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Unified equations for the slope, intercept, and standard errors of the best
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It has long been recognized that the least-squares estimation method of fitting the best straight line
to data points having normally distributed errors yields identical results for the slope and intercept
of the line as does the method of maximum likelihood estimation. We show that, contrary to
previous understanding, these two methods also give identical results for the standard errors in slope
and intercept, provided that the least-squares estimation expressions are evaluated at the
least-squares-adjusted points rather than at the observed points as has been done traditionally. This
unification of standard errors holds when bathndy observations are subject to correlated errors

that vary from point to point. All known correct regression solutions in the literature, including
various special cases, can be derived from the original York equations. We present a compact set of
equations for the slope, intercept, and newly unified standard errormo®©American Association of

Physics Teachers.

[DOI: 10.1119/1.1632486

[. INTRODUCTION published in an earth science journal, has escaped the atten-
tion of many statisticians and others writing on least-squares

fitting of straight lines, including Ref. 1 and Re#&#.

et Although the method of LSE has remained in widespread

éEbse among experimental scientists for solving statistical

Despite its seeming simplicity, the problem of finding the
best straight line through an experimentally determined s
of points on thex—y plane has triggered the publication of
hundreds of papers in a host of fields since Gauss’ origin
development of the method of least-squares estimatio
(LSE). This situation led Presst al! to comment that “Be
aware that the literature on the seemingly straightforwar
subject of this sectioriStraight-Line Data with Errors in
Both Coordinatek is generally confusing and sometimes
plain wrong ... York and Reegusefully discuss the simple

roblems, members of the statistical community have shifted
the use of the maximum likelihood estimatiGWiLE) ap-

roach. Titterington and Halliddyecommended its use for

traight line fitting. They emphasized that, if all the data
errors are normally distributed and all th¥;(Y;) pairs are
independent, maximizing the likelihood function was exactly
: ; ” the same as minimizing the weighted sum of squares in LSE.
case of a straight line as treated here (p'664. Therefore, MLE and LSE agree in their estimates of the best

Although the traditional regression of on x is widely ; T .
used (and included in most hand calculators and spread—SIOpe and intercept in this case. However, they pointed out

sheets only rarely are thex values actually error-free. In that MLE is “... a general theory that allows us to obtain
. y y - actualy ) approximate variances and covariances for the parameter es-
reality, bothx andy errors may be significant, and may vary

. ; s . timates... It is not possible to say in general which is best, but
from point to point. In addition, the errors in the two coor- 4 [MLE] method... seems to be simpler for this problem,

dinates may be highly correlated. For instance, in radiomety 4"\ vith small samples there is probably not much to choose

ric age determination, use is universally made of iSOlOpe rageyeen the methods numerically. The previous methods
tio plots in which a common normalizing isotope forms the[such as those of York, 196@vere based on Taylor expan-
denominator of both the: andy coordinates. This practice gins(Deming, 1966 and it is noticeable that MLE theory
imposes an often very significant correlation between thg,,s tended to supersede this approach in the statistical litera-
errors nx andy. _ _ture on this problem.”

York® gave the general solutions for the LSE best straight  Titterington and Hallida$ carried out numerical compari-
line in terms of its slope anyl intercept and errors in these gons of the MLE and the LSE resditer the standard errors
two parameters, when both observabl¥s,;) are subject of the slopes and intercepts of a number of data sets. They
to errors which vary from point to point. In Ref. 4, a more concluded that “In most cases the standard errors from the
general solution also allowed for the possible correlation betwo methods used here are very similar(p” 189.
tween thex andy errors at each point. In both papers, itwas  Qur purpose is to show the exact relationship between
pointed out that many previously published solutidfr  these two “alternative” methods of error calculation in
example, those of Refs. 5)-Zorresponded to differing ways = straight-line regression when normal errors are assumed, and
of assigning weightsw(X;), w(Y;)] or error correlations;  when it is presumed that, were it not for random experimen-
to the observed data pointX(,Y;). Rarely were the pub- tal errors, the observed points would have been perfectly
lished special solutions the correct ones to use in typicatollinear. We show that despite the apparently very different
experimental situations! The widespread adoption of York’sunderlying analytical approachéMLE based on second-
LSE algorithnf led to a great improvement in this situation order derivatives of the likelihood function, LSE based on
in some fields. However the more general treatment in York,the first-order derivatives of the slope and intergepie
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MLE expressions obtained in Ref. 9 for the standard errorgdable I. Summary of our notation. Note that although the expressioS8, for
of the slope and intercept are algebraically identical with théhe weig_hted sum of squared residuals, appears identical ‘to that for a stan-
York? LSE standard error estimates when the latter are evalfard weighted regression gf on x, the weightW; actually involves the

ated,not at the observed point(,Y;) as is usually done in
least squares, but at the least-squares-adjusted pgjnis)(

errors.

weights in bothx andy, as well as the correlations between thandy

The substitution of the observed points in the LSE errorsymbol

Meaning

formulas probably came about because of the additionat
computational work involved in calculating the adjusted®
points in the pre-computer era. As early as 1943, Defling ;f“’ _
recognized that the errors should ideally be calculated at the'" '
adjusted points. The fitting process assumes that the true data Vi
points would lie on a single straight line, so that consistency,(x; ,Y)),
demands the use of the adjusted points, which satisfy thig,(X;,Y;)
criterion, rather than the observed points, which are scatteredh(xi, v,
about the fitted line. It is now no problem to evaluate theos(Xi .yi)
errors at the adjusted points as they should be. Howevefa: 9b
even those authors who have occasionally evaluated theft*i), @(Y)
LSE solutions using the adjusted pofhigere apparently un-

aware that using the adjusted points made the least-squares
solutions for the errors in the intercept and slope numerically

identical to the standard MLE solutions. Conversely, thew,
practitioners of MLE did not realize that they were identi-

cally reproducing not merely the LSE values of the slope and.

the intercept, but also the adjusted-point LSE standard errors

of these parameters. We can thus say that the least-squares

and maximum-likelihood methods for the fitting of a straight ¥

line have finally been unified for the calculation of all four
parameters, b, o,, andoy,. v

b

Op

X

[I. THE UNIFICATION
The notation used in this paper is summarized in Table Yy
In particular, we adopt the notation @f for the standard

error as calculated using the MLE method amds calcu- o
lated using the LSE method of YofkTitterington and

y intercept and slope of best ling=a+bx
Standard errors ai andb

Observed data points
Least-squares-adjusted points, expectation
values ofX;, Y;

LSE standard errors evaluated at the
observed pointsX;,Y;)

LSE standard errors evaluated at the
adjusted pointsx; ,y;)

MLE standard errors

Weights ofX; , Y;

vo(X)o(Y;)
Correlation coefficient between
errors inX; and;

o(X)a(Y;)

o(X)+b%w(Y)—2bre
SWX,
W
SWY,
W
Xi—X
Yi—Y
ZWiX;
SW

W,
X[ —X
Yi—y

Ui bV, ri

W, oY) + w(%) _(bUi+Vi)Zi

W,

SWi(Y;—bX—a)?

Halliday® derived the following expressions & andaZin ~ #
terms of the expectation values, of the observableX; :
_ SWix?
72T WD) (W) — (SWix)?’ ta s
SW,

~2_
ToT EWXD) (W) — (SWix;)2

The expectation valuesx( and y;) are identical to the as
LSE-adjusted values oX; andY;, and indeed Titterington

(1b)

and Halliday noted that their formulas for the expectation 5 dp\? 1 dp\? 1
TH(Xi Y =2 A

valuesx; andy; were identical to York's formulas for the
adjusted values.

The unification proceeds by simplifying E@.) for ag and
Trf,. We then show that the more complex LSE expressions
for these variances given in Ydtkwhen evaluated at the

2r; do do

Turning now to the LSE errors of Yo(kaf, was expressed

v
2

: ()

o(Xj) "

/1%

o(Y;)

a; (9Xi (?Yi

least-squares-adjusted points reduce exactly to these simpWhereg is the left-hand side of the least-squares cubic, qua-

fied versions of the variances in Ref. 9.

dratic, or linear equationésee Appendix B From the ex-

We simplify the MLE variances by introducing the quan- pressions in Yorkfor dpl X, del dY;, anddeldb it can be

tity u;, defined in Table I. By transforming to the from the ~ shown that

X; (see Appendix A Egs.(1a) and(1b) become

Jdo —
1 W —B)—V.
Egzzwi +?2'6'§, (Za) &Xi WI[Zb(BI B) V|]1 (4a)
1 é’q; _
~2__ —\\/. — i
O-b EWIUIZ . (2b) aYI WI[UI 2(BI B)]! (4b)
368 Am. J. Phys., Vol. 72, No. 3, March 2004 Yost al. 368
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1% 1 — 1 —
%ZBE WiV +42 Wi(8—U)(Bi—B) aa(Xi ’Yi):E_V\/i+(X+2 )2ap(Xi, Y1)
1 i X+2p)B
—62 w?(;—i(bui—vi)z. (40 +w, (11

The substitution of these expressions for the three parti

derivatives into Eq(3) yields a}h agreement with Ref. 11 if theiD is corrected for the

missing term. To evaIuateg1 at the adjusted points, we note

| u? vZ 2 that in this case8=0 (see Appendix § butD#0, X obvi-
, ZW, oY) o(X) EUiVi ously transforms t& and o'3(x; ,y;) becomesr. Thus we
op(Xi,Yi) = D2 : (5  see immediately from Eq11) that
where 20X Y1) = e A RG22 (12
alMi Yi EWl b a-
B 1 E E _
D= b WiliVi+42, Wi(Bi—U)(Bi—AB) Thus Egs(7) and(12) yield the new unification theorem:
If the least-squares estimates of York (1969) of the errors in
_ Ez W-Zﬂ(bU<—V4)2 ©6) slope and intercept of the best straight line are evaluated at
b ge? R the least-squares-adjusted points instead of at the observed

points, the least-squares errors become identical to the
The expression fow? in Eq. (5) was given in Ref. 11, maximum-likelihood errors

except for the omission of the third term on the right-hand It also follows simply that the covariance of the slope and
side of D, which we presume to be a typographical error.intercept, covg,b), calculated by traditional LSE, becomes
Traditiona”y’ in |east_squares f|tt|ng, E@) for 0’% would be identical with the MLE est|mate_ of this Covgrlance, when
evaluated by inserting the corresponding values of the obgvaluated aLtzhe adjusted points. Thus in both cases,
servables X;, Y;) into it. Instead, let us now evaluate it at c0V(a,b)=—Xa},, and the correlation coefficient af with
the least-squares-adjusted poirtsandy;. In Appendix C  p isr, = —X5,/5,= — X/ \/;
we show that when we substitutefor X; andy; for Y;, and Titterington and Halliday found slight numerical differ-
therefore also substitute;=x;—x for U;=X;—X and v; ences between the Ydtksolutions for crﬁ(xi Y, and
=y,—Y for V;=Y,—Y, the numerator o2 in Eq. (5) be- o?3(X;,Y;) and their own detailed MLE results. We now see
comesSW,u?, and the denominator becomesW,u?)?, so  that this difference is due entirely to the York LSE algorithm

that the LSE expression fer evaluated at the LSE adjusted following the traditional route of evaluating the expressions
b for these parameters at the observed points rather than the

points is adjusted points. These slight differences are simply reflec-
SW.u2 1 tions of the slight differences between the observed points
o2(X,Yi)= (EW-IUZI)Z = Swi =52, (7)  (X;,Y;) and the adjusted pointx(,y;). Clearly such minor
i i differences between the LSE and MLE valuesodfand o3

would be expected to increase somewhat as data points
which are more scattered about a straight line are fitted, be-
cause greater differences would then exist between the ob-

York's* LSE expression for? is

2 2
(X, Y= %2 ! + 2 L served points X;,Y;) and the adjusted points(,y;).
aXi| (X)) \dYi] oY) Although the LSE(evaluated at the observed poingsd
or. ga Jda MLE error estimates will generally differ slightly, there are
|, (8)  two very significant exceptions: the cases of the regression
aj X JY; (weighted if desireof y on x and the regressiofweighted
where if desired of x ony. In each of these regressions, we find

that the LSE(evaluated at the observed poinend MLE

Ja bW, — _[[de de methods automatically yield identical solutions f@ﬁ and
— <o H(X+2p) (— ol ©) o2, regardless of the scatter of the observed points about the

aXi =W, X : : _ _
best line. This apparent paradox is beautifully resolved when
and we note that in, say, the case of the regression o x, the
LSE expressions for2(X;,Y;) and o3(X;,Y;) reduce ex-
‘9_a: ﬂ +(§+ ZE)[ (‘9_‘*’) / (‘9_9”” (10) actly to functions only of th&; (which are perfectly accurate
i ZW, Y, ab) | observables in this particular regression and therefore equal

_ _ to thex; by definition, so that theo? and o are simulta-

If we substitute the expressions fop/dX;, d¢/dYi, and  neqysly evaluated at the observable and the adjusted abscis-
deldb in Eq. (4) into the expressions fowa/dX; and  sae and their identical LSE and MLE values are thus found
dal Yy, Egs.(9) and(10), we can then substitute the result- in one calculation(see Appendix I By symmetry, the
ing galdX; and daldY; into Eq. (8) to obtain the following equivalent explanation applies toptionally weighted re-
result forag: gression ofx ony.

369 Am. J. Phys., Vol. 72, No. 3, March 2004 Yost al. 369
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Whether the above unification of the LSE errors and MLE Although it is impossible to guarantee convergence for
errors[in Egs. (7) and (12)] applies to more general cases any arbitrary data set, years of experience have shown that
than straight-line fitting in two dimensions, we can only con-the iteration procedure converges remarkably rapidly, with
jecture. But in any case, this unification of the LSE and MLEabout ten iterations for most data sets, and fewer than 50 for

errors now obviates any necessity for choosing betweepathological data sets such as Reed’s data set II.
these two estimates of error. Henceforth we shall simply use The above algorithm is straightforward to program, and
o, and o, to denote these unified error estimates, wherestudents would find it illuminating to compare the param-

03— U'a(Xi ,yi):aa and O'b=0'b(xi ,yi):'a-b .

[ll. CONCISE EQUATIONS FOR THE BEST-FIT
LINE

We have shown that the equations of Ybiontain all

eters resulting from the above algoritHpossibly using data
with both x andy errors which they have acquired in a
laboratory experimentwith the results of the simple regres-
sions ofy on x andx ony built into most hand calculators
and spreadsheet programs.

Note that Eq(13) is symmetrical inx andy (their super-

least-squares and maximum-likelihood solutions to the probficial appearance to the contrary notwithstandiridhey will

lem of fitting a straight line to data wittpossibly correlated
normally distributed errors ix andy. All correct solutions
that we are aware of in the literature can be deri{@ten as

special casgsfrom those equations. If the newly unified significan

therefore produce the identical straight line and correspond-
ing errors ifx andy are interchanged. In our work with
40ar—3°Ar geochronology, where thex intercept is

t12we normally interchange andy data to obtain

standard errors of slope and intercept are used, then the errhre originalx intercept and its standard error. Of course the
expressions reduce to particularly simple forms, yielding theslope obtained after the interchange is the reciprocal of the

following extremely compact set of four equations:

a=Y-bX, (133
W, B;Vi
b=—=———, 13b
2W;B;U; (131
1
2__— 22
2——21 13
Ub_EWiUi ' ( d)

original slope.

If we use EQq.(13) and the definitions ofV; and 3; in
Table I, it is easy to derive simplified solutions for special
cases, many of which have been dealt with in the literature,
sometimes with closed-forifmoniterative solutions. Most of
these special cases use uncorrelated ermes(). For ex-
ample the so-called major-axis solutfais given simply by
settingr;=0 andW,;=1. This solution corresponds to mini-
mizing the sum of the squares of the perpendicular distances
of the observed points from the fitted line. Although widely
used, this solution is not invariant under a change of scale.
To correct this deficiency, Kermack and Haldasaggested

Equation(13b) for b must, in the general case, be solvedthe “reduced major-axis” solutiofiwhich is invariant under

iteratively. A typical sequence of operations is

(1) Choose an approximate initial value bf(for instance,
by simple regression of on x).

(2) Determine the weight&(X;), w(Y;) for each point. If
the errors inx andy are known, then normally(X;)
=1/0%(X;) and w(Y;)=1/0?(Y;), where o(X;) and
o(Y;) are the errors in thg andy coordinates of théth
point.

(3) Use these weights, with the value lofand the correla-
tions r; (if any) between thex andy errors of theith
point, to evaluatéV, for each point.

(4) Use the observed pointX{(,Y;) andW, to calculateX
and Y, from which U; and V;, and henceB; can be
evaluated for each point.

(5) UseW,, U;, V;, andg; in the expression fob in Eq.
(13b) to calculate an improved estimate lof

(6) Use the newb and repeat step&), (4), and (5) until

successive estimates bfagree within some desired tol-

erance(for example, one part in 16).

(7) From this final value ob, together with the finaK and
Y, calculatea from Eq. (133a.

(8) For each pointX;,Y;), calculate the adjusted values
where x;=X+ ;. (Similarly, y;=Y+bg;, although
these values are not needed in this calculafion.

(9) Use the adjusted;, together withW,, to calculatex,
and thencay; .

(100 FromW;, %, andu;, calculates,, and theno .

370 Am. J. Phys., Vol. 72, No. 3, March 2004

a change of scale This solution corresponds to settimg
=0 andW,=1/(c%3+bo2), whereoz==(X;—X)?/(n—1)
and a$=E(Yi—Y)2/(n—1), that iS,0'>2< is the variance of
theX; taken as a group, and similarly fo . The ubiquitous
regression ofy on x is given simply by setting;=0 and
W;=w(Y;), where w(Y;)=1 if the regression is un-
weighted.

An example of regression with nonzero error correlations
is given by Brookst al.” As York pointed ouf, their solution
implicitly assumes perfect inverse correlationxoéndy er-
rors, and can be obtained from Ed23) by settingr;=—1.

IV. MONTE CARLO TESTS OF ACCURACY

Now that we have derived unified LSE—MLE estimates of
the standard errors of the slope and intercept, it is reasonable
to ask how accurate these unified error estimates are. To find
an absolute standard against which to test the above analyti-
cal approximations, we must examine the probabilistic
model of linear fitting that forms the basis of the above math-
ematical analysis.

In this model, we have assumed that there exists a set of
true points that lie exactly along a straight line, itself having
a particular true intercept and slope. However, we can only
measure the positions of these points imperfectly. Each point
has associated measurement errors, expressed as a binormal
distribution parametrized by andy errors, and a correlation
between those errors. The measurement process has ran-
domly selected an observed point from the appropriate binor-

Yost al. 370
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Table 1. Results of Monte Carlo modeling. Each data set was run foMiite Carlo trials. The quantitie®, , ¢, are the standard deviations of the Monte
Carlo distributions of the parametegsand b (y intercept and slopea and b are defined in Appendix E. The quantity, is defined asA,=100(c,
—a,)] 04; a similar definition holds fod, . o,, o}, are the analytical errors calculated from E@). Data set 3 is from Ref. 6 with weights of York—Ref.
2 (zero error correlationsData set 4 is from Ref. 14.

y intercept Slope
Data Number
set of points S/(n—2) a 0a Ag (%) b oy Ay (%)
1 7 5.382 30.15510 0.316 481 0.0157077 —189.6427 3.030313 0.0001759
2 10 0.489 0.000 61 0.000110 —0.1278296 —0.003 337 0.000 769 —0.126 700 8
3 10 1.483 5.47991 0.295713 —0.2511510 —0.480 533 0.058 256 —0.464 447 3
4 11 9.273 11.869 85 0.012 981 0.037 2386 0.210121 0.000 631 0.037 166 2
5 13 0.403 —13.278 74 1.586 903 —1.1411747 0.090 209 0.012579 —1.3923592
6 15 2.260 130.400 32 2407611 —0.0035768 0.691 756 0.013089 —0.0056897
7 19 0.023 45.044 43 2.928 639 0.013963 5 —1.333 268 0.139 543 0.0137012
8 26 5.824 —2.389 36 0.198 183 0.009 069 1 1.834 382 0.031 145 0.0405270
9 34 1.488 3.37295 0.009926 —0.0285222 1.327 717 0.009818 —0.0447513

mal distribution centered on each true point. Such measurenal distributions associated with each of thérue points, a
ments have then generated, from the set of true points, a sgét ofn random “observed” points. These observed points
of observed pointgwhich will not, in general, be collinear  can then be used to obtain a best-fit line, characterized by a

Our task in fitting these observed points is to reverse this . . . . -
process; to try to undo the effects of the measurement error§!0pe and intercept that will be different frofnandb, the

and thus to recover our best estimate of the slope and inteParameters of the original true line. If we repeat this simu-
cept of the original straight lindogether with an estimate of 'atéd measurement proce¥simes on our set of true points,
the uncertainty in recovering those parameters we obtainN estimated slopes and intercepts. The distribu-
If it were practical, the best way to estimate the uncer-tions of theN slopes and intercepts about the known true
tainty of our estimates would be to repeat the above meavalues, asN becomes very large (10n our Monte Carlo
surement process a large number of times, each time genafodels, are measures of the expected errors of estimating
ating a new set of observed points from the true points. Eacthe slope and intercept in a single measurement, such as the
set of observed points would then be used to derive a neyctual physical measurement that we originally performed. If
best-fit line. By comparing the resulting large set of fittedthe observed distribution of the slopes or intercepts is Gauss-
slopes and intercepts obtained under identical experimentgdn then the standard deviation of the distribution is the stan-
conditions, with the original true values of these parametersyard error of the parametéslope or interceptbeing esti-
we could then determine the average uncertainty of estimatnted (In fact, for all nine data sets in Table Il the "1pairs

ing the slope or intercept. c%f a andb values yielded histograms almost perfectly match-

In reality, we do not have access to the true parameters : T .
the line or to the true positions of the data points we are g Gaussian distribution’$) Note that the standard devia

attempting to measure. The whole object of the fitting pro-tions should tfe calculated with respect to the_ty Hatercept
cess is to estimate these quantities. Furthermore, practicél and slopeb, rather than the means and b of the N
considerations limit the number of possible repetitions of theintercepts and slopes; that &,==(a;—a)?/N rather than
experiment. So our best practical estimate of the true uncers (a;—a)?/(N—1) and similarly foré,. These quantities,
tainties in evaluating the slope and intercept from a giverg andg,, act as the true values against which we test the
data set comes from repeated numerical experiments, that isstimates ¢,0) calculated from Eq(13).

from a Monte Carlo model of repeated measurement. We have used this approach to test the calculated unified

For a given observed data set, such a Monte Carlo mod§lge vy £ errors in the slope and intercept against the re-

begins by fitting the data set with the first two members ofsuItS of Monte Carlo modeling, using a variety of real, ex-

Eq. (13), and usi[]gAthe parameters of this best—f?t line as th_eperimentally derived data sets. These include data sets hav-
true parametersg(b), and the least-squares adjusted posi-;

. . NP ing 7—34 data points, showing a range-ei0® in & andb,
tions Of. th?” data points as the true point;( §;). Each a.range from-0.9998 to 0.8728 in the correlation coefficient
true point is then assigned the actual errors of measurement . :
(a(X),a(Y;), i=1,2,..,n) and correlation coefficient as- Fap, and W'th a range of more than a hundred in the
sociated with the corresponding observed pois men- ~9oodness-of-fit paramete®/(n—2) discussed below. The

tioned, both LSE and MLE methods agree on the slope ar;getails of the Monte Carlo calculations are given in Appen-

intercept of the best-fit line, and also agree on their estimate$X E. i ,
of the true positions of the fitted points. In LSE these are [N Table Il we summarize the results of nine Monte Carlo

termed the “adjusted” point¥? and in MLE they are the Mmodels. We compare these true errérg and o, for N

“expectation values” of the pointd. During this initial fitt =10’ with the errorso, and o, calculated from the original

ting of the observed data set, we also calculate the uncertaiexperimental data set using E4.3). The A, andA, values

ties in the intercept and slope{,o,) from Eq.(13). These are the percent differences between these calculated and true

are the two uncertainties whose accuracy we wish to assesarors. The maximum value df observed in the nine data
We then conduct a simulated measurement process on thsets was less than 1.4%, and two-thirds of the values were

set of postulated true points, by generating, from the binorwell under 0.1%. In other words, the error estimates calcu-

371 Am. J. Phys., Vol. 72, No. 3, March 2004 Yoek al. 371

Downloaded 17 Sep 2013 to 140.247.234.114. Redistribution subject to AAPT license or copyright; see http://ajp.aapt.org/authors/copyright_permission



lated using Eq(13) with these data sets are themselves typi- — 1 1

cally in error by less than a percent. Clearly the approxima-  0,= 7= 7 — ;

tions made in deriving Eq(13) are exceptionally good in EWix-Z—M 2Wixi = x2Wixi

practice. ' W,
We also wish to emphasize that our numerical results re

inforce the conclusions of Ref. 9 that the MI(&ur adjusted-

point LSE and traditional LSE(our observed-point LSE s 1

errors are very similar. Although we plan a more elaborate szm- (Alb)

exploration of this and other aspects of the Monte Carlo R

modeling in a later paper, we note here that the deviations Recall thatx;=u;+X. If we substitute this expression into

bepween the LSE o_bserved-pomt errors and the adjuste@q_ (Alb) for 5§’ we find

point errors for the nine data sets presented are all less than

10%, and two-thirds are well under 1%. This agreement is > 1 1

surprisingly good for error estimates derived from a rela- Ub:ZW_(u_JrY)U_ T SWWRGWU (A2)

tively small number of experimental points. We conclude e ! i e

that published results based on least-squares treatiiseicts But

as those of York® which use observed-point errors will, in

(Ala)

and therefore

general, remain valid for all practical purposes. 2 WiUi:E Wi(%—%)
V. GOODNESS OF FIT
In general, the deviations of the observed points from the =E WiX; —72 W,
fitted points should be on the order of the assigned errors of
the observed points. This concept can be quantified by con- SWix )
sidering the weighted sum of deviations from the best-fit line = ( E i) (W_X)
(with error correlatiozns taken into accounfhis quantity, '
S=3W,(Y;—bX;—a)-, is the same one minimized in the _
least-squares formulation of the fitting problér.n points :(2 Wi |(x=x)=0. (A3)
are being fitted, the expected valuehas ay? distribution herefore
for n—2 degrees of freedom, so that the expected value o
S/(n—2) is unity. > 1
Without discussing in detail what to do B/(n—2) is Ub:mzv (A4)

appreciably different from unity, we simply note that it can
be interpreted either as a statistical flukéth a probability — as in Eq.(2b).

obtainable from a table of?), or as a failure of the assump-  If we divide our Eq.(1a) by Eq.(1b), we find for the MLE
tions (for example, the presumed linear relation is incorrect,calculations of Ref. 9:

the errors of the observed points are wrongly assigned, or an

2

unaccounted for factor, such as systematic error, has affected ~2:~22Wixi (A5)
the measurementsOne technique that is sometimes applied a vboyw,
if S/(n—2) is significantly larger than unity is to multiply L B
the calculateds, and o, values by\S/(n—2), which is Butuj=x;—x andxWu; =0, so
equivalent to multiplying all thex andy errors,o(X;) and )
a(Y,), by the same factor. This make&s=n—2, without > Wi =2 Wi(u;+%)°
affecting the computed slope and intercept. This procedure,
of course, should not be applied mechanically, without giv- _ 24 oo o2
ing some thought to its appropriateness. One can easily _2 Wi(u+ 2xu; +X5)
imagine situations where alternative actions would be more
reasonable. :2 WiUi2+272 WiuiJJzE W,
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APPENDIX A: MAXIMUM LIKELIHOOD o WX 1, 1,
ESTIMATES OF &, AND &, Ta=0sw  TbgZsw, X b Tsw, X b

The expression of Ref. 9 fcfrf) [our Eq.(1b)] can obvi- (A8)
ously be written as in Eq.(23).
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APPENDIX B: LEAST-SQUARES CUBIC, That is,
QUADRATIC, AND LINEAR EQUATIONS WHEN

ERRORS IN x AND y ARE CORRELATED vi=buy; for all i, €2
where
In York* the following cubic (B1), quadratic(B2), and L
linear (B3) equations for the best slofiewere given for the Ui=X; =X, (C3a
case wher¥; andY; are correlated: V=Y, —V. (C3b
I 1 .
2 2 2 2 2
32 Wil _ bz[ s WUV +> wiriVi } Thus we evaluate’? at the adjusted points by substituting
o(X;) ;i u; for U;, v; for V; andbu;=v; in Eq. (5). The numerator of
Wzr UV, W2\/2 Eq. (5) becomes
—b[E W,uz-2> > '} U2 V2 oruUV
w(X;) 2 i i ehiviy
numerator >, W: +
W2r, V2 Lo(Yi) (X)) @
+ 2 WUV -2 (BD) . 2
:Z W2 u; N Ui _ 2riuivi
UV, U2 V2 Ho(Y)  o(X) @
2 2 _ 2 | _ I
g 2 W[ (Xi) a; } 2 W[ (Y1) w(Xi)} :E W2 ui2 N bzui2 _ 2ribui2
VAV AVE Ho(Y)  o(X) @
_ 2 _ =
E W| Q)(Y i :| ’ (BZ) _2 W2 2 1 b2 B Zbri
2 Ui bVl briUi > Ui (Y) (xl) (o5
b2 WS T o) |2 Vi )0 L )
' i i => W iWZE W,u?, (C4)
bVi riVi !
o(X) a Y (B3)  when evaluated at the LSE-adjusted points.
) The denominator in Eq5) is D?, where
that is,
1 _
Ewizv{ U bvi Vi D=5 2 WUVi+42 Wi(B=U)) (5= B)
b oY)  olX) o (B4)
N U bV, brU;|’ 1 2T 2
) i i briy — = > W2 (bU;— V)2 (CH
EWU[ (Y) w(X) @ b v i i

All three of these equationdinear, quadratic, and cubic ~ When we evaluate E¢(C5) at the adjusted points, we
yield identical values for best and the errorsr, and o, . immediately see that the third term vanishes, becdlde
Equation(B4), York’s linear algorithm, was the first such — Vi transforms tdou; —v; =0 for all i.

pseudo-linear solution of the general least-squares problem In the second term we hayg and 3 to transform. Now,
with correlated errors. It may also be written as

U —U—W Ui bV| (bUi+Vi)ri
:EWiBiViJFbA, 85) i—Bi=Ui—W, w(Yi)+ o(X) a :
ZWiBiUi+A (C6)
where A=3W?2U,V, (ri/e;). By cross multiplication and by the definition ofg;. If we evaluate Eq(C6) at the ad-
collection of the explicit terms i, we have justed values; ,y;), we have
ZWBiV, uj bv;  2bur;
b= 77—, B6 i —BY=u —W: : ' L
SW.5.U, (B6) adjusted (U;— B))=u;— W, A + o) a
a form given in Ref. 11, which confirmed the result of Ref. 4. 1 b2 2br,
SN e T

APPENDIX C: EVALUATION OF 0'51 AND o’ﬁ AT

: 1
LSE-ADJUSTED POINTS :ul—WiuiW=ui—ui=0, (C7
|

By definition, all of the LSE-adjusted pointx;(y;) fall

on the LSE best straight lifeThus, for all i. Thus the second term D also vanishes. TheD,

yi=a+bx, (Cla evaluated at the adjusted values ,f/;), becomes
. 1 1

S Wyi=aX Wi+b3 Wi, iy 2dustedD=p 3 W= 5 2 Wiubui= 2, Wiuf'
_ _ (C8)
y=atbx (C19 Then the value of thes?, evaluated at the adjusted
yi—y=b(xi—Xx). (C1d  (X,y;), becomes
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a2(x,yi) = SWiu? ! =72 (C9)
YT SwWiud)2 T swu?2 - 7P
by Eq. (A4), thus proving Eq(7).
For the case ofr,, from Eq.(11),
1 2(X+2B)B
ol= SW, o+ (X+2B)%02+ — (C10

To evaluate this expression at the adjusted points, we have o2(Xi .Y =

to evaluath there. We will show that in this cas@—o by
proving that in genera,B—x X. We have from YorK,

But it is easy to see from the definition @f that

=X, —W;(bU;— V)( (C1D)

w(X;)

Wi(bUi_Vi)( _g)zui_ﬂi- (C12

o(X;)

Then
=Xi—(Ui=B) =X = (X=X~ B) =X+ ;.

Thus, X=X+ B, or B=X—X. That is, when evaluated at

the adjusted pointsx{,y;), B=X—x=0. If we substitute3
=0 andX=Xin Eq. (C10 for o2, we obtain

(C13

1
o(X;.Yi) = SW. +X20p(Xi,Yi)
I

- Sw ——+X%52 [by Eq. (C9)]

=35, [by Eq. (A8)], (C14

which proves Eq(12).

APPENDIX D: PROOF THAT a2(X;,Y;)=0, AND
o2(X;,Y,)=0, IN REGRESSION OF y ON x
AND x ONy

In the classical regression gfon x (weighted if desired

it is assumed that th¥; are free of error and all the scatter is

attributed to errors irY;. Thusr;=0 automatically, andV;
collapses tan(Y;). Furthermore, in this case,

U; bV, | v U;
oV etk Y i)

Bi=W, =Uy, (D1)

becausew(X;)> w(Y;). Hence,aﬁ, evaluated at the ob-
served points X;,Y;) as traditionally done, becomes, from

Eq. (5),

2
i

Ew(Yi)zw(Yi)

So(Y;)U?
[Zw(Y)UV]?

—h2

a2 (X, Yi) =

2
Bzw(Yi)UiVi}

(D2)
Now Eq.(B4) becomes
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ViU,

MO (YUY,
b= , U?  Sw(Y)u?’ (03)
Zo(Y)) oY)

so thatz w(Y;)U;V,= bEw(Yi)Uiz. We substitute this value
for Zw(Y;)U;V; in Eq. (D2),

— - D4
So(Y)U; (D4

But for this regression th&; have no errors, that is;
=X; and X=X, so thatU;=u;. Then

1
X Y= 5 =0

SPRLATT: (B9

by Eq. (2b). Similarly, becaus&X=Xx, =0 for this regres-
sion. ButD #0, hence from Eq9.11) and(2a)

a2(Xi YD) = oo +X2a5(Xi i)

Sw(Y)
_ 1
Zo(Y))

+X0,=0%. (D6)

By symmetry, wherx is regressed o, ag(xi ,Y;) and
aﬁ(xi ,Y,) are (despite both being evaluated at their ob-
served valuesalso automatically identical wité2 and &2,
respectively.

APPENDIX E: MONTE CARLO MODELING OF
ERROR ESTIMATES

The modeling proceeds as follows.

(1) Take an experimental data set, consisting of observed

points (X;,Y;), which are scattered about a line and have
Gaussian errors with standard deviatiangX;) and o(Y;),
where the errors have a correlation —1<r;<1. Use Eq.
(13) and fit this data set to a line to obtain thentercepta,

the slopeb, and the standard errows, and o,. Use the
adjusted pointsx;,y;), (i=1,...,n), as a set of true initiat-
ing points distributed along the fitted straight Iiné,lﬁ)
which is now taken to be the underlying true straight line for
this data set.

(2) For each collinear point X,y;) generate a new
(X{,Y{) at random from the binormal distribution function
N [ao(X;),o(Y;),r;] centered on X;,y;). The new set of
(X{,Y{) will of course not be collinear, and represents an
observed data set in the Monte Carlo model.

(3) Use the K/ ,Y{) data set to calculate with E¢L3) a
new best-fit line with parametersy(,b;).

(4) With the original collinear X;,y;) of step(1), repeat
steps(2) and (3) for j=1,2,..,N, whereN is some large
number (say, 10) to generate a sequence of intercepts,
=(aj,ay,...,ay), and of slopesh=(b,,b,,...,by).

(5) Calculate the standard deviatién of the sequenca
from &2=3(a;—&)?/N, and similarly for the standard de-
viation o, of the sequence.
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