distributed with its conditional density func-
tion ∗(·|) uniformly bounded away from 0 in the neighborhood of ∗( | = ), uniform in

 ∈ [0 ]. In addition,  ∗2 ∞ and  sup |(· )|2 ∞.

Assumption 3: The parameter space  ∈ , with  = 1 + 2, is a compact set with  =  ()

an interior point for  ∈ [0 ].
Assumption 4: For any  ∈ , there exist 1 2  0 such that

2 k− k ≥ k (· 1)−  (·  )k ≥ 1 k− k

for any  ∈ [0 ], where

k (· )−  (·  )k =
³
 [ ( )−  (  )]

2 1 { (  )   − 0}
´12

for some 0  0.

Assumption 5:  () is Lipschitz in  ∈ [0 ], with | ( 0) −  ( 00) |   | 0 −  00| for some
constant .

Assumption 6:  →∞,  = (12) and  →∞ as →∞.
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Assumption 7: For  ∈ [0 ], the matrices

Ω = 

∙
∗( ( ())|) ln ( ())



 ln ( ())

0
1 { ( ())  }

¸
are uniformly positive definite in that

inf
∈[0]

mineig [Ω ] ≥ 0  0

for a positive constant 0, where mineig(·) denotes the minimum eigenvalue of a matrix, and

lim
→0

sup
∈[0]

Pr (| ( ())− |  )→ 0

Assumption 1 describes the data generating mechanism. Assumption 2 contains the continuity

assumption on the conditional distribution of  ∗ on , and bounded second moments. Assumption
3 is a standard assumption in the literature. Assumption 4 is a global identification condition,

which rules out the possibility that k (· )−  (· )k→ 0 but k − k ≥ 0 for some positive 0.

Assumption 5 implies that the conditional quantile coefficients evolve slowly, which is a reasonable

assumption when the conditional distribution of  ∗ given  changes continuously; as a result, the

quantile regression coefficients change gradually across the entire quantile family. Assumption 6

requires that the sequence  goes to zero slowly whereas the number of grid points increases to

infinity but at a faster rate than 1. Assumption 7 is a local identification condition, similar

to that in Powell (1984, 1986, 1991), except that it is a uniform version over the quantile range

[0 ]. From Assumption 7, we can easily deduce that there exists some 0  0 such that

mineig

∙
∗( ( ())|) ln ( ())



 ln ( ())

0
1 { ( ())   − 0}

¸
≥ 02

uniformly in  . The following theorem provides the uniform rate of convergence of our estimator

over the grid.

Theorem 1: If Assumptions 1-7 hold, then

max
=12

|̂( )−  ( ) | = 
³
−12 ln ln

´
almost surely.

Theorem 2: If Assumptions 1-7 hold, then

max
∈[ ]

|̂()−  () | = 
³
−12 ln ln

´
almost surely and

√

³
̂ ()−  ()

´
=

1√


X
=1

 +  (1)
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uniformly in  ∈ [0 ], where  is defined in the appendix, and
√

³
̂(·)−  (·)

´
converges to

a mean zero Gaussian process  (·) for  ∈ [0 ] with covariance function

()( 0)0 = 
£


0


¤


In order to conduct large sample statistical inference, it is important to have consistent esti-

mators for the asymptotic covariance matrices. Given the complex nature of our estimators and

the fact that nonparametric kernel estimation is typically required in a quantile regression setting

Here we adopt resampling methods. Similar to Chen et al. (2003), Chernozhukov et al (2015) and

Chen (2018), we consider the multiplier bootstrap. Specifically, let {}1 be i.i.d. draws of positive
random variables with  =Var() = 1, independent of the data. For a fixed  , define

̂ = 1

½
ln

Z 

0

exp(− 0
1()̂1()− 0

2̂2())  

¾
where ̂() is our estimator for  () based on a given sample, which is fixed in the resampling

process. We also follow the two-step approach in the resampling stage. For a given 1, ̂
∗
2 (1)

solves

min
2

X
=1

̂ (ln1(1)− 0
22)

then we define ̂
∗
1 as a solution to the following minimization problem,

min
1

1



X
=1

̂ (ln − ln ( 1 ̂
∗
2 (1)))

and define ̂
∗
2 = ̂∗2

³
̂
∗
1

´
.

Note that we define the subsample selection indicator in terms of the estimator ̂ () for the orig-

inal data, thus fixed in the resampling process. Therefore, estimation in the resampling stage does

not involve a sequential process. We will show that the asymptotic distribution of
√

³
̂ (·)−  (·)

´
can be approximated by the limiting distribution of

√

³
̂
∗
(·)− ̂ (·)

´
. We make the following

additional assumption.

Assumption 8: The weights {}1 are i.i.d. draws from a positive random variable  with

 =Var() = 1 and it possesses 2 + 0 moment for some 0  0 that lives in a probability space

(Ω  ), independent of the data { ∗ } 

Theorem 3: If Assumptions 1-8 hold, then conditional on the data,
√

³
̂
∗
(·)− ̂ (·)

´
converges

to a mean zero Gaussian process  (·) for  ∈ [0 ] with covariance function

()( 0)0 = 
£


0


¤
14



Following the practice in the resampling literature, the distribution of
√

³
̂
∗
(·)− ̂ (·)

´
con-

ditional on the data can be approximated through numerical simulation. For = 1 2  , define

̂
∗
1 as the solution to

min
1

1



X
=1

̂ (ln − ln ( 1 ̂
∗
2 (1)))

where ̂∗2 (1) solves

min
2

X
=1

̂ (ln1(1)− 0
22)

and we define ̂
∗
2 = ̂∗2

³
̂
∗
1

´
, where (1 2 ) forms a random sample of size  for

the th replication, drawn from a distribution satisfying Assumption 8, independent of the data.

Then the conditional distribution of
√

³
̂
∗
(·)− ̂ (·)

´
can be approximated by the the empirical

distribution of
√

³
̂
∗
 (·)− ̂ (·)

´
for a large  .

3 Instrumental Variables Censored Quantile Regression with Time-

Varying Regressors

In this section we extend the quantile regression model in the previous section by allowing for

endogenous regressors. For simplicity we focus on the case with a single binary endogenous regres-

sor  (·) with an instrument , which can easily be extended to the general case with multiple
endogenous regressors, as in Chen (2018). The data is generated from the model

Z ∗

0

exp(−()()− 0
1()1()− 0

22()) = 1 (3.1)

where  ∗ is the duration time, 1 and 2 are 1 and 2 dimensional time-varying and time-

invariant exogenous regressors,  has a uniform (0 1) distribution, independent of () 

Note our model reduces to the structural quantile regression model of Chernozhukov and Hansen

(2006, 2008) when all regressors are time-invariant. Following Chernozhukov and Hansen (2006,

2008), we consider the potential outcome framework such that conditional on  = , the potential

outcome satisfies  ∗ = ( ), where  represents ranking of the unobserved individual char-

acteristic with the same observed characteristics  and treatment , and the conditional structural

 -quantile function (  ), which is strictly increasing in  for any give ( ), satisfies

Z ()

0

exp(−()()− 01()1()− 022()) = 1 (3.2)

Similar to Chernozhukov and Hansen (2006, 2008), we make the following assumption:
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Assumption 1’:

A1. Potential Outcome. Given  = , for each ,  ∗ = (  ), where  ∼ (0 1) and

(  ) is strictly increasing in  .

A2. Independence. Given  = , {} is independent of .
A3. Selection. Given  = ,  = , for some unknown function  and random vector ,  =

(  )

A4. Rank Similarity. For each  and 0, given (),  ∼ 0 .

A5. Observed variables consist of  = min{ ∗ } = min {(}  },  = ( ), , .

Note that Assumption 1’ largely follows Assumption 1 in Chernozhukov and Hansen (2006)

except that we allow for censoring here. Then, similar to Chernozhukov and Hansen (2006, 2008),

we adopt a linear quantile specification (3.1) and it is straightforward to show that

Pr( ∗  ( ))|) =  (3.3)

for  ∈ (0 1), which serves as the basis for our estimation method. Similar to the exogenous case
considered in the previous section, we assume that there is a bottom quantile 0, say, 0 = 001,

such that ( 0)   almost surely.

We focus on the estimation of the quantile regression coefficient process () = ( ()  0 ())0

for  ∈ [0 ]. Again, similar to the exogenous case, we adopt a sequential approach, and define
a grid of  -values,  = {0  1  · · ·   = }.

We first consider the estimation of  (0). Similar to Chernozhukov and Hansen (2006, 2008)

and Chen (2018), as well as the estimation approach for the exogenous case in the previous section,

we adopt a two-step method for each given quantile. For given 1 = (1 ), we define ̂20 (1) be

a solution to the minimization problem

min
2

X
=1

0(ln1(1)− 0
22)

where, with a slight abuse of notation,

1(1) = min { ∗1 (1) 1(1)} =
Z 

0

exp(− 0
1()1 −())

with

 ∗1 (1) =
Z ∗

0

exp(− 0
1()1 −())

and

1(1) =

Z 

0

exp(− 0
1()1 −())
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Similar to (2.12), we have

ln1(1(0))(0|) = min
©
1(1 (0))

0
22 (0)

ª
=  0

22 (0)  (3.4)

Then in the second step, we estimate 1 (0) by ̂10 , which solves

min
1
|| 1


X
=1

0(ln1(1)− 0
̂20 (1))(̄

0
12 )

0||

where  () = (1 {  0}− ),
¡
̄ 0
1

0
2 

¢0
are appropriate instruments. Consequently we esti-

mate  (0) by
³
̂
0
10

 ̂
0
20

´0
, where ̂20 = ̂20

³
̂10

´
.

Next, we consider the estimation of  (1) = (
0
1(1) 

0
2 (1))

0. Define

(  ) = 1{ln
Z 

0

exp(−max{ 0}− 0
1()1 − 0

22)  }

Then from (3.2) we can infer that (  ()  0) = 1 implies that   ( ); in other words,

for observation , with (  ()  0) = 1, the th structural quantile function is not affected by

censoring. Consequently, for the subsample with (  ()  0) = 1, we can ignore the presence

of censoring for the purpose of conducting th quantile regression. Therefore, given ̂(0), we

define the subsample selector ̂(0) = ( ̂(0) ) and estimation of (1) is based on the

subsample with ̂(0) = 1. Specifically, for a given 1, define ̂21(1) as a solution to the

following minimization problem

min
2

X
=1

̂(0)1(ln1(1)− 0
22)

and then define our estimator for 1 (1) by ̂1(1), which solves

min
1
|| 1


X
=1

̂(0)1(ln1(1)− 0
2̂2(1 1))(̄

0
12 )

0||

and we define ̂(1) =
³
̂1(1) ̂

0
2(1)

´0
as the estimator for (1), where ̂2(1) = ̂21(̂1(1)).

Next, given ̂( ) for any  = 1 2  − 1, define ̂2+1(1) as a solution to the minimization
problem

min
2

X
=1

̂( )+1(ln1(1)− 0
22)

where ̂( ) = ( ̂( ) ), and define our estimator for 1 ( +1) by ̂1( +1), which solves

min
1
|| 1


X
=1

̂( )+1(ln1(1)− 0
2̂2(1  +1))(̄

0
12 )

0||
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and define ̂( +1) =
³
̂
0
1( 1) ̂

0
2( +1)

´0
as the estimator for ( +1), where ̂2( +1) = ̂2+1(̂1( +1)).

Finally, for any  ∈ (    +1), for  = 1  , define ̂2 (1) as a solution to the minimization

problem

min
∈

1



X
=1

̂( ) (ln1(1)− 0
22)

and then ̂1() solves

min
∈

|| 1


X
=1

̂( ) (ln1(1)− 0
2̂2(1  +1))(̄

0
1

0
2 ))

0||

and define ̂() =
³
̂
0
1() ̂

0
2()

´0
as the estimator for (), where ̂2() = ̂2 (̂1()).

We make the following additional assumptions.

Assumption 2’: The duration time  ∗ is continuously distributed with its conditional density
function ∗(·| ) uniformly bounded away from 0 in the neighborhood of (   ), uniform in

 ∈ [0 ]. In addition,  | ∗|2 ∞ and  sup |(· )|2 ∞.

Assumption 3’: The parameter space Θ ∈ +1 is a compact set with  () an interior point.

Let

( ()  ) = 
£
0( ()) (ln1(1 ())− 0

22())(̄
0
1

0
2 )

0¤
where 0( ) = (  0).

Assumption 4’: For any   0, inf∈[0]inf||−()||( ()  )  0.

Assumption 5’:  () is Lipschitz in  ∈ [0 ], with | ( 0)−  ( 00) |   | 0 −  00| for a constant
.

Assumption 6’:  →∞,  = (12) and  →∞ as →∞.
Assumption 7’: The matrices  () for  ∈ [0 ] are uniformly nonsingular in that

inf
∈[ ]

min eig( () ()0) ≥ 0  0

for a positive constant 0, and

lim
→0

sup
∈[0]

Pr (|(1max{() 0} 1 ()  2 ()  )− |  )→ 0

where

 () = 

∙
0( ())∗((  ())|)

¡
̄ 0
1 2 

¢0 (  )

0

¸
.
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with (   ) satisfyingZ ()

0

exp(−()0 − 01()1 − 022) = 1.

Assumptions 1’-7’ are similar to Assumptions 1-7 in the previous section. The global and local

identification conditions are similar to those in Chernozhukov and Hansen (2006, 2008) and Chen

(2018).

Theorem 4: If Assumptions 1’-7’ hold, then

max
=12

|̂( )−  ( ) | = 
³
−12 ln ln

´
almost surely.

The next theorem describes the uniform consistency and weak convergence of the quantile

regression coefficient process over  ∈ [0 ].
Theorem 5: If Assumptions 1’-7’ hold, then

max
∈[0]

|̂()−  () | = 
³
−12 ln ln

´
almost surely and

√

³
̂()−  ()

´
=  ()

−1 1√


X
=1

Φ () +  (1)

uniformly in  ∈ [0 ], where

 () = 

∙
()∗((  ())| )(̄

0
1

0
2 

0
))
0(  ())

0

¸
and

Φ () = ( ()) ( − (  ())(̄
0
1

0
2 

0
))
0

and thus
√

³
̂()−  ()

´
converges to a mean zero Gaussian process  (·) for  ∈ [  ] with

covariance function

()(
0)0 =  ()

−1
h
Φ ()Φ

¡
 0
¢0i


¡
 0
¢−10



As for the exogenous case, we use the resampling method for the purpose of making statistical

inference. Again, let {}1 be i.i.d. random draws with  =Var() = 1, independent of the data.

For any given   we define ̂∗2 (1) as a solution to the minimization problem

min
∈

1



X
=1

̂() (ln1(1)− 0
22)
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and then ̂
∗
1() solves

min
∈

|| 1


X
=1

̂() (ln1(1)− 0
2̂2(1  +1))(̄

0
1

0
2 ))

0||

and define ̂
∗
() =

³
̂
∗
1() ̂

∗0
2 ()

´0
, where ̂

∗
2() = ̂∗2 (̂

∗
1()). As in the exogenous case, the

subsample selector is based on the original estimator, thus fixed in the resampling process. Then

the asymptotic distribution of
√

³
̂ (·)−  (·)

´
can be approximated by the limiting distribution

of
√

³
̂
∗
(·)− ̂ (·)

´
. We make the following additional assumption.

Assumption 8’: The weights {}1 are i.i.d. draws from a positive random variable  with

 =Var() = 1 and it possesses 2 + 0 moment for some 0  0 that lives in a probability space

(Ω  ), independent of the data { }.

Theorem 6: If Assumptions 1’-8’ hold, then conditional on the data,
√

³
̂
∗
(·)− ̂ (·)

´
converges

to a mean zero Gaussian process  (·) for  ∈ [0 ] with covariance function

()(
0)0 =  ()

−1
h
Φ ()Φ

¡
 0
¢0i


¡
 0
¢−10



Our instrumental variable censored quantile regression estimator with time-varying regressors

and the instrumental variables censored quantile regression estimator in Chen (2012) have very

similar structure. Both are sequential estimation procedures, and at the each stage of the sequential

estimation process, the first step of both estimators involves solving some linear quantile regression,

whereas both of the second step estimators are based on solving quantile moment equations. As a

result, the proofs of Theorems 4-6 are very similar to those of Theorems 4-6 in Chen (2018), and

therefore the details are omitted here.

4 Monte Carlo Experiments

In this subsection, we report the results of a set of Monte Carlo experiments to illustrate the finite

sample performance of our estimators. We consider both homogenous and heterogenous designs

with data subject to fixed censoring.

First, we consider the case where all regressors are exogenous. The duration time  ∗ is generated
by Z ∗

0

−0()−1()
 ̃−2()() = 1

where  ∼  [0 1], and

 () =

½
0 for  ≤ 1
1 for   1
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where 0 ∼ 1 + 20 1 ∼ 0 + 1 ̃ = (2 ); here 0 1 2 and  are   [0 1]  and 

is  exponential with scale parameter 1. For the homogeneous design, we set 1 = 7 0 () =

 1 () = (1 0)  2 () = 05, thus the quantile coefficients are parallel. For the heterogeneous

design, we set 1 = 9 0 () =  1 () = (1 0)  2 () =  . By varying the censoring constant,

we consider cases with 15% and 30% censoring.

We consider the estimation of the quantile regression coefficients for  = 03, 05 and 07 respec-

tively. For each design we report Bias, and standard deviation (SD), estimated standard deviation

(est.SD) and the coverage probabilities of the 95% (CP95) confidence intervals using the resam-

pling method proposed in the paper. Sample sizes were chosen to be 200 and 800, respectively, with

1000 replications. The resampling size is set 500. Table 1 reports the results for the homogeneous

designs. Note that our estimator performs well for all three quantiles and both censoring levels; in

fact there is little bias even for  = 07 with 30% censoring when  = 200. Estimated standard

deviations are quite close to the true standard deviations and the estimated confidence intervals,

in general, have very good coverage properties. When the sample size increases to 800, the stan-

dard deviations are roughly cut by half. Table 2 reports the results for the heterogeneous designs

with fixed censoring. Compared with the homogenous designs, while the estimator still performs

satisfactorily, we observe significant increase in biases and standard deviations, for the  = 07 and

the censoring level equal to 30%. Except for this particular combination, the estimated confidence

intervals continue to have desirable coverage properties. In general, the situation improves when

the sample size increases to 800.

For the case when an endogenous regressor is present, the duration time  ∗ is generated ac-
cording to the model Z 

0

−0()−

1 1−2()() = 1

where

 () =

½
 for  ≤ 1
0 for   1

with  = ( +  +  0)  = 20 − 11 = (1 2); here 0 1 2 and  are   [0 1] 

independent of  , which is drawn from the standard normal distribution. As in the exogenous

case, we consider both homogenous and heterogenous designs separately. For the homogeneous

design, we set 1 = 7 0 () =  1 = (1 1)
  2 () = 05, and for the heterogeneous design, we

set 1 = 5 0 () =  1 = (1 1)
  2 () =  − 05. The censoring constant  is chosen so that

the designs we have adopted have about 15% and 30% censoring respectively.

Table 3 reports the results for the homogenous design. Similar to the exogenous case, our

estimator performs well for all combination of  and censoring levels, even for  = 200. Results

for the heterogenous design is reported in Table 4. While our estimator performs well generally

in terms of bias, coverage probabilities, for the case with  = 07, 30% censoring and  = 200,

the differences between the estimated standard deviations and the true standard deviations can

differ up to about 20%, leading to some undercoverage. Once  is increased to 800, our estimator

performs very well across the board.
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5 Conclusion

In economic duration analysis, popular econometric models such as the Cox proportional hazards

model, the mixed proportional hazards model and various extensions are highly restrictive in al-

lowing how regressors affect the conditional duration distribution. In addition, endogeneity such

as selective compliance is also difficult to accommodate. Censoring and time-varying regressors

are fundamental features of duration data. Endogeneity is common in applied duration analysis.

Fitzenberger and Wilke (2005) and Koenker and Geling (2001), among others, argued that quan-

tile regression model is particularly well-equipped to deal with censoring and provides a flexible

semiparametric approach to model the conditional duration distribution. In this paper, we develop

a quantile regression framework that allows for censoring, time-varying regressors and endogene-

ity, and we propose an easy-to-implement two-step quantile regression estimator. Monte Carlo

experiments indicate that our estimator performs well in finite samples.
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Appendix

We first present lemma A1, which is useful in analyzing the asymptotic properties of our two-

step estimator. For any  , let ̂2 (̄ 1   ) denote a minimizer of

min
2

X
=1

(̄ ) (ln1(1)− 0
22)

where (̄ ) = 1
©
 ( ̄)   − 

ª
, 1(1) is defined in the main text.

Lemma A1: For any 1 = 1 + , where  = 
¡
2
¢
and ̄ =  +  (). Under Assumptions

1-5,

̂2 (̄    )− 2 = min

½
12 +

³
−12 ln ln

´12¾
almost surely, and furthermore

(̂2 (1)− 2 ) = Γ
−1
222(      ) + Γ

−1
22Γ21(1 − 1 ) + 

³
−12

´
uniformly in 1 = 1 + , ̄ =  +  () and  ∈ [0 ], where

Γ21 =


01
2(  1  2  0) = 

∙
∗ ( ( )|)2



01
 ( )1 { ( )  }

¸
and

Γ22 =


02
2(  1  2  0) = 

£
∗ ( ( )|)2 0

21 { ( )  }¤ .
with

2(̄    ) = 
£
2(̄    )

¤


and

2( ̄   ) =
1



X
=1

(̄ ) (1 {   ( )}− )2

Proof: First note that by Assumptions 1-3, we have

1



X
=1

(̄ ) (ln1(1)− 0
22)−  (ln1(1)− 0

22 )

=  () +
1



X
=1

(̄ ) (ln1(1 )− 0
22)−  (ln1(1 )− 0

22 )

=  () +
1



X
=1

(̄ ) (1 − 0
2(2 − 2 ))−  (1 )
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uniformly in 1 = 1 + (), ̄ =  +  (), and  ∈ [0 ], where 1 = ln1(1 )− 0
22 .

Then, similar to the argument in the proof of Theorem 1 below, we can show that

̂2 (̄ 1   )− 2 = 

³
12 + −12 ln

´
almost surely, uniformly in 1 = 1 +() and  ∈ [0 ] almost surely. Then, similar to Powell
(1991), Honoré (1992) and Chen (2018), the estimating equation for ̂2 (̄ 1   ) satisfies

2(1 ̂2 (̄ 1   ) ̄   )

=
1



X
=1

(̄ )
³
1
n
   ( 1 ̂2 (̄ 1   ))

o
− 

´
2

= 

³
−12

´


Furthermore, it is easy to verify that the class of functions

{1{ ( ̄)   − } (1 {   ( )}− )2: ̄ ∈   ∈   ∈ (0 1)  ∈ }

is Euclidean (Pakes and Pollard 1989) with a square integrable envelope, thus we



³
−12

´
= 2(1 ̂2 (̄ 1   ) ̄   )

=
h
2(1 ̂2 (̄ 1   )     )− 2(  1  2    )

i
+2(  1  2    ) + 

³
−12

´
= Γ21(1 − 1 ) + Γ22(̂2 (̄ 1   )− 2 ) + 

³
−12

´
+2(  1  2    )

uniformly in 1 = 1 +  (), ̄ =  +  (), and  ∈ [0 ]. Therefore,

(̂2 (̄ 1   )− 2 ) = Γ
−1
222(  1  2    ) + Γ

−1
22Γ21(1 − 1 ) + 

³
−12

´
,

uniformly in 1 = 1 +  (), ̄ =  +  (), and  ∈ [0 ].

Proof of Theorem 1: Similar to the proof of Theorem 1 in Chen (2018), we proceed in two

steps.

Step 1. In this step we prove the uniform consistency of ̂ ( ) and its rate of convergence, for

 = 1 2  , given ̂ (0)−  (0) = 
¡
−12 ln ln

¢
almost surely.

First, we establish some rate of convergence results for some empirical processes. Define a class

of functions

{( ̄    ): ̄ ∈   ∈   ∈ (0 1)  ∈ }
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where

( ̄    ) =  ( −  ( ))1
©
 ( ̄)   − 

ª
Then, similar to the arguments in the proof of Theorem 3 in Chen et al. (2003), we can show

that the above class of functions is Euclidean (Pakes and Pollard 1989) with a bounded envelope.

Hence, by the law of the iterated logarithm for the Donsker class (Arcones, 1993), we have

(̄    )−(̄    ) = 
³
−12 ln ln

´
(R1)

almost surely, uniformly in
¡
̄    

¢
, where

(̄    ) =
1



X
=1

(  ̄    )

and

(̄    ) = 
£
(  ̄    )

¤
.

Next, define

(̄    ) =
1



X
=1

 ( −  ( ))∆( )1
©
 ( ̄)   − 

ª
and

(̄    ) =
1



X
=1

(  ̄    )

||−  () ||

such that ¯̄
( ̄    )

¯̄
||−  () || 

|∆( )|
||−  () ||1 {| | ≤ |∆( )|}

where

( ̄    )

= [ ( −  ( ))−  ( −  (  ()))−  ( −  (  ()))∆( 2)]

1
©
 ( ̄)   − 

ª
= [ ( −∆( ))−  ( )−  ( −  (  ()))∆( )] 1

©
 ( ̄)   − 

ª
with ∆( ) = ln ( ))− ln ( ()) and  = ln − ln (  ().

From Knight’s (1998) identity

 (− )−  () =  (1 { ≤ 0}− ) +

Z 

0

(1 { ≤ }− 1 { ≤ 0}) 

= 

∙
(1 { ≤ 0}− ) +

Z 1

0

(1 { ≤ }− 1 { ≤ 0}) 
¸
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we can show that

 ( −  ( ))−  ( −  ())

 ( )−  ()

=

∙
(1 { −  () ≤ 0}− ) +

Z 1

0

(1 { ≤  ( ( )−  ())}− 1 { ≤ 0}) 
¸

where  =  −  (). Then, similar to the arguments in the proof of Theorem 3 in Chen et al.

(2003), we can show that the class of functions

1 = {1 { ≤  ( ( )−  ())}− 1 { ≤ 0} :  (0 1) ,  ∈ ,  ∈ [0 1]}

is Euclidean (Pakes and Pollard 1989) with a bounded envelope; hence by Theorem 5.3 of Dudley

(1987), the class of functions

F̄1 =
½Z 1

0

(1 { ≤  ( ( )−  ())}− 1 { ≤ 0}) :  (0 1) ,  ∈ ,  ∈ [0 1]
¾

also has finite entropy intergal with

sup


2( F̄1 ) ≤ 1 exp(2
−)

for some constant terms 1 2 and   2 and any probability measure . In addition, also

following the arguments in Chen et. al (2003), we can show that the classes of functions

F2 = {1 { ( )   − } : k−  ()k  2  ∈ (0 1)}

and

F3 = { ( −  ( ()):  ∈ (0 1)}
are Euclidean with bounded envelopes. Therefore, we can also establish that

F4 =
½ |( 1 2   )|

 ( )−  ()
: k−  ()k  2,  ∈ (0 1)

¾
and

F̄4 =

½
 ( )−  ()

k− k
|( 1 2   )|
 ( )−  ()

: k−  ()k  2,  ∈ (0 1)
¾

=

½ |( 1 2   )|
k− k : k−  ()k  2,  ∈ (0 1)

¾
have finite entropy intergal with bounded envelope. Consequently, similar to (R1), we can show

that

(̄    )− (̄    ) = 
³
−12 ln ln

´
(R2)
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and

(̄    )−(̄    ) = 
³
−12 ln ln

´
(R3)

almost surely uniformly in
¡
̄    

¢
, where

(̄    ) = (̄    )

and

(̄    ) = (    )

With the above uniform convergence results, we are now ready to prove the uniform consistency

of ̂ ( ) and its rate of convergence, for  = 1 2  , through a sequential argument.

Given that ̂0 − 0 = 
¡
−12 ln

¢
almost surely, following Chen (2018), we can show that

̂21(11)− 21 = 
³
−12 ln

´
for  ∈ Ω0 with Pr(Ω0) = 1. From (R1) and the definition of ̂1(1) we have

0 ≥ (̂0  ̂11  ̂21(̂11) 1 )−(̂0  11  ̂21(11) 1 )

= 0(̂0  ̂11  ̂21(̂11) 1 )−0(̂0  11  ̂21(11) 1 ) +
³
−12 ln

´
= 0(̂0  ̂11  ̂21(̂11) 1 )−0(̂0  11  21  1 ) +

³
−12 ln

´


We now show that ̂1 − 1 converges to 0 for  ∈ Ω0; if this is not the case, then there exists a
subsequence and a constant 1 6= 0, such that ̂1 − 1 − 1 → 0. Then, following the arguments

in the proof of Theorem1 in Chen (2018), we can show that, for any 0  0,

0 ≥ (1  1 +  1 0)−(1  1  1 0)

which contradicts Assumption 4.

Next we establish the almost sure rate of convergence for ̂1 − 1 → 0. Again, similar to the

arguments in Chen (2018), we can show that for any given  ∈ Ω0 , 1 can be chosen large enough
so that for   1,

0 ≥ 0||̂ (1)−  (1) ||2 +
³
−

1
2 ln ln

´³
̂ (1)−  (1)

´
for some positive constant 0. Hence

̂ (1)−  (1) = 
³
−

1
2 ln ln

´
almost surely. Therefore, we can actually choose 1 such that for   1,

||̂ (1)−  (1) ||  1
−1
2 ln ln
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Following the same logic, we can prove through a sequential argument similar to Chen (2018) that

we can choose  large enough so that for    ,

||̂ ( )−  ( ) ||  −
1
2 ln ln

for  = 1 2  . In other words,

sup
1≤≤

||̂ ( )−  ( ) || = 
³
−12 ln ln

´
almost surely.

Step 2. In this step, with similar arguments to those in Chen (2018), we can also show that

̂ (0)−  (0) = 
¡
−12 ln ln

¢
almost surely.

Proof of Theorem 2: Similar to the proof of the uniform convergence of ̂ ( ) for  = 0 1 2  ,

we can show that

|̂()−  () | = 
³
−12 ln ln

´
almost surely, uniformly in  ∈ [0 ]. We now establish the weak convergence of the quantile
coefficient process.

Given the rate of convergence results in Theorem 1, following Sherman (1993) and Chen

(2018),we can establish the following quadratic approximation,

(̄    )−(̄     )

= (̄    )−(̄     ) +

(̄    )−(̄     )−
£
(̄    )−(̄     )

¤
−(̄     )0(−  ) + 

³
−12(− 

´
)

=
1

2
(−  )

0 (−  ) + 
³
k− k2

´
+0()

0(−  ) + 

³
−12(− 

´
)

uniformly in  ̄ =  +  () and  ∈ [0 ], where

0() =
1



X
=1

 ( −  (  ))
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
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ln (  )

¸
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and

 = 

∙
2

0
ln (  )1 { (  )  }

¸
.
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By Lemma A1, we have

̂2 (̂1 )− 2 = Γ
−1
22Γ21(̂1 − 1 ) +

1√

21 + 

³
−12

´
where

21 =
1√


X
=1

21
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−1
22 (1 {ln   (  )}− )21 { (  )  } 

Therefore, with some simple manipulation, we obtain³
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In addition,
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Therefore,

(̂  ̂    )−(̂  ̂    )

=
1

2
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Then using the arguments in Sherman (1993), we obtain

√
(̂1 − 1 ) =

1√

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which also implies that
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As a result, we have
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(̂ ()−  ()) =

1√


X
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uniformly in  ∈ [0 ]. It is straightforward to show that the class of functions {( ):  ∈ [0 ]}
is Donsker, thus Theorem 2 follows from the standard functional central limit theorem.

Proof of Theorem 3: Following the proof of Theorem 2, we can show that uniform consistency

of ̂
∗
() jointly in space  =  × ,

sup
∈[ ]

||̂∗ ()−  () || = 
³
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´
almost surely in  . Furthermore, we can also establish the asymptotic linear representations
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uniformly in  ∈ [0 ]  Finally, from the Conditional Central Limit Theorem (Th. 2.9.6, van der

Vaart and Wellner, 1996),
√

³
̂
∗
()− ̂()

´
converges to a mean zero Gaussian process  (·) for

 ∈ [0 ] with covariance function of the form
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Table 1: Homogeneous Design

 = 200  = 800

  () Bias SD est. SD CP95 Bias SD est. SD CP95

15% censoring

0.30 0.30 -0.0125 0.1346 0.1379 0.940 -0.0023 0.0678 0.0703 0.946

1.00 0.0059 0.1190 0.1201 0.950 0.0026 0.0611 0.0612 0.958

0.00 0.0032 0.0323 0.0338 0.954 0.0010 0.0163 0.0172 0.948

0.50 0.0044 0.0562 0.0576 0.950 0.0011 0.0280 0.0293 0.944

0.50 0.50 -0.0103 0.1581 0.1600 0.946 -0.0045 0.0841 0.0840 0.954

1.00 -0.0012 0.1386 0.1400 0.944 0.0021 0.0681 0.0714 0.952

0.00 0.0010 0.0369 0.0372 0.936 -0.0002 0.0179 0.0192 0.952

0.50 0.0041 0.0662 0.0655 0.946 0.0031 0.0337 0.0344 0.946

0.70 0.70 -0.0172 0.1651 0.1642 0.942 0.0003 0.0810 0.0827 0.948

1.00 0.0044 0.1402 0.1435 0.942 0.0000 0.0703 0.0726 0.954

0.00 -0.0020 0.0366 0.0366 0.940 -0.0006 0.0173 0.0185 0.956

0.50 0.0055 0.0689 0.0667 0.934 0.0003 0.0325 0.0341 0.952

30% censoring

0.30 0.30 -0.0084 0.1529 0.1539 0.936 -0.0036 0.0788 0.0802 0.946

1.00 0.0024 0.1271 0.1297 0.944 0.0039 0.0691 0.0679 0.942

0.00 0.0031 0.0335 0.0345 0.946 0.0011 0.0176 0.0180 0.952

0.50 0.0031 0.0655 0.0639 0.920 0.0017 0.0327 0.0335 0.950

0.50 0.50 -0.0091 0.1840 0.1878 0.934 -0.0037 0.1014 0.0986 0.938

1.00 0.0008 0.1631 0.1616 0.930 0.0000 0.0848 0.0832 0.928

0.00 -0.0003 0.0390 0.0397 0.950 0.0001 0.0197 0.0206 0.942

0.50 0.0036 0.0771 0.0773 0.942 0.0028 0.0411 0.0412 0.948

0.70 0.70 -0.0106 0.2148 0.2065 0.936 0.0031 0.1017 0.1038 0.944

1.00 0.0044 0.1792 0.1864 0.950 -0.0038 0.0954 0.0927 0.936

0.00 -0.0018 0.0413 0.0414 0.934 -0.0014 0.0203 0.0210 0.954

0.50 -0.0001 0.0965 0.0884 0.932 -0.0006 0.0424 0.0453 0.956
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Table 2: Heterogeneous Design

 = 200  = 800

  () Bias SD est.SD CP95 Bias SD est.SD CP95

15% censoring

0.30 0.30 -0.0253 0.3532 0.3768 0.956 -0.0034 0.1778 0.1863 0.944

1.00 0.0185 0.3296 0.3363 0.942 0.0034 0.1679 0.1677 0.952

0.00 0.0096 0.0985 0.0984 0.944 0.0031 0.0474 0.0489 0.946

0.30 0.0070 0.1662 0.1742 0.948 0.0022 0.0818 0.0857 0.960

0.50 0.50 -0.0222 0.3798 0.4001 0.952 -0.0070 0.2006 0.2092 0.942

1.00 -0.0077 0.3656 0.3724 0.948 -0.0012 0.1730 0.1866 0.962

0.00 0.0030 0.1037 0.1061 0.952 0.0012 0.0512 0.0536 0.950

0.50 0.0101 0.1788 0.1827 0.942 0.0062 0.0893 0.0947 0.960

0.70 0.70 0.0119 0.3821 0.3732 0.928 0.0156 0.1889 0.1896 0.952

1.00 -0.0102 0.3518 0.3488 0.940 -0.0054 0.1754 0.1768 0.942

0.00 -0.0024 0.1023 0.0995 0.948 -0.0030 0.0465 0.0493 0.958

0.70 -0.0171 0.1765 0.1625 0.918 -0.0067 0.0818 0.0840 0.944

30% censoring

0.30 0.30 -0.0316 0.3543 0.3709 0.944 0.0075 0.1191 0.1876 0.948

1.00 0.0179 0.3271 0.3340 0.940 0.0034 0.1672 0.1684 0.958

0.00 0.0110 0.0976 0.0967 0.940 0.0032 0.0470 0.0489 0.946

0.30 0.0096 0.1676 0.1711 0.934 0.0023 0.0831 0.0863 0.962

0.50 0.50 0.0342 0.3859 0.3758 0.934 0.0119 0.2153 0.2047 0.938

1.00 -0.0365 0.3566 0.3448 0.948 -0.0075 0.1767 0.1823 0.940

0.00 0.0017 0.1030 0.0966 0.948 -0.0011 0.0510 0.0503 0.934

0.50 -0.0190 0.1762 0.1631 0.940 -0.0030 0.0946 0.0907 0.930

0.70 0.70 0.1787 0.5120 0.4821 0.878 0.1687 0.2449 0.2680 0.868

1.00 -0.0736 0.4013 0.4057 0.894 -0.0795 0.2175 0.2069 0.894

0.00 -0.0034 0.1179 0.0993 0.894 -0.0046 0.0512 0.0493 0.934

0.70 -0.1273 0.2429 0.2118 0.770 -0.1001 0.1129 0.1240 0.820
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Table 1: Homogeneous Design

 = 200  = 800

  () Bias SD est.SD CP95 Bias SD est.SD CP95

15% censoring

0.3 0.3 0.0003 0.1526 0.1722 0.964 0.0016 0.0778 0.0808 0.946

1.0 0.0033 0.1310 0.1531 0.968 0.0003 0.0636 0.0710 0.960

1.0 0.0067 0.1283 0.1530 0.974 0.0044 0.0656 0.0710 0.940

0.5 0.0048 0.1828 0.1898 0.958 -0.0021 0.0903 0.0933 0.972

0.5 0.5 -0.0098 0.2023 0.2171 0.958 0.0043 0.1022 0.1096 0.960

1.0 0.0121 0.1703 0.1900 0.967 0.0015 0.0807 0.0904 0.944

1.0 0.0178 0.1701 0.1903 0.968 0.0025 0.0874 0.0904 0.950

0.5 0.0059 0.2222 0.2276 0.961 -0.0084 0.1122 0.1198 0.974

0.7 0.7 0.0103 0.2865 0.2760 0.952 -0.0056 0.1297 0.1432 0.968

1.0 0.0159 0.2317 0.2459 0.955 0.0035 0.1005 0.1120 0.966

1.0 0.0166 0.2313 0.2458 0.954 0.0064 0.1019 0.1134 0.972

0.5 -0.0198 0.2956 0.2649 0.945 0.0033 0.1342 0.1468 0.970

30% censoring

0.3 0.3 0.0059 0.1629 0.1725 0.963 0.0017 0.0761 0.0836 0.952

1.0 0.0023 0.1518 0.1696 0.965 0.0008 0.0730 0.0817 0.972

1.0 0.0026 0.1518 0.1713 0.965 0.0033 0.0737 0.0818 0.978

0.5 0.0002 0.1957 0.1953 0.955 -0.0025 0.0922 0.0981 0.950

0.5 0.5 -0.0054 0.2124 0.2219 0.959 0.0033 0.1130 0.1138 0.948

1.0 0.0171 0.2192 0.2299 0.963 0.0031 0.1076 0.1110 0.962

1.0 0.0149 0.2124 0.2290 0.963 0.0009 0.1083 0.1109 0.956

0.5 -0.0023 0.2368 0.2377 0.954 -0.0052 0.1242 0.1287 0.938

0.7 0.7 0.0084 0.3065 0.2971 0.9696 -0.0064 0.1416 0.1583 0.964

1.0 0.0275 0.3934 0.3894 0.9372 0.0024 0.1487 0.1515 0.940

1.0 0.0181 0.4008 0.3746 0.9372 0.0028 0.1460 0.1543 0.946

0.5 -0.0211 0.3279 0.2812 0.9190 0.0052 0.1530 0.1714 0.972
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Table 2: Heterogeneous Design

 = 200  = 800

  () Bias SD est.SD CP95 Bias SD est.SD CP95

15% censoring

0.3 0.3 0.0002 0.1590 0.1742 0.970 0.0001 0.0793 0.0832 0.946

1.0 -0.0004 0.1635 0.1827 0.964 0.0023 0.0822 0.0865 0.958

1.0 0.0083 0.1588 0.1839 0.969 0.0048 0.0790 0.0865 0.962

-0.2 0.0098 0.2323 0.2254 0.932 -0.0009 0.1140 0.1199 0.942

0.5 0.5 -0.0112 0.2095 0.2167 0.952 0.0025 0.1076 0.1096 0.948

1.0 0.0113 0.2093 0.2246 0.961 0.0023 0.0984 0.1037 0.956

1.0 0.0173 0.2041 0.2222 0.969 0.0030 0.1031 0.1036 0.938

0.0 0.0106 0.2699 0.2589 0.943 -0.0073 0.1388 0.1437 0.956

0.7 0.7 0.0124 0.2796 0.2920 0.970 -0.0045 0.1358 0.1470 0.974

1.0 0.0097 0.3177 0.3230 0.945 -0.0007 0.1230 0.1355 0.966

1.0 0.0122 0.3248 0.3250 0.947 0.0007 0.1237 0.1349 0.958

0.2 -0.0213 0.3354 0.2890 0.934 0.0092 0.1644 0.1752 0.974

30% censoring

0.3 0.3 0.0144 0.1847 0.1810 0.961 0.0014 0.0839 0.0887 0.944

1.0 -0.0057 0.1897 0.1953 0.959 -0.0009 0.0854 0.0920 0.966

1.0 -0.0048 0.1874 0.1956 0.959 0.0053 0.0871 0.0922 0.958

-0.2 -0.0080 0.2370 0.2224 0.940 -0.0015 0.1195 0.1217 0.942

0.5 0.5 0.0355 0.2225 0.2352 0.957 0.0125 0.1116 0.1127 0.960

1.0 -0.0172 0.2564 0.2741 0.946 -0.0099 0.1134 0.1178 0.952

1.0 -0.0105 0.2620 0.2753 0.948 -0.0066 0.1204 0.1175 0.944

0.0 -0.0439 0.2818 0.2601 0.929 -0.0141 0.1429 0.1444 0.954

0.7 0.7 0.0561 0.3727 0.3438 0.950 0.0124 0.1540 0.1620 0.956

1.0 0.0203 0.7093 0.5846 0.898 -0.0209 0.1814 0.1931 0.946

1.0 0.0117 0.7186 0.5630 0.895 -0.0209 0.1810 0.1940 0.942

0.2 -0.0725 0.3758 0.2947 0.909 -0.0044 0.1846 0.1929 0.970

37


