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Unified equations for the slope, intercept, and standard errors of the best
straight line

Derek Yorka) and Norman M. Evensen
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Margarita López Martı́nez and Jonás De Basabe Delgadob)

Departamento de Geologı´a, CICESE, km 107 Carr. Tijuana-Ensenada Ensenada, Baja California,
México 22860

~Received 22 January 2003; accepted 17 October 2003!

It has long been recognized that the least-squares estimation method of fitting the best straight line
to data points having normally distributed errors yields identical results for the slope and intercept
of the line as does the method of maximum likelihood estimation. We show that, contrary to
previous understanding, these two methods also give identical results for the standard errors in slope
and intercept, provided that the least-squares estimation expressions are evaluated at the
least-squares-adjusted points rather than at the observed points as has been done traditionally. This
unification of standard errors holds when bothx andy observations are subject to correlated errors
that vary from point to point. All known correct regression solutions in the literature, including
various special cases, can be derived from the original York equations. We present a compact set of
equations for the slope, intercept, and newly unified standard errors. ©2004 American Association of

Physics Teachers.
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I. INTRODUCTION

Despite its seeming simplicity, the problem of finding t
best straight line through an experimentally determined
of points on thex–y plane has triggered the publication
hundreds of papers in a host of fields since Gauss’ orig
development of the method of least-squares estima
~LSE!. This situation led Presset al.1 to comment that ‘‘Be
aware that the literature on the seemingly straightforw
subject of this section@Straight-Line Data with Errors in
Both Coordinates# is generally confusing and sometime
plain wrong ... York2 and Reed3 usefully discuss the simple
case of a straight line as treated here ...’’~p. 664!.

Although the traditional regression ofy on x is widely
used ~and included in most hand calculators and spre
sheets!, only rarely are thex values actually error-free. In
reality, bothx andy errors may be significant, and may va
from point to point. In addition, the errors in the two coo
dinates may be highly correlated. For instance, in radiom
ric age determination, use is universally made of isotope
tio plots in which a common normalizing isotope forms t
denominator of both thex and y coordinates. This practice
imposes an often very significant correlation between
errors inx andy.

York2 gave the general solutions for the LSE best strai
line in terms of its slope andy intercept and errors in thes
two parameters, when both observables (Xi ,Yi) are subject
to errors which vary from point to point. In Ref. 4, a mo
general solution also allowed for the possible correlation
tween thex andy errors at each point. In both papers, it w
pointed out that many previously published solutions~for
example, those of Refs. 5–7! corresponded to differing way
of assigning weights@v(Xi), v(Yi)] or error correlationsr i

to the observed data points (Xi ,Yi). Rarely were the pub-
lished special solutions the correct ones to use in typ
experimental situations! The widespread adoption of Yor
LSE algorithm2 led to a great improvement in this situatio
in some fields. However the more general treatment in Yo4
367 Am. J. Phys.72 ~3!, March 2004 http://aapt.org/aj
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published in an earth science journal, has escaped the a
tion of many statisticians and others writing on least-squa
fitting of straight lines, including Ref. 1 and Reed.3,8

Although the method of LSE has remained in widespre
use among experimental scientists for solving statist
problems, members of the statistical community have shif
to the use of the maximum likelihood estimation~MLE! ap-
proach. Titterington and Halliday9 recommended its use fo
straight line fitting. They emphasized that, if all the da
errors are normally distributed and all the (Xi ,Yi) pairs are
independent, maximizing the likelihood function was exac
the same as minimizing the weighted sum of squares in L
Therefore, MLE and LSE agree in their estimates of the b
slope and intercept in this case. However, they pointed
that MLE is ‘‘... a general theory that allows us to obta
approximate variances and covariances for the paramete
timates... It is not possible to say in general which is best,
the @MLE# method... seems to be simpler for this proble
and with small samples there is probably not much to cho
between the methods numerically. The previous meth
@such as those of York, 1969# were based on Taylor expan
sions ~Deming, 1966! and it is noticeable that MLE theory
has tended to supersede this approach in the statistical li
ture on this problem.’’

Titterington and Halliday9 carried out numerical compari
sons of the MLE and the LSE results4 for the standard errors
of the slopes and intercepts of a number of data sets. T
concluded that ‘‘In most cases the standard errors from
two methods used here are very similar...’’~p. 189!.

Our purpose is to show the exact relationship betwe
these two ‘‘alternative’’ methods of error calculation
straight-line regression when normal errors are assumed,
when it is presumed that, were it not for random experim
tal errors, the observed points would have been perfe
collinear. We show that despite the apparently very differ
underlying analytical approaches~MLE based on second
order derivatives of the likelihood function, LSE based
the first-order derivatives of the slope and intercept!, the
367p © 2004 American Association of Physics Teachers
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MLE expressions obtained in Ref. 9 for the standard err
of the slope and intercept are algebraically identical with
York4 LSE standard error estimates when the latter are ev
ated,not at the observed points (Xi ,Yi) as is usually done in
least squares, but at the least-squares-adjusted points (xi ,yi).

The substitution of the observed points in the LSE er
formulas probably came about because of the additio
computational work involved in calculating the adjust
points in the pre-computer era. As early as 1943, Demin10

recognized that the errors should ideally be calculated at
adjusted points. The fitting process assumes that the true
points would lie on a single straight line, so that consisten
demands the use of the adjusted points, which satisfy
criterion, rather than the observed points, which are scatt
about the fitted line. It is now no problem to evaluate t
errors at the adjusted points as they should be. Howe
even those authors who have occasionally evaluated
LSE solutions using the adjusted points8 were apparently un-
aware that using the adjusted points made the least-squ
solutions for the errors in the intercept and slope numeric
identical to the standard MLE solutions. Conversely,
practitioners of MLE did not realize that they were iden
cally reproducing not merely the LSE values of the slope a
the intercept, but also the adjusted-point LSE standard er
of these parameters. We can thus say that the least-sq
and maximum-likelihood methods for the fitting of a straig
line have finally been unified for the calculation of all fo
parametersa, b, sa , andsb .

II. THE UNIFICATION

The notation used in this paper is summarized in Tabl
In particular, we adopt the notation ofs̃ for the standard
error as calculated using the MLE method ands as calcu-
lated using the LSE method of York.4 Titterington and
Halliday9 derived the following expressions fors̃a

2 ands̃b
2 in

terms of the expectation valuesxi , of the observablesXi :

s̃a
25

(Wixi
2

~(Wixi
2!~(Wi !2~(Wixi !

2 , ~1a!

s̃b
25

(Wi

~(Wixi
2!~(Wi !2~(Wixi !

2 . ~1b!

The expectation values (xi and yi) are identical to the
LSE-adjusted values ofXi and Yi , and indeed Titterington
and Halliday noted that their formulas for the expectat
valuesxi and yi were identical to York’s formulas for the
adjusted values.

The unification proceeds by simplifying Eq.~1! for s̃a
2 and

s̃b
2 . We then show that the more complex LSE expressi

for these variances given in York4 when evaluated at the
least-squares-adjusted points reduce exactly to these sim
fied versions of the variances in Ref. 9.

We simplify the MLE variances by introducing the qua
tity ui , defined in Table I. By transforming to theui from the
xi ~see Appendix A!, Eqs.~1a! and ~1b! become

s̃a
25

1

(Wi
1 x̄2s̃b

2, ~2a!

s̃b
25

1

(Wiui
2 . ~2b!
368 Am. J. Phys., Vol. 72, No. 3, March 2004
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Turning now to the LSE errors of York,4 sb
2 was expressed

as

sb
2~Xi ,Yi !5( F S ]w

]Xi
D 2 1

v~Xi !
1S ]w

]Yi
D 2 1

v~Yi !

1
2r i

a i

]w

]Xi

]w

]Yi
G Y S ]w

]b D 2

, ~3!

wherew is the left-hand side of the least-squares cubic, q
dratic, or linear equations~see Appendix B!. From the ex-
pressions in York4 for ]w/]Xi , ]w/]Yi , and]w/]b it can be
shown that

]w

]Xi
5Wi@2b~b i2b̄ !2Vi #, ~4a!

]w

]Yi
5Wi@Ui22~b i2b̄ !#, ~4b!

Table I. Summary of our notation. Note that although the expression foS,
the weighted sum of squared residuals, appears identical to that for a
dard weighted regression ofy on x, the weightWi actually involves the
weights in bothx and y, as well as the correlations between thex and y
errors.

Symbol Meaning

a, b y intercept and slope of best line,y5a1bx
sa , sb Standard errors ofa andb
Xi , Yi Observed data points

xi , yi
Least-squares-adjusted points, expectation
values ofXi , Yi

sa(Xi ,Yi),
sb(Xi ,Yi)

LSE standard errors evaluated at the
observed points (Xi ,Yi)

sa(xi , yi),
sb(xi ,yi)

LSE standard errors evaluated at the
adjusted points (xi ,yi)

s̃a , s̃b MLE standard errors
v(Xi), v(Yi) Weights ofXi , Yi

a i Av(Xi)v(Yi)

r i
Correlation coefficient between
errors inXi andYi

Wi
v~Xi!v~Yi!

v~Xi!1b2v~Yi!22briai

X̄
(WiXi

(Wi

Ȳ
(WiYi

(Wi

Ui Xi2X̄
Vi Yi2Ȳ

x̄
(Wixi

(Wi

ȳ
(Wiyi

(Wi

ui xi2 x̄
v i yi2 ȳ

b i WiF Ui

v~Yi!
1

bVi

v~Xi!
2~bUi1Vi!

ri

ai
G

b̄
(Wibi

(Wi

S (Wi(Yi2bXi2a)2
368Yorket al.
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]w

]b
5

1

b ( WiUiVi14( Wi~b i2Ui !~b i2b̄ !

2
1

b ( Wi
2 r i

a i
~bUi2Vi !

2. ~4c!

The substitution of these expressions for the three pa
derivatives into Eq.~3! yields

sb
2~Xi ,Yi !5

(Wi
2F Ui

2

v~Yi !
1

Vi
2

v~Xi !
2

2r i

a i
UiVi G

D2 , ~5!

where

D5
1

b ( WiUiVi14( Wi~b i2Ui !~b i2b̄ !

2
1

b ( Wi
2 r i

a i
~bUi2Vi !

2. ~6!

The expression forsb
2 in Eq. ~5! was given in Ref. 11,

except for the omission of the third term on the right-ha
side of D, which we presume to be a typographical err
Traditionally, in least-squares fitting, Eq.~5! for sb

2 would be
evaluated by inserting the corresponding values of the
servables (Xi , Yi) into it. Instead, let us now evaluate it a
the least-squares-adjusted pointsxi and yi . In Appendix C
we show that when we substitutexi for Xi andyi for Yi , and

therefore also substituteui5xi2 x̄ for Ui5Xi2X̄ and v i

5yi2 ȳ for Vi5Yi2Ȳ, the numerator ofsb
2 in Eq. ~5! be-

comes(Wiui
2 , and the denominator becomes ((Wiui

2)2, so
that the LSE expression forsb

2 evaluated at the LSE adjuste
points is

sb
2~xi ,yi !5

(Wiui
2

~(Wiui
2!2 5

1

(Wiui
2 5s̃b

2 . ~7!

York’s4 LSE expression forsa
2 is

sa
2~Xi ,Yi !5( F S ]a

]Xi
D 2 1

v~Xi !
1S ]a

]Yi
D 2 1

v~Yi !

1
2r i

a i

]a

]Xi

]a

]Yi
G , ~8!

where

]a

]Xi
52

bWi

(Wi
1~X̄12b̄ !F S ]w

]Xi
D Y S ]w

]b D G , ~9!

and

]a

]Yi
5

Wi

(Wi
1~X̄12b̄ !F S ]w

]Yi
D Y S ]w

]b D G . ~10!

If we substitute the expressions for]w/]Xi , ]w/]Yi , and
]w/]b in Eq. ~4! into the expressions for]a/]Xi and
]a/]Yi , Eqs.~9! and~10!, we can then substitute the resu
ing ]a/]Xi and]a/]Yi into Eq. ~8! to obtain the following
result forsa

2 :
369 Am. J. Phys., Vol. 72, No. 3, March 2004
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sa
2~Xi ,Yi !5

1

(Wi
1~X̄12b̄ !2sb

2~Xi ,Yi !

1
2~X̄12b̄ !b̄

D
, ~11!

in agreement with Ref. 11 if theirD is corrected for the
missing term. To evaluatesa

2 at the adjusted points, we not

that in this caseb̄50 ~see Appendix C!, but DÞ0, X̄ obvi-
ously transforms tox̄ andsb

2(xi ,yi) becomess̃b
2 . Thus we

see immediately from Eq.~11! that

sa
2~xi ,yi !5

1

(Wi
1 x̄2s̃b

25s̃a
2. ~12!

Thus Eqs.~7! and~12! yield the new unification theorem
If the least-squares estimates of York (1969) of the errors
slope and intercept of the best straight line are evaluated
the least-squares-adjusted points instead of at the obse
points, the least-squares errors become identical to
maximum-likelihood errors.

It also follows simply that the covariance of the slope a
intercept, cov(a,b), calculated by traditional LSE, become
identical with the MLE estimate of this covariance, whe
evaluated at the adjusted points. Thus in both ca
cov(a,b)52 x̄s̃b

2 , and the correlation coefficient ofa with

b is r ab52 x̄s̃b /s̃a52 x̄/Ax2.
Titterington and Halliday9 found slight numerical differ-

ences between the York4 solutions for sa
2(Xi ,Yi) and

sb
2(Xi ,Yi) and their own detailed MLE results. We now se

that this difference is due entirely to the York LSE algorith
following the traditional route of evaluating the expressio
for these parameters at the observed points rather than
adjusted points. These slight differences are simply refl
tions of the slight differences between the observed po
(Xi ,Yi) and the adjusted points (xi ,yi). Clearly such minor
differences between the LSE and MLE values ofsa

2 andsb
2

would be expected to increase somewhat as data po
which are more scattered about a straight line are fitted,
cause greater differences would then exist between the
served points (Xi ,Yi) and the adjusted points (xi ,yi).

Although the LSE~evaluated at the observed points! and
MLE error estimates will generally differ slightly, there ar
two very significant exceptions: the cases of the regress
~weighted if desired! of y on x and the regression~weighted
if desired! of x on y. In each of these regressions, we fin
that the LSE~evaluated at the observed points! and MLE
methods automatically yield identical solutions forsa

2 and
sb

2 , regardless of the scatter of the observed points abou
best line. This apparent paradox is beautifully resolved wh
we note that in, say, the case of the regression ofy on x, the
LSE expressions forsa

2(Xi ,Yi) and sb
2(Xi ,Yi) reduce ex-

actly to functions only of theXi ~which are perfectly accurate
observables in this particular regression and therefore e
to the xi by definition!, so that thesa

2 and sb
2 are simulta-

neously evaluated at the observable and the adjusted ab
sae, and their identical LSE and MLE values are thus fou
in one calculation~see Appendix D!. By symmetry, the
equivalent explanation applies to~optionally weighted! re-
gression ofx on y.
369Yorket al.
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Whether the above unification of the LSE errors and M
errors @in Eqs. ~7! and ~12!# applies to more general case
than straight-line fitting in two dimensions, we can only co
jecture. But in any case, this unification of the LSE and M
errors now obviates any necessity for choosing betw
these two estimates of error. Henceforth we shall simply
sa and sb to denote these unified error estimates, wh
sa5sa(xi ,yi)5s̃a andsb5sb(xi ,yi)5s̃b .

III. CONCISE EQUATIONS FOR THE BEST-FIT
LINE

We have shown that the equations of York4 contain all
least-squares and maximum-likelihood solutions to the pr
lem of fitting a straight line to data with~possibly correlated!
normally distributed errors inx andy. All correct solutions
that we are aware of in the literature can be derived~often as
special cases! from those equations. If the newly unifie
standard errors of slope and intercept are used, then the
expressions reduce to particularly simple forms, yielding
following extremely compact set of four equations:

a5Ȳ2bX̄, ~13a!

b5
(Wib iVi

(Wib iUi
, ~13b!

sa
25

1

(Wi
1 x̄2sb

2, ~13c!

sb
25

1

(Wiui
2 . ~13d!

Equation~13b! for b must, in the general case, be solv
iteratively. A typical sequence of operations is

~1! Choose an approximate initial value ofb ~for instance,
by simple regression ofy on x).

~2! Determine the weightsv(Xi), v(Yi) for each point. If
the errors inx and y are known, then normallyv(Xi)
51/s2(Xi) and v(Yi)51/s2(Yi), where s(Xi) and
s(Yi) are the errors in thex andy coordinates of thei th
point.

~3! Use these weights, with the value ofb and the correla-
tions r i ~if any! between thex and y errors of thei th
point, to evaluateWi for each point.

~4! Use the observed points (Xi ,Yi) and Wi to calculateX̄

and Ȳ, from which Ui and Vi , and henceb i can be
evaluated for each point.

~5! UseWi , Ui , Vi , andb i in the expression forb in Eq.
~13b! to calculate an improved estimate ofb.

~6! Use the newb and repeat steps~3!, ~4!, and ~5! until
successive estimates ofb agree within some desired to
erance~for example, one part in 1015).

~7! From this final value ofb, together with the finalX̄ and

Ȳ, calculatea from Eq. ~13a!.
~8! For each point (Xi ,Yi), calculate the adjusted valuesxi ,

where xi5X̄1b i . ~Similarly, yi5Ȳ1bb i , although
these values are not needed in this calculation.!

~9! Use the adjustedxi , together withWi , to calculatex̄,
and thenceui .

~10! From Wi , x̄, andui , calculatesb , and thensa .
370 Am. J. Phys., Vol. 72, No. 3, March 2004
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Although it is impossible to guarantee convergence
any arbitrary data set, years of experience have shown
the iteration procedure converges remarkably rapidly, w
about ten iterations for most data sets, and fewer than 50
pathological data sets such as Reed’s data set II.3

The above algorithm is straightforward to program, a
students would find it illuminating to compare the para
eters resulting from the above algorithm~possibly using data
with both x and y errors which they have acquired in
laboratory experiment! with the results of the simple regres
sions ofy on x andx on y built into most hand calculators
and spreadsheet programs.

Note that Eq.~13! is symmetrical inx andy ~their super-
ficial appearance to the contrary notwithstanding!. They will
therefore produce the identical straight line and correspo
ing errors if x and y are interchanged. In our work with
40Ar– 39Ar geochronology, where thex intercept is
significant,12 we normally interchangex andy data to obtain
the originalx intercept and its standard error. Of course t
slope obtained after the interchange is the reciprocal of
original slope.

If we use Eq.~13! and the definitions ofWi and b i in
Table I, it is easy to derive simplified solutions for spec
cases, many of which have been dealt with in the literatu
sometimes with closed-form~noniterative! solutions. Most of
these special cases use uncorrelated errors (r i50). For ex-
ample the so-called major-axis solution6 is given simply by
settingr i50 andWi51. This solution corresponds to min
mizing the sum of the squares of the perpendicular distan
of the observed points from the fitted line. Although wide
used, this solution is not invariant under a change of sc
To correct this deficiency, Kermack and Haldane5 suggested
the ‘‘reduced major-axis’’ solution~which is invariant under
a change of scale!. This solution corresponds to settingr i

50 andWi51/(sY
21bsX

2), wheresX
25((Xi2X̄)2/(n21)

and sY
25((Yi2Ȳ)2/(n21), that is,sX

2 is the variance of
theXi taken as a group, and similarly forsY

2 . The ubiquitous
regression ofy on x is given simply by settingr i50 and
Wi5v(Yi), where v(Yi)51 if the regression is un-
weighted.

An example of regression with nonzero error correlatio
is given by Brookset al.7 As York pointed out,4 their solution
implicitly assumes perfect inverse correlation ofx andy er-
rors, and can be obtained from Eq.~13! by settingr i521.

IV. MONTE CARLO TESTS OF ACCURACY

Now that we have derived unified LSE–MLE estimates
the standard errors of the slope and intercept, it is reason
to ask how accurate these unified error estimates are. To
an absolute standard against which to test the above ana
cal approximations, we must examine the probabilis
model of linear fitting that forms the basis of the above ma
ematical analysis.

In this model, we have assumed that there exists a se
true points that lie exactly along a straight line, itself havi
a particular true intercept and slope. However, we can o
measure the positions of these points imperfectly. Each p
has associated measurement errors, expressed as a bin
distribution parametrized byx andy errors, and a correlation
between those errors. The measurement process has
domly selected an observed point from the appropriate bin
370Yorket al.
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Table II. Results of Monte Carlo modeling. Each data set was run for 107 Monte Carlo trials. The quantitiesŝa , ŝb are the standard deviations of the Mon

Carlo distributions of the parametersâ and b̂ (y intercept and slope!; â and b̂ are defined in Appendix E. The quantityDa is defined asDa5100(sa

2ŝa)/ŝa ; a similar definition holds forDb . sa , sb are the analytical errors calculated from Eq.~13!. Data set 3 is from Ref. 6 with weights of York—Re
2 ~zero error correlations!. Data set 4 is from Ref. 14.

Data
set

Number
of points S/(n22)

y intercept Slope

â ŝa Da ~%! b̂ ŝb Db ~%!

1 7 5.382 30.155 10 0.316 481 0.015 707 7 2189.642 7 3.030 313 0.000 175 9
2 10 0.489 0.000 61 0.000 110 20.127 829 6 20.003 337 0.000 769 20.126 700 8
3 10 1.483 5.479 91 0.295 713 20.251 151 0 20.480 533 0.058 256 20.464 447 3
4 11 9.273 11.869 85 0.012 981 0.037 238 6 0.210 121 0.000 631 0.037 166
5 13 0.403 213.278 74 1.586 903 21.141 174 7 0.090 209 0.012 579 21.392 359 2
6 15 2.260 130.400 32 2.407 611 20.003 576 8 0.691 756 0.013 089 20.005 689 7
7 19 0.023 45.044 43 2.928 639 0.013 963 5 21.333 268 0.139 543 0.013 701 2
8 26 5.824 22.389 36 0.198 183 0.009 069 1 1.834 382 0.031 145 0.040 527
9 34 1.488 3.372 95 0.009 926 20.028 522 2 1.327 717 0.009 818 20.044 751 3
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cu-
mal distribution centered on each true point. Such meas
ments have then generated, from the set of true points, a
of observed points~which will not, in general, be collinear!.
Our task in fitting these observed points is to reverse
process; to try to undo the effects of the measurement er
and thus to recover our best estimate of the slope and in
cept of the original straight line~together with an estimate o
the uncertainty in recovering those parameters!.

If it were practical, the best way to estimate the unc
tainty of our estimates would be to repeat the above m
surement process a large number of times, each time ge
ating a new set of observed points from the true points. E
set of observed points would then be used to derive a
best-fit line. By comparing the resulting large set of fitt
slopes and intercepts obtained under identical experime
conditions, with the original true values of these paramet
we could then determine the average uncertainty of estim
ing the slope or intercept.

In reality, we do not have access to the true parameter
the line or to the true positions of the data points we
attempting to measure. The whole object of the fitting p
cess is to estimate these quantities. Furthermore, prac
considerations limit the number of possible repetitions of
experiment. So our best practical estimate of the true un
tainties in evaluating the slope and intercept from a giv
data set comes from repeated numerical experiments, th
from a Monte Carlo model of repeated measurement.

For a given observed data set, such a Monte Carlo mo
begins by fitting the data set with the first two members
Eq. ~13!, and using the parameters of this best-fit line as
true parameters (â,b̂), and the least-squares adjusted po
tions of then data points as the true points (x̂i , ŷi). Each
true point is then assigned the actual errors of measurem
(s(Xi),s(Yi), i 51,2,...,n) and correlation coefficientr i as-
sociated with the corresponding observed point.~As men-
tioned, both LSE and MLE methods agree on the slope
intercept of the best-fit line, and also agree on their estim
of the true positions of the fitted points. In LSE these a
termed the ‘‘adjusted’’ points,10 and in MLE they are the
‘‘expectation values’’ of the points.9! During this initial fit-
ting of the observed data set, we also calculate the uncer
ties in the intercept and slope (sa ,sb) from Eq. ~13!. These
are the two uncertainties whose accuracy we wish to ass

We then conduct a simulated measurement process on
set of postulated true points, by generating, from the bin
371 Am. J. Phys., Vol. 72, No. 3, March 2004
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mal distributions associated with each of then true points, a
set of n random ‘‘observed’’ points. These observed poin
can then be used to obtain a best-fit line, characterized b

slope and intercept that will be different fromâ and b̂, the
parameters of the original true line. If we repeat this sim
lated measurement processN times on our set of true points
we obtainN estimated slopes and intercepts. The distrib
tions of theN slopes and intercepts about the known tr
values, asN becomes very large (107 in our Monte Carlo
models!, are measures of the expected errors of estima
the slope and intercept in a single measurement, such a
actual physical measurement that we originally performed
the observed distribution of the slopes or intercepts is Ga
ian, then the standard deviation of the distribution is the st
dard error of the parameter~slope or intercept! being esti-
mated.~In fact, for all nine data sets in Table II, the 107 pairs
of a andb values yielded histograms almost perfectly matc
ing Gaussian distributions.13! Note that the standard devia
tions should be calculated with respect to the truey-intercept

â and slopeb̂, rather than the meansā and b̄ of the N
intercepts and slopes; that is,ŝa5((ai2â)2/N rather than
((ai2ā)2/(N21) and similarly for ŝb . These quantities
ŝa and ŝb , act as the true values against which we test
estimates (sa ,sb) calculated from Eq.~13!.

We have used this approach to test the calculated un
LSE–MLE errors in the slope and intercept against the
sults of Monte Carlo modeling, using a variety of real, e
perimentally derived data sets. These include data sets

ing 7–34 data points, showing a range of;105 in â and b̂,
a range from20.9998 to 0.8728 in the correlation coefficie
r ab , and with a range of more than a hundred in t
goodness-of-fit parameterS/(n22) discussed below. The
details of the Monte Carlo calculations are given in Appe
dix E.

In Table II we summarize the results of nine Monte Ca
models. We compare these true errorsŝa and ŝb for N
5107 with the errorssa andsb calculated from the origina
experimental data set using Eq.~13!. TheDa andDb values
are the percent differences between these calculated and
errors. The maximum value ofD observed in the nine dat
sets was less than 1.4%, and two-thirds of the values w
well under 0.1%. In other words, the error estimates cal
371Yorket al.
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lated using Eq.~13! with these data sets are themselves ty
cally in error by less than a percent. Clearly the approxim
tions made in deriving Eq.~13! are exceptionally good in
practice.

We also wish to emphasize that our numerical results
inforce the conclusions of Ref. 9 that the MLE~our adjusted-
point LSE! and traditional LSE~our observed-point LSE!
errors are very similar. Although we plan a more elabor
exploration of this and other aspects of the Monte Ca
modeling in a later paper, we note here that the deviati
between the LSE observed-point errors and the adjus
point errors for the nine data sets presented are all less
10%, and two-thirds are well under 1%. This agreemen
surprisingly good for error estimates derived from a re
tively small number of experimental points. We conclu
that published results based on least-squares treatments~such
as those of York2,4! which use observed-point errors will, i
general, remain valid for all practical purposes.

V. GOODNESS OF FIT

In general, the deviations of the observed points from
fitted points should be on the order of the assigned error
the observed points. This concept can be quantified by c
sidering the weighted sum of deviations from the best-fit l
~with error correlations taken into account!. This quantity,
S5(Wi(Yi2bXi2a)2, is the same one minimized in th
least-squares formulation of the fitting problem.4 If n points
are being fitted, the expected value ofS has ax2 distribution
for n22 degrees of freedom, so that the expected value
S/(n22) is unity.

Without discussing in detail what to do ifS/(n22) is
appreciably different from unity, we simply note that it ca
be interpreted either as a statistical fluke~with a probability
obtainable from a table ofx2), or as a failure of the assump
tions ~for example, the presumed linear relation is incorre
the errors of the observed points are wrongly assigned, o
unaccounted for factor, such as systematic error, has affe
the measurements!. One technique that is sometimes appli
if S/(n22) is significantly larger than unity is to multiply
the calculatedsa and sb values byAS/(n22), which is
equivalent to multiplying all thex and y errors,s(Xi) and
s(Yi), by the same factor. This makesS5n22, without
affecting the computed slope and intercept. This proced
of course, should not be applied mechanically, without g
ing some thought to its appropriateness. One can ea
imagine situations where alternative actions would be m
reasonable.
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APPENDIX A: MAXIMUM LIKELIHOOD
ESTIMATES OF s̃a AND s̃b

The expression of Ref. 9 fors̃b
2 @our Eq. ~1b!# can obvi-

ously be written
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s̃b
25

1

(Wixi
22

~(Wixi !
2

(Wi

5
1

(Wixi
22 x̄(Wixi

, ~A1a!

and therefore

s̃b
25

1

(Wixi~xi2 x̄!
. ~A1b!

Recall thatxi5ui1 x̄. If we substitute this expression int
Eq. ~A1b! for s̃b

2 , we find

s̃b
25

1

(Wi~ui1 x̄!ui
5

1

(Wiui
21 x̄(Wiui

. ~A2!

But

( Wiui5( Wi~xi2 x̄!

5( Wixi2 x̄( Wi

5S ( Wi D S (Wixi

(Wi
2 x̄D

5S ( Wi D ~ x̄2 x̄!50. ~A3!

Therefore

s̃b
25

1

(Wiui
2 , ~A4!

as in Eq.~2b!.
If we divide our Eq.~1a! by Eq.~1b!, we find for the MLE

calculations of Ref. 9:

s̃a
25s̃b

2
(Wixi

2

(Wi
. ~A5!

But ui5xi2 x̄ and(Wiui50, so

( Wixi
25( Wi~ui1 x̄!2

5( Wi~ui
212x̄ui1 x̄2!

5( Wiui
212x̄( Wiui1 x̄2( Wi

5
1

s̃b
2 1 x̄2( Wi . ~A6!

So

(Wixi
2

(Wi
5

1

s̃b
2(Wi

1 x̄2 ~A7!

and from Eq.~A5!,

s̃a
25s̃b

2
(Wixi

2

(Wi
5s̃b

2 1

s̃b
2(Wi

1 x̄2s̃b
25

1

(Wi
1 x̄2s̃b

2 ,

~A8!

as in Eq.~2a!.
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APPENDIX B: LEAST-SQUARES CUBIC,
QUADRATIC, AND LINEAR EQUATIONS WHEN
ERRORS IN x AND y ARE CORRELATED

In York4 the following cubic ~B1!, quadratic~B2!, and
linear ~B3! equations for the best slopeb were given for the
case whenXi andYi are correlated:

b3(
Wi

2Ui
2

v~Xi !
2b2F2(

Wi
2UiVi

v~Xi !
1(

Wi
2r iUi

2

a i
G

2bF( WiUi
222(

Wi
2r iUiVi

a i
2(

Wi
2Vi

2

v~Xi !
G

1( WiUiVi2(
Wi

2r iVi
2

a i
50, ~B1!

b2( Wi
2F UiVi

v~Xi !
2

r iUi
2

a i
G1b( Wi

2F Ui
2

v~Yi !
2

Vi
2

v~Xi !
G

2( Wi
2F UiVi

v~Yi !
2

r iVi
2

a i
G50, ~B2!

b( Wi
2UiF Ui

v~Yi !
1

bVi

v~Xi !
2

briUi

a i
G2( Wi

2ViF Ui

v~Yi !

1
bVi

v~Xi !
2

r iVi

a i
G50, ~B3!

that is,

b5

(Wi
2ViF Ui

v~Yi !
1

bVi

v~Xi !
2

r iVi

a i
G

(Wi
2UiF Ui

v~Yi !
1

bVi

v~Xi !
2

briUi

a i
G . ~B4!

All three of these equations~linear, quadratic, and cubic!
yield identical values for bestb and the errorssa andsb .

Equation~B4!, York’s linear algorithm, was the first suc
pseudo-linear solution of the general least-squares prob
with correlated errors. It may also be written as

b5
(Wib iVi1bA

(Wib iUi1A
, ~B5!

where A5(Wi
2UiVi (r i /a i). By cross multiplication and

collection of the explicit terms inb, we have

b5
(Wib iVi

(Wib iUi
, ~B6!

a form given in Ref. 11, which confirmed the result of Ref.

APPENDIX C: EVALUATION OF sa
2 AND sb

2 AT
LSE-ADJUSTED POINTS

By definition, all of the LSE-adjusted points (xi ,yi) fall
on the LSE best straight line.4 Thus,

yi5a1bxi , ~C1a!

( Wiyi5a( Wi1b( Wixi , ~C1b!

ȳ5a1bx̄, ~C1c!

yi2 ȳ5b~xi2 x̄!. ~C1d!
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That is,

v i5bui for all i , ~C2!

where

ui5xi2 x̄, ~C3a!

v i5yi2 ȳ. ~C3b!

Thus we evaluatesb
2 at the adjusted points by substitutin

ui for Ui , v i for Vi andbui5v i in Eq. ~5!. The numerator of
Eq. ~5! becomes

numerator5( Wi
2F Ui

2

v~Yi !
1

Vi
2

v~Xi !
2

2r iUiVi

a i
G

5( Wi
2F ui

2

v~Yi !
1

v i
2

v~Xi !
2

2r iuiv i

a i
G

5( Wi
2F ui

2

v~Yi !
1

b2ui
2

v~Xi !
2

2r ibui
2

a i
G

5( Wi
2ui

2F 1

v~Yi !
1

b2

v~Xi !
2

2bri

a i
G

5( Wi
2ui

2 1

Wi
5( Wiui

2 , ~C4!

when evaluated at the LSE-adjusted points.
The denominator in Eq.~5! is D2, where

D5
1

b ( WiUiVi14( Wi~b i2Ui !~b i2b̄ !

2
1

b ( Wi
2 r i

a i
~bUi2Vi !

2. ~C5!

When we evaluate Eq.~C5! at the adjusted points, we
immediately see that the third term vanishes, becausebUi

2Vi transforms tobui2v i50 for all i .

In the second term we haveb i and b̄ to transform. Now,

Ui2b i5Ui2WiF Ui

v~Yi !
1

bVi

v~Xi !
2

~bUi1Vi !r i

a i
G ,

~C6!

by the definition ofb i . If we evaluate Eq.~C6! at the ad-
justed values (xi ,yi), we have

adjusted ~Ui2b i !5ui2WiF ui

v~Yi !
1

bv i

v~Xi !
2

2buir i

a i
G

5ui2WiuiF 1

v~Yi !
1

b2

v~Xi !
2

2bri

a i
G

5ui2Wiui

1

Wi
5ui2ui50, ~C7!

for all i . Thus the second term inD also vanishes. ThenD,
evaluated at the adjusted values (xi ,yi), becomes

adjustedD5
1

b ( Wiuiv i5
1

b ( Wiuibui5( Wiui
2 .

~C8!

Then the value of thesb
2 , evaluated at the adjuste

(xi ,yi), becomes
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sb
2~xi ,yi !5

(Wiui
2

~(Wiui
2!2 5

1

(Wiui
2 5s̃b

2 , ~C9!

by Eq. ~A4!, thus proving Eq.~7!.
For the case ofsa , from Eq. ~11!,

sa
25

1

(Wi
1~X̄12b̄ !2sb

21
2~X̄12b̄ !b̄

D
. ~C10!

To evaluate this expression at the adjusted points, we h
to evaluateb̄ there. We will show that in this caseb̄50 by

proving that in generalb̄5 x̄2X̄. We have from York,4

xi5Xi2Wi~bUi2Vi !S b

v~Xi !
2

r i

a i
D . ~C11!

But it is easy to see from the definition ofb i that

Wi~bUi2Vi !S b

v~Xi !
2

r i

a i
D5Ui2b i . ~C12!

Then

xi5Xi2~Ui2b i !5Xi2~Xi2X̄2b i !5X̄1b i . ~C13!

Thus, x̄5X̄1b̄, or b̄5 x̄2X̄. That is, when evaluated a

the adjusted points (xi ,yi), b̄5 x̄2 x̄50. If we substituteb̄

50 andX̄5 x̄ in Eq. ~C10! for sa
2 , we obtain

sa
2~xi ,yi !5

1

(Wi
1 x̄2sb

2~xi ,yi !

5
1

(Wi
1 x̄2s̃b

2 @by Eq. ~C9!#

5s̃a
2 , @by Eq. ~A8 !#, ~C14!

which proves Eq.~12!.

APPENDIX D: PROOF THAT sa
2
„Xi ,Yi…Äs̃a AND

sb
2
„Xi ,Yi…Äs̃b IN REGRESSION OF y ON x

AND x ON y

In the classical regression ofy on x ~weighted if desired!
it is assumed that theXi are free of error and all the scatter
attributed to errors inYi . Thusr i50 automatically, andWi

collapses tov(Yi). Furthermore, in this case,

b i5WiF Ui

v~Yi !
1

bVi

v~Xi !
G5v~Yi !

Ui

v~Yi !
5Ui , ~D1!

becausev(Xi)@v(Yi). Hence,sb
2 , evaluated at the ob

served points (Xi ,Yi) as traditionally done, becomes, fro
Eq. ~5!,

sb
2~Xi ,Yi !5

(v~Yi !
2

Ui
2

v~Yi !

F1

b
(v~Yi !UiVi G2 5b2

(v~Yi !Ui
2

@(v~Yi !UiVi #
2 .

~D2!

Now Eq. ~B4! becomes
374 Am. J. Phys., Vol. 72, No. 3, March 2004

Downloaded 17 Sep 2013 to 140.247.234.114. Redistribution subject to AAPT
ve

b5

(v~Yi !
2

ViUi

v~Yi !

(v~Yi !
2

Ui
2

v~Yi !

5
(v~Yi !UiVi

(v~Yi !Ui
2 , ~D3!

so that(v(Yi)UiVi5b(v(Yi)Ui
2 . We substitute this value

for (v(Yi)UiVi in Eq. ~D2!,

sb
2~Xi ,Yi !5

1

(v~Yi !Ui
2 . ~D4!

But for this regression theXi have no errors, that is,Xi

5xi and X̄5 x̄, so thatUi5ui . Then

sb
2~Xi ,Yi !5

1

(v~Yi !ui
2 5s̃b

2 ~D5!

by Eq. ~2b!. Similarly, becauseX̄5 x̄, b̄50 for this regres-
sion. ButDÞ0, hence from Eqs.~11! and ~2a!

sa
2~Xi ,Yi !5

1

(v~Yi !
1 x̄2sb

2~Xi ,Yi !

5
1

(v~Yi !
1 x̄2s̃b

25s̃a
2. ~D6!

By symmetry, whenx is regressed ony, sa
2(Xi ,Yi) and

sb
2(Xi ,Yi) are ~despite both being evaluated at their o

served values! also automatically identical withs̃a
2 and s̃b

2,
respectively.

APPENDIX E: MONTE CARLO MODELING OF
ERROR ESTIMATES

The modeling proceeds as follows.
~1! Take an experimental data set, consisting of obser

points (Xi ,Yi), which are scattered about a line and ha
Gaussian errors with standard deviationss(Xi) and s(Yi),
where the errors have a correlationr i ,21<r i<1. Use Eq.
~13! and fit this data set to a line to obtain they-interceptâ,

the slopeb̂, and the standard errorssa and sb . Use the
adjusted points (xi ,yi), (i 51,...,n), as a set of true initiat-

ing points distributed along the fitted straight line (â,b̂)
which is now taken to be the underlying true straight line
this data set.

~2! For each collinear point (xi ,yi) generate a new
(Xi8 ,Yi8) at random from the binormal distribution functio
N @s(Xi),s(Yi),r i # centered on (xi ,yi). The new set of
(Xi8 ,Yi8) will of course not be collinear, and represents a
observed data set in the Monte Carlo model.

~3! Use the (Xi8 ,Yi8) data set to calculate with Eq.~13! a
new best-fit line with parameters (aj ,bj ).

~4! With the original collinear (xi ,yi) of step ~1!, repeat
steps~2! and ~3! for j 51,2,...,N, whereN is some large
number ~say, 107) to generate a sequence of interceptsa
5(a1 ,a2 ,...,aN), and of slopes,b5(b1 ,b2 ,...,bN).

~5! Calculate the standard deviationŝa of the sequencea
from ŝa

25((ai2â)2/N, and similarly for the standard de
viation ŝb of the sequenceb.
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