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ABSTRACT 

Governments around the world are working towards accelerating innovation in clean 

energy technologies to meet rising energy demand and mitigate climate change. Policymakers 

shape the ecosystem in which startups innovate in various ways, ranging from R&D grants to 

technology and market collaborations. However, beyond government financing for R&D and 

the steering of market demand, there is little understanding of the role of governments as 

partners for joint technology development, for technology transfer through licenses, or as 

customers. We build on research on collaborative innovation and draw on resource 

dependence theory to highlight the role of collaboration with government organizations for 

startup innovation when compared with other firms, non-governmental research organizations 

and not-for-profit organizations. We develop a novel dataset of 783 US cleantech startups 

from 2008 to 2012 to quantify the innovation impact of technology development, licensing, 

and market collaborations between startups and government organizations as well as other 

partners. Our findings show that technology development and licensing with government 

organizations are associated with increased patenting activity and financial investments. 

Overall, the positive association between technology development, public licenses, and 

startup innovation extends openness and alliance perspectives on innovation and contributes 

to the emerging research on the role of governments in entrepreneurial ecosystems.   
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INTRODUCTION 

Mitigating global climate change, reducing local air pollution from fossil powered electricity 

and transportation, and providing reliable and affordable energy for all represent some of the major 

challenges of the 21st century (United Nations, 2015). There is wide consensus in political, 

academic, and economic arenas that technological innovation in the energy sector—and particularly 

in the clean power and transportation, or cleantech sector—is essential for addressing these 

challenges (Anadon, 2012; Mowery, Nelson, & Martin, 2010). The design of public policies to 

accelerate cleantech innovation has become a priority in countries around the world, as reflected in 

the 2015 Paris Agreement which recognizes that “accelerating, encouraging and enabling 

innovation is critical for an effective, long-term global response to climate change” (UNFCC, 2015, 

Article 10: 27). The high interest of governments in the cleantech sector is further explained by the 

fact that the provision of reliable and affordable energy is also essential for wellbeing and economic 

development (United Nations, 2015), even though the generation, supply and distribution of energy 

is largely controlled by private firms in many countries, especially in the United States (Chu & 

Majumdar, 2012; Koonin & Gopstein, 2011). The heterogeneity of technologies (e.g., from nuclear 

power plants to refrigerators), markets (e.g., from centralized electricity to personal transport), and 

organizations (e.g., large firms, government agencies, startups, universities) in the energy sector 

(Anadon & Holdren, 2009), as well as the multiple policy goals (Anadon, 2012) and coordination 

failures (Nanda, Younge, & Fleming, 2015) suggest that a multiplicity of policies, collaborations, 

and coordination efforts are needed to stimulate innovation. The most recent example of the 

recognition of the need for such collaboration was an initiative by the governments of 20 major 
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global economies and 27 investors from the private sector to support cleantech innovation, 

announced in parallel to the Paris Agreement on climate.
1
  

In the past, government-firm collaborations for innovation were characterized by a long-term 

and relatively stable funding for public and large private actors, linkages to government and policy, 

as well as close integration of R&D and use.
2
 More recently, governments are seeking to promote 

innovation within high-risk startups—i.e., recently founded entrepreneurial firms—that are 

perceived to be more agile and flexible in the near-term for developing novel solutions to market 

opportunities (Guzman & Stern, 2015). However, while quickness and agility may be important in 

sectors with short development cycles (e.g., IT) (Bettis & Hitt, 1995), the cleantech sector requires 

a longer-term perspective due to technology development cycles that can take up to several decades 

(Grubler, Nakićenović, & Victor, 1999; Markard, Raven, & Truffer, 2012). In the cleantech sector, 

this long-term perspective is primarily offered by government organizations (e.g., National 

Renewable Energy Laboratory (NREL) or the Department of Energy (DOE)),
3 

universities, and, to a 

lesser extent, other established firms (Jones, Anadon, & Narayanamurti, 2014). Government 

organizations have been engaged in cleantech innovation activities for decades and tend to have a 

longer-term view (Anadon, Bunn, & Narayanamurti, 2014; Westwick, 2003). Given the short-term 

imperative for achieving successful outcomes and the limited resources available to startups (Baum, 

1996; Baum, Calabrese, & Silverman, 2000),
 4

 we consider that collaboration with government 

organizations might be particularly important for increasing innovation activities of cleantech 

                                                           
1
  This initiative is called Mission Innovation, committing the governments to accelerate public and private global clean technology 

innovation and double their public research and development (R&D) investments by 2020. The private sector’s Breakthrough 

Energy Coalition, initially comprising 27 private investors, committed to investing early in technologies that can help mitigate 

climate change and bring in long-term ‘patient’ capital investments. 
2
  Examples of such projects in the US include the Apollo project that took men to the Moon in 1969, research on military 

technologies at DARPA, or the large corporate R&D laboratories such as Bell Labs (Bonvillian, 2014; Narayanamurti & 

Odumosu, 2016; Riordan & Hoddeson, 1998).  
3  For example, governmental organizations such as the DOE or NREL provide assistance for technology and market readiness, and 

the Department of Defense (DoD) orders or acquires certain products or technologies from startups.  
4
  Startup success may be indicated through new products, patents, financing deals, IPO that act as distinct signals to capital 

markets to attract financing within few years after founding. 
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startups.
 
Yet, despite the recognition of the importance of collaboration to foster private-sector 

innovation in general (Powell, Koput, & Smith-Doerr, 1996) and the growing policy interest in how 

to replicate the level of high-impact entrepreneurial innovation occurring in local clusters like 

Silicon Valley, prior research on cleantech innovation has focused on the role of governments as 

direct financiers of startup R&D through grants (e.g., Howell, 2015) or in supporting innovation 

through the design of deployment (or market creation) policies for firms of all sizes (Choi & 

Anadón, 2014; Doblinger, Dowling, & Helm, 2016; Hoppmann, Peters, Schneider, & Hoffmann, 

2013; Nemet, 2009). Thus, the question of how governments can promote cleantech innovation by 

being direct collaborators in terms of joint technology development, licensing, or as customers for 

startups has largely remained unaddressed.
 5

   

While the importance of collaboration in fostering innovation at the firm-level is a subject of 

inquiry in several streams of literature, existing research has largely overlooked the specific role of 

collaborating with governmental partners. These partners might not only possess key technological 

resources but also have different goals, since their aim is to shape innovation to meet societal goals 

rather than to obtain private returns. These streams of literature include research on firm openness 

(e.g., Chesbrough, 2003; Laursen & Salter, 2006; Laursen & Salter, 2014), interorganizational 

alliances (Baum et al., 2000; Powell et al., 1996), (technological) innovation systems (e.g., Bergek, 

Jacobsson, Carlsson, Lindmark, & Rickne, 2008; Freeman, 1987; Hekkert, Suurs, Negro, 

Kuhlmann, & Smits, 2007; Lundvall, 1992) , knowledge and innovation ecosystems (Adner, 2006; 

Clarysse, Wright, Bruneel, & Mahajan, 2014; Iansiti & Levien, 2004), and, what has emerged more 

recently as the concept of entrepreneurial ecosystems (e.g., Autio, Kenney, Mustar, Siegel, & 

Wright, 2014). The common suggestion that holds across these research streams—often derived 

                                                           
5
  We are interested in the effects of collaborative activities on knowledge generation and therefore do not explicitly investigate the 

relationship between startups and relations to financial partners. However, as access to financing (e.g., venture capital, corporate 

or government funding) is clearly vital for startups, we include prior financing deals as a control variable. 
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from empirical research in the biotech, manufacturing, or IT sectors—is that collective value 

creation and joint innovation within (local) networks are more productive than firms or research 

institutes working on their own. More specifically, research on openness and interorganizational 

alliances suggests that firms could generally benefit from actively searching for knowledge from 

many different types of knowledge channels, including those enabled by customers, suppliers, or 

research institutes (Baum et al., 2000; Dyer & Singh, 1998; Laursen & Salter, 2014; Powell et al., 

1996). However, collaborations with suppliers, research institutes or government organizations, for 

example, may require different resources, as such organizations are characterized by different sets 

of institutional norms, habits, and rules. Thus, determining the most fruitful exchanges for firm 

innovation requires research to look beyond partner diversity by exploring “the importance of 

breadth and depth of external search to innovative performance within each channel or knowledge 

domain” (Laursen & Salter, 2006: 133). In other words, a better understanding of the value of 

different types of partners is needed. In a similar vein, research on entrepreneurial ecosystems 

highlights the importance of the ‘context’ under which startups innovate (Autio et al., 2014). 

Particularly key to the context is the collaborative environment of startups—i.e., their networks and 

collaboration with top or ‘anchor’ firms or public and not-for-profit organizations such as 

universities or research institutes (e.g., Adner, 2006; Adner & Kapoor, 2010; Clarysse et al., 2014; 

Iansiti & Levien, 2004). However, little is known about the relative impact of different types of 

partners, particularly government organizations, and of different types of collaboration on startup 

innovation. Therefore, given the urgency of accelerating innovation in the cleantech sector, gaining 

a better understanding of the relationship between different types of partners and collaborations is 

not only critical for startups, investors, government organizations, or policymakers, but also 

provides avenues for novel theoretical contributions to the openness, interorganizational alliances, 

and ecosystems literatures. 
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These knowledge gaps give rise to two questions: (1) What role do collaborations with 

governments—as compared to collaborations with research institutes and universities, not-for-profit 

organizations, or other firms (startups and established firms)— play for cleantech startup innovation 

activity? (2) What type of government collaborations—i.e., market- vs. technology-based—are 

important for startup innovation and the ability to attract financial investments? To address these 

questions, we develop a framework that separates knowledge flows from different types 

collaborations and partners to startups and hypothesize that these different types of collaborations 

and partners can have distinct effects. Our framework draws on resource dependence theory 

(Hillman, Withers, & Collins, 2009; Pfeffer & Salancik, 1978) to posit that the most central 

governmental partners hold the discretion over particularly large and useful knowledge and 

technological resources valuable to cleantech startups. These central governmental partners are 

defined as those that are established by the government to fulfill a key political mandate in their 

area of expertise and that have created the strongest network represented by a high number of 

connections to other well-connected partners.
6
 In addition to enabling access to critical knowledge 

and technological resources (e.g., through user facilities (Koonin & Gopstein, 2011)), we argue that 

collaborations with government organizations might also be less prone to the typical caveats of 

collaboration such as appropriability concerns (Laursen & Salter, 2014) and unintended knowledge 

outflows via opportunistic behavior of partners (Cox Pahnke, McDonald, Wang, & Hallen, 2015). 

Using a novel dataset of the global collaborations of 783 US cleantech startups from 2008 to 2012, 

our analysis also investigates the relative benefits of collaborations with network central 

government organizations based on the type of collaboration, i.e., technology-based (joint 

technology development or licensing), or market-based (e.g., customer or procurement).  

                                                           
6  

We use the term network central government organization to express centrality in a network and not in terms of government 

organizations that are active at a national level.   
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This paper contributes to research on collaborative innovation in four ways. First, we extend 

openness and interorganizational alliance perspectives on startup innovation by providing a 

dynamic evaluation of the distinct impacts of different partners and collaboration types while 

accounting for the resource intensity of collaborating with a diverse set of partners. Our results 

suggest that while collaborations between cleantech startups and network central government 

organizations are generally more important for startup innovation than knowledge exchanges with 

any other partner type, this positive effect only holds when it comes to joint technology 

development or licensing and not for market collaborations (where governments are the customers 

of the startups’ technologies or products). Second, in our analysis of collaborations we account 

separately for the differences between codified knowledge exchanges from acquiring licenses from 

governmental partners and more tacit exchanges from joint technology development. We are able to 

do this by quantifying the relative impact of joint technology and licensing collaborations, which 

have been analyzed at an aggregate level in prior research (Baum et al., 2000; Powell et al., 1996). 

Third, this paper advances the literature on entrepreneurial ecosystems by contributing to the 

theorization of this emerging perspective, pointing out that resource dependence theory may help 

explain the relative importance of governmental collaborators. Our findings suggest that 

governmental partners hold critical knowledge and technological resources for startups in the 

cleantech space that stem from their long-term experience, expertise, and commitment to their 

mandate to contribute to long-term societal benefit. Fourth, while most research on collaborative 

innovation has had its empirical basis in the IT, manufacturing, or biotech sectors, we provide novel 

insights that stem from the use of (a) a new type of data in (b) a new sector, cleantech. The 

cleantech sector is different from other sectors in that it is associated with commoditized goods with 

distinct institutional, investment, and time requirements. Our theory and empirical evidence on the 

importance of collaboration between network central government organizations and cleantech 
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startups provide answers to pressing policy questions regarding the role of different governments’ 

interventions in the energy space, particularly in the wake of the 2015 Paris Agreement. 

THEORY AND HYPOTHESES 

Collaborative Innovation: The Role of Different Types of Partners  

The importance of co-evolving, mutually-rewarding, and long-term collaborations for 

innovation is supported by several streams of literature that emphasize on networks, openness, and 

joint value creation among different types of organizations at different levels of analysis. These 

streams of literature have emerged in the last decades as the understanding of innovation evolved 

from models exploring Schumpeter’s lone and opportunity-seeking entrepreneur to models 

exploring the dynamic and interactive character of innovation processes that result from 

collaborative endeavors with distinct organizations—such as customers, suppliers, competitors, or 

research institutes (Cox Pahnke et al., 2015). In macro- or systems-level analyses of technological 

innovation systems, interorganizational collaboration represents one of many possible interactions 

of a system that is described by interactions and feedbacks between different governments, firms, 

entrepreneurs, etc. (i.e., organizations) and institutions (e.g., Bergek et al., 2008; Hekkert et al., 

2007). In firm-level analyses, interorganizational alliances and ‘ecosystems’—i.e., knowledge, 

innovation, business, or, more recently, entrepreneurial ecosystems—have emerged as central to 

innovation (Adner, 2006; Adner & Kapoor, 2010; e.g., Autio et al., 2014; Baum et al., 2000; 

Clarysse et al., 2014; Iansiti & Levien, 2004; Powell et al., 1996; Zahra & Nambisan, 2012). The 

literature on interorganizational alliances and knowledge ecosystems, which has been primarily 

conducted using empirical evidence from the biotech and IT sectors, recognizes that innovation is 

often a result of collaboration with different types of organizations primarily within local clusters. 

This research suggests that the locus of innovation resides in local networks rather than within 
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individual firms (Baum et al., 2000; Clarysse et al., 2014; Powell et al., 1996), and that innovative 

activities can further depend on the physical and global network position of the firms themselves 

(Whittington, Jason, & Powell, 2009). The importance of collaboration with lead users and 

suppliers for increased innovation activities are a key subject of analysis in literature on openness 

and innovation or business ecosystems (Dyer & Singh, 1998; Laursen & Salter, 2006; von Hippel, 

1988). The recently emerging literature on entrepreneurial ecosystems puts entrepreneurial 

innovation at its core, emphasizing the importance of collaboration with key partners and a 

supportive ecosystem for innovation within entrepreneurial firms or startups (Autio et al., 2014). In 

short, Baum et al., (2000: 267)’s well-cited recommendation “Don’t Go At It Alone” nicely 

summarizes the suggested importance of collaboration for firm innovation prevalent across these 

various academic disciplines.  

Firms can collaborate with several types of partners that enable distinct knowledge flows for 

stimulating innovation. Interorganizational collaboration therefore typically occurs with suppliers, 

customers, or even competitors (e.g., Adner & Kapoor, 2010; Lechner, Soppe, & Dowling, 2014; 

von Hippel, 1988). These partners enable access to up-to-date industry developments and market 

needs. Collaboration also occurs with non-private organizations such as universities, research 

institutes, or national laboratories (Clarysse et al., 2014; Powell et al., 1996). These collaborations 

typically enable boundary-spanning knowledge flows that, in combination with existing prior 

knowledge or technologies, can lead to higher innovation activities by firms (Jung & Lee, 2015). 

Overall, a greater diversity of partner types—or a firm’s openness to actively seek and exploit 

external knowledge channels—generally increases firm innovation activities in terms of new 

product introductions, diversity of the new product portfolio, or new patent applications (Demirkan 

& Demirkan, 2012; Laursen & Salter, 2006).  
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However, the suggestion to ‘collaborate as much with as many diverse partners as possible’ 

may not be feasible for startups. Different types of partners typically require distinct resources as 

they are characterized by varying institutional norms and practices. For example, on the one hand, 

collaboration with suppliers and customers typically requires careful consideration of disclosure of 

knowledge on products and technologies and extensive mutual coordination and commitment (Dyer 

& Singh, 1998; von Hippel, 1988). On the other hand, collaborating with a government 

organization, such as a national lab or a state-level energy agency, often involves a different type of 

process resulting from higher levels of bureaucracy, distinct cultural attitudes, contractual rules, and 

costs (Glauthier & Cohon, 2015). In order to deal with these differences and to absorb knowledge, 

firms often need to go through a period of trial and error and develop time-intensive and costly 

organizational practices (Laursen & Salter, 2014). Bringing in diversity in partners may therefore be 

particularly challenging for startups that are generally subject to more resource constraints with 

limited personnel or cash flow than larger firms, even though collaboration generally represents an 

important approach to overcome resource constraints (Alvarez & Busenitz, 2001; Meyskens & 

Carsrud, 2013).  

Furthermore, collaboration may even result in diminished innovation activity. Recent studies 

on startup innovation show that collaboration with other firms from the same industry, for example, 

can reduce rather than promote innovation activity because this narrower type of collaboration may 

contribute to startups missing important trends that are emerging outside of the industry boundaries 

(Stam & Elfring, 2008). Ties to venture capitalists (VC) can further reduce startup innovation 

activities because of information outflows to competitors and the opportunistic behavior of the VC 

that serves as a shared intermediary (Cox Pahnke et al., 2015).  

In this paper, we suggest that different partners and different types of collaboration may be 

more (or less) important and have distinct effects on cleantech startup innovation activity. Prior 
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research that has emphasized the importance of collaboration with many and diverse partners for 

firm innovation is often derived from research on larger firms or for biotech or IT startups. Our 

framework provides a more detailed analysis of the value of different types of partners and 

collaborations and focuses on startups. In doing so, this study is among the first to respond to the 

call of Laursen and Salter (2006; 2014) to separate knowledge flows from different partner types. In 

the following, we further extend these granular insights on partner and collaboration types by 

drawing on resource dependence theory (Pfeffer & Salancik, 1978) to highlight the possibility that 

startups may particularly benefit from collaboration with governmental partners.  

Collaboration with Governmental Partners 

Collaborating with specific types of partners offers startups avenues to access critical 

resources. Collaboration therefore serves as an important means to overcome resource dependence 

and to reduce uncertainty and complexity (Hillman et al., 2009; Pfeffer & Salancik, 1978). To 

acquire critical resources and benefit from collaboration, firms need to manage their external 

relations well, and forge relations with those partners that have the greatest discretion over valuable 

and rare resources. Alongside physical products, these resources include technological knowledge 

and social status or prestige (Pfeffer & Salancik, 1978). In the case of startups, the most valuable 

type of partner—i.e., the partner that holds critical resources for increased innovation activities of 

startups—largely depends on the structure and character of the startup’s sector. Three key 

interlinked dimensions characterize the sector of cleantech startups: (1) electricity and fuels, or the 

product, are commodities that are often regulated as energy and transportation are key to human 

wellbeing and the functioning of a state; (2) the rate of innovation is slow, since new products in the 

energy space take multiple decades to be developed and deployed; and (3) high capital intensity and 

lumpiness of investments, path dependencies, and lock-ins with existing fossil fuel based 
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infrastructures mean that changes in infrastructure and institutions are needed to make new energy 

sources available (Fouquet, 2013; Grubler et al., 2012; Koonin & Gopstein, 2011; Nanda et al., 

2015; Unruh, 2000). These characteristics of the cleantech sector suggest that the critical resources 

required for startups may be held by organizations that have substantial research experience and 

equipment, financial and human resources, and a longer-term perspective for their activities.  

We suggest that network central government organizations, such as the US Department of 

Energy (DOE), the US national laboratories (which are part of DOE) such as NREL, or NASA, 

which forge direct collaboration with startups and other firms, may possess these critical resources. 

In the following, we hypothesize that startups benefit in an outsized manner from collaborating with 

such network central government organizations for three reasons. First, government organizations 

and laboratories manage and receive funding for conducting research with longer time frames when 

compared to private sector firms. These governmental partners possess technological expertise in 

cleantech as well as related technologies that they have developed over decades (Anadon, 2012; 

Bonvillian, 2014). Although collaboration with government organizations might involve higher 

levels of bureaucracy and overhead costs than collaboration with other firms, we expect that the 

technological expertise and knowledge from these central partners may be particularly beneficial 

for subsequent startup innovation activities in the short-term. Recent studies have demonstrated that 

many inventions took place as a result of research conducted in government organizations such as 

national laboratories, which complemented the innovation activities of private-sector firms and 

were then successfully used by those firms (Mazzucato, 2013). Hence, these resources might be 

important for startups that typically only have a short time frame to achieve successful outcomes 

such as new products, patents, financing deals or an IPO (Baum, 1996; Baum et al., 2000). Second, 

collaboration with government organizations typically involves less conflict over knowledge and 

concerns about appropriability. Appropriability is widely considered a barrier to collaboration in the 
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openness literature. For example, strict regulations from the legal departments of firms, complex 

negotiations, compounded with mechanisms to ensure secrecy may even restrict emergent 

collaboration  (Laursen & Salter, 2014). Government organizations are explicitly mandated to 

contribute to knowledge and technology transfer (DOE, 2014). The Bayh-Dole Act of 1980, for 

instance, was put in place to promote private sector development and commercialization of 

government funded R&D by facilitating licenses of patents obtained with government-funded 

research to private firms (Schacht, 2009). Third, collaboration with government organizations 

involves lower risk of information leakages and knowledge outflows to competitors which 

otherwise represent serious threats for startups that typically depend on single technologies and 

products. Even though these threats can be reduced through non-disclosure agreements and other 

formal mechanisms to ensure IP ownership, recent research suggests that information can also leak 

to competitors via shared intermediaries such as VCs, with negative implications for startup 

innovation (Cox Pahnke et al., 2015). While collaboration with central governmental partners also 

bears the risk of information outflows to competitors that are also partnering with the same 

agencies, governments have less incentive for opportunistic behavior by leaking knowledge to 

competitors as they are—unlike VCs—not profit-driven. In sum, based on these arguments, we 

propose the following hypothesis:  

Hypothesis 1: For startups in the cleantech sector, collaboration with central governmental 

partners is more important for short-term innovation activities than collaboration with other 

types of partners. 

Market- vs. Technology-based Collaborations with Governmental Partners 

Moreover, we submit that not all collaborations with central governmental partners are 

associated with increased startup innovation activities. For example, while network central 
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government agencies such as DOE or NREL provide technological knowledge, agencies such as the 

Department of Defense (DoD) can order or acquire certain products or technologies from startups 

through mechanisms such as procurement (Bonvillian & Atta, 2011; Fuchs, 2010). Thus, to fully 

understand the impact of government collaboration on short-term startup innovation activities, it is 

important to further explore the impact of collaboration types.   

Market-based Collaborations. Collaboration of startups with users or suppliers can enable 

unique and up-to-date insights on future market demands or technological improvement 

opportunities that can be important drivers of innovation. Innovation can also result and benefit 

from the technological knowledge embedded in acquired products (Tang & Popp, 2014). Such 

opportunities that are characteristically indirect and implicit can lead to higher innovation activities 

by firms (Malecki & Poehling, 1999; Von Hippel, 1978). There can also be benefits that stem from 

learning about the needs of the broader marketplace. Nevertheless, the level of technological 

learning and value added from market-based collaborations is likely to be lower in the short-term 

(over 1-2 years) as the primary goal of market relations is to deliver or acquire specific products or 

services and not the transfer or exchange of technological knowledge. In the case of market-based 

collaborations with government organizations, we expect startups that forge such collaborations to 

not be associated with increased levels of innovation, at least in the required short-term time frame 

for startups. Governmental partners typically serve as customers and not as suppliers of 

technologies to startups. This limits startups’ learning opportunities to niche markets for 

governmental applications, with often reduced commercial applicability. Moreover, while most 

research on government-business collaborations focuses on public procurement from large, 

established firms, the existing insights suggest that the value of collaboration between government 

organizations and startups lies in its potential to increase government—and not startup—efficiency 

(Lin, 2014). And finally, startups may only resort to investigating market-based collaborations with 
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government organizations after being unsuccessful in the marketplace. In sum, startups that engage 

in market-based collaborations with network central government organizations typically supply 

products to a stable niche market that may provide limited learning opportunities. Thus, we 

propose: 

Hypothesis 2: For startups in the cleantech sector, the effect of collaboration with central 

governmental partners on short-term innovation activity changes for market-based 

collaborations, such as that they are associated with reductions in innovation activity.  

Technology-based Collaborations. Technology collaborations, such as when startups engage 

in joint R&D, demonstration, or testing activities with other partners, enable the sharing and 

exchange of technological knowledge, spreading of risk, and access to complementary resources. 

As expected, prior research has shown how firms that forge technology collaborations with other 

firms, research institutes, universities, or governmental laboratories experience increased levels of 

innovation in terms of patenting activity and new product development (Clarysse et al., 2014; 

Deeds & Hill, 1996; Li-Ying et al., 2014).
 7

 We hypothesize that this positive view on the impact of 

technology collaborations on startup innovation also applies to collaborations with network central 

governmental partners, given the provision of complementary technological resources and reduced 

concerns of appropriability or of opportunistic behavior as outlined above.  

However, in contrast to prior research on technology collaborations, we take a more nuanced 

perspective on technology-based collaborations, and distinguish between (a) joint technology 

development and (b) the provision of licenses for technology applications.
 
These two collaborations 

involve different forms of knowledge exchanges and possibilities for spillovers—i.e., more tacit for 

joint technology development and more codified for licensing. Prior research shows that joint 

                                                           
7
  Deeds and Hill, (1996) found an inverted U-shape relationship between the number of technology alliances and new product 

development for established companies.  
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technology development collaborations primarily with universities or research institutes are 

relatively more important for startup innovation than licensing collaborations in biotech startups 

(Baum et al., 2000; Liebeskind, Oliver, Zucker, & Brewer, 1996).
8  

Baum et al. (2000: 273) further 

suggest that technology collaborations are “a source of up-to-date information or knowledge critical 

to success in patent races but too tacit to be effectively transferred through licensing.” While this 

research has not empirically tested the relative benefits of licensing and joint technology 

development, Chan (2015) found that licenses from national laboratories to private firms resulted in 

increases in follow-on patenting activity of the licensee firms and also in follow-on patenting at 

other firms.  

We argue that startups acquiring  technology licenses from government organizations not only 

benefit from codified knowledge transfer but also from knowledge spillovers that are stronger when 

compared to those emerging from joint technology development. We suggest that startups are more 

likely to acquire licenses in areas that are farther from their own set of competencies when 

compared to areas for joint technology development, which could be associated with a greater 

potential to learn and to generate subsequent innovation. Thus, we suggest:  

Hypothesis 3: For startups in the cleantech sector, the positive effect of collaboration with 

central governmental partners on short-term innovation activity is greater for licensing than 

for joint technology development.  

 

 

                                                           
8
  While Powell et al., (1996) illustrated different relationship types in biotechnology (e.g., R&D, marketing, licensing, 

supply/distribution, joint venture), they aggregated the relationships into R&D ties and non-R&D network experience for the 

purpose of their study.  
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Signaling Effects of Technology-based Collaborations with Governmental Partners to Private 

Investors 

Next to the effects on startup innovation activities, technology-based collaborations in the 

form of joint technology development activities or licensing from central governmental partners 

may also increase the likelihood of startups to attract financial investments. Empirical studies have 

applied resource dependence theory to explain the impact of political alignment and frequent 

interactions with government organizations for firms to reduce dependencies or uncertainty, 

eventually leading to financial benefits (see Hillman et al., 2009 for a recent overview). However, 

besides research on the positive impact of the SBIR R&D grants from the DOE on startups’ ability 

to acquire private sector investments (Howell, 2015), the signaling effects of technology 

collaborations to investors—both joint technology development and licensing—with network 

central government organizations are less clear.  

In addition to physical and technological resources, access to social resources such as status 

and prestige are important for reducing dependencies and uncertainty (Hillman et al., 2009; Pfeffer 

& Salancik, 1978). As suggested above, government organizations might possess critical 

technological resources in the cleantech sector that can help further technology development. 

Furthermore, government reputation for technological expertise combined with direct access to 

critical technological resources through technology-based collaborations might represent important 

quality signals to investors and capital markets. Prior research suggests that technology 

collaborations with other firms not only increase startup performance in terms of sales or net 

income to sales ratio (Hagedoorn & Schakenraad, 1994; Lechner, Dowling, & Welpe, 2006), but 

that the signaling effects of high connectedness to key partners that possess technological 

knowledge can further build public confidence in the value of the startup (Stuart, 2000). Moreover, 

licenses from key partners are also seen as important signaling effects for private sector investors 
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(Conti, Thursby, & Thursby, 2013; Hsu & Ziedonis, 2013). We expect similar positive signaling 

effects for technology-based collaborations with governmental partners. However, the already 

existing codified knowledge transferred through licenses might enable more predictable 

assessments of the prospects of the startups than ongoing joint technology collaborations with more 

uncertain outcomes. As investors are faced with high levels of uncertainty and typically rely on 

patents or other codified forms of knowledge to assess the prospects of potential portfolio 

companies (Haeussler, Harhoff, & Müller, 2009; Laursen & Salter, 2014), we expect that licensing 

collaborations with governmental partners are stronger quality signals than joint technology 

development collaborations. Moreover, as stated above, market collaborations with central 

governmental partners might not result in increased innovation activities due to limited short-term 

learning opportunities. Because of the additional niche market concerns and perceived inability to 

sell products in the marketplace, we do not expect that market-based collaborations will result in 

stronger increases in private investments from investors. Given this logic, we propose:   

Hypothesis 4: For startups in the cleantech sector, the positive effect of government licensing 

collaborations on the ability to attract private sector investments in the short-term is greater 

than for government joint technology development or market-based collaborations. 

METHODS 

Data and Measures 

Description of the US cleantech startup dataset. We constructed a novel, large, and 

unbalanced panel of 783 US startups in the cleantech sector between 2008 and 2012. The panel 

includes all US startups that interacted with other firms, government organizations, research 

institutes, universities, and other not-for-profit organizations from the United States and globally. 

The startups operate in one or more of the following 17 sub-sectors: solar, wind, biomass, 
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geothermal, hydro & marine power, nuclear, power storage, smart grid, power efficiency, advanced 

materials, transportation, biofuels & biochemicals, conventional fuels, fuel cells & hydrogen, air, 

recycling & waste, or water & wastewater. We considered a firm to be startup if it is younger than 

10 years in year t, with t0 being 2008. 57% of the startups were founded before t0, and 43% entered 

our sample during the reported time frame. In total, our sample encompasses 3,297 observations 

from 783 startups over the five-year time frame (2008 to 2012). It provides very granular and time-

resolved information about the type of startup partners, the types of startup collaborations, and basic 

firm information regarding size, age, location, and sector. We obtained the base data on the 

collaborations of US cleantech startups from the i3 Cleantech Group database. This relatively new 

database has hardly been used for research purposes in the past (see Zobel, Balsmeier, & 

Chesbrough, 2016, for a recent example in the US solar industry) and is, to the best of our 

knowledge, the richest and most thorough collection of information on the global cleantech sector. 

It applies various mechanisms to collect information on firms, collaborations between firms, 

industry development, and investments (i3 Cleantech Group, 2015). Information on collaborations 

is collected and constantly updated and checked by a research team or directly by the firms, and 

includes the names of the partners, collaboration types, a brief description of the purpose and goal 

of the collaboration, and the source. Furthermore, information for all potential partner types is 

collected using the same method, which implies that collaboration with government organizations is 

certainly not overrepresented in the sample. i3 Cleantech Group provided us with the startup names 

and collaboration information for the overall cleantech sector. We subsequently conducted manual 

verifications of all pieces of information covered by the database, including the type of 

collaboration, the year of the collaboration, and the name of the partners. We complemented the 

name and information on US startups with data on founding year and size from FactSet, Orbis, and, 

if not consistent, via an additional web search. We further expanded our dataset to include detailed 
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information for each startup on location, patents, and financial investments by using multiple data 

sources (e.g., Orbis, FactSet, Thomson One, Derwent Innovation Index). Details on each of these 

independent and dependent variables, and how they were operationalized for our statistical analysis 

are described below. To examine the impact of partner and collaboration types on the dependent 

variables innovation activity and financing deals of startups, we used the Stata (13) software.
 

Independent Variables 

Type of partner. Each startup enters collaborations with different types of partners. These 

partners were categorized into five different categories: (1) other cleantech startups, (2) other 

private sector businesses, (3) government organizations (e.g., DOE, DOD) and governmental 

laboratories or agencies (e.g., NREL, Fraunhofer), (4) universities (e.g., MIT or Princeton 

University) and private research institutes (e.g., Rocky Mountain Institute), or (5) NGOs or 

environmental groups (e.g., Sierra Club). These different partner types include organizations from 

the US or other countries (globally).   

The collaborations included in the dataset typically last for more than one year, but duration 

data is only rarely reported. Thus, to evaluate the impact of these variables, it was necessary to 

make assumptions about their duration. Prior research in this realm has used durations between one 

and five years, mostly relying on three years (e.g., Choi & Anadón, 2014; Schilling & Phelps, 

2007). In contrast to the majority of these panel studies that are based on established firm networks, 

we took a more conservative approach for our startup context and created two-year (i.e., 2008-2009, 

…, 2011-2012) and three-year windows (i.e., 2008-2010, …, 2010-2012) variables for each of the 

collaborations to test the robustness of the findings to this assumption. These two- or three-year 

moving windows for the annual network measures were used to account for the impact of prior 

(including pre-sample) collaborations and their cumulative nature (Robinson & Stuart, 2007; 
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Schilling & Phelps, 2007). We tested all of our statistical models (see below) for both the two- and 

three-year windows for the duration of the partnerships. As the results were very similar, we 

decided to present results using the two-year time lag windows that might be more relevant in the 

more short-term oriented startup context. 

We used the network measure of eigenvector centrality to illustrate patterns in each two-year 

window for each partner and collaboration type. The eigenvector centrality for each startup captures 

patterns in a broader network by assigning weights to each collaboration based on the centrality 

measures of the partner (Bonacich, 2007). Collaboration with a well-connected partner in the 

strongest network thus has a higher weight than collaboration with a weakly connected partner. This 

allowed us to explore whether a startup was part of the network and collaborated with the most 

central government organizations. These startups received the highest eigenvector scores (between 

0 and 1) (see Figures 1a and 1b). To check the robustness of the eigenvector centrality measures, we 

conducted several steps including the evaluation of additional measures of centrality—power 

centrality and average distance weighted reach (Bonacich, 1987; Schilling & Phelps, 2007).
9
 We 

used the ‘igraph’ package in R to calculate all of the network measures (Csardi & Nepusz, 2006; R 

Core Team, 2015). 

------------------------------------------- 

Insert Figures 1a and b about here 

------------------------------------------ 

In Figure 2, we separated the full network of all global collaborations (from 2008 to 2012) 

will all types of partners into two ecosystems: one larger, interconnected network where all 

                                                           
9  Power centrality assumes that centrality and ‘powerfulness’ of a firm are a function of the collaborations of a firm in its 

neighborhood (or ecosystem) of partners depending on selected parameters, with more collaborations with well-connected 

partners implying more centrality (note that the network analysis by itself is not accounting for local proximity). The power 

centrality measure was parameterized to mimic eigenvector centrality. While different from centrality, distance weighted reach 

also assigns greater value to more collaboration in that it assumes that firms collaborating with a large number of organizations 

over a shorter average path enable improved knowledge flows through access to faster and greater information, compared to less 

connected firms. 
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organizations are linked to the larger ecosystem, and one that is more diverse and characterized by 

dyadic or triadic interactions of a few organizations. As access to knowledge and information flows 

might differ based on the position of the startups within and outside of this larger ecosystem, we 

controlled for this difference for the 59% of the startups that are all interconnected and therefore 

part of the larger network and the 41% that operate outside of this network in the statistical models 

that are outlined below. 

---------------------------------- 

Insert Figure 2 about here 

---------------------------------- 

Collaboration types. The i3 Cleantech Group database provided an initial classification into 

collaboration types. We validated the information on collaborations with two researchers in our 

team, who independently assessed the description provided by the i3 database. In doing so, we re-

coded some of the classifications to ensure a consistent matching of the 2,676 collaborations (2008 

to 2012) to the following collaboration types for each startup in our dataset: technology-based (i.e., 

joint technology development or licensee) and market-based (i.e., procurement) (see Table 1 for 

examples).
10

  

---------------------------------- 

Insert Table 1 about here 

---------------------------------- 

Dependent variables 

Patents. To examine the impact of different types of partners and collaborations on startup 

innovation activity, we use patents as a measure that is validated in an external examination process 

(Griliches, 1990). Although using patents to measure innovation activity or knowledge creation is 

not without challenges—for example, the propensity to patent and overall patenting activity might 

                                                           
10

  We also included licensors, i.e., when the startup provides the license, and project development collaborations as controls.  
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vary between industries (Levin, Klevorick, Nelson, & Winter, 1987)—it is a commonly used 

measure of innovation (Trajtenberg, 1987). This seems to be particularly true in our empirical 

setting, as the patenting propensity of U.S. startups has been found to be very high. Among other 

factors, patenting in cleantech is less contentious than in other sectors like IT and is considered to 

provide a signaling effect to potential investors (e.g., Conti et al., 2013; Hsu & Ziedonis, 2013). 

Furthermore, patent counts represent the most commonly applied measure for startup innovation 

(Clarysse et al., 2014; Howell, 2015; Nanda, Younge, & Fleming, 2013). We measured innovation 

as the number of patent applications for firm i in year t. The annual patent applications were 

extracted from the Derwent Innovations Index database in their year of priority application.  

Private Financing Deals. We used the number of annual financing deals that each startup 

acquired per year to evaluate the signaling effects of collaborations on investors. The financing 

deals were collected and aggregated from the Thomson One, FactSet and i3 Cleantech Group 

databases, and primarily encompassed venture capital funding at different stages (seed, series A, B, 

etc.) as well as other private investments (loans, bonds, etc.). Figure 3 provides an overview of the 

distribution of the financial deals. We further included a measure of firm growth as a robustness 

check to the annual number of financing deals. We measured firm growth as the likelihood of 

achieving a desired growth outcome, i.e., an acquisition
11

 or an initial public offering (IPO) within 

six years after the startup was founded (e.g., recently applied by Guzman & Stern, 2015). The data 

on firm growth was collected from various sources, including the i3 Cleantech Group and the 

FactSet database, and manually verified through a web search. Growth is operationalized as a 

binary variable equaling 1 for an acquisition or IPO in year t, and 0 otherwise. 

---------------------------------- 

Insert Figure 3 about here 

                                                           
11

  Acquisitions after bankruptcy or liquidity constraints are not included in the variable.  
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---------------------------------- 

Control variables 

Pre-sample patents. To account for the diminishing importance of earlier knowledge, we 

included the pre-sample patent stock as a control variable, annually depreciated at a rate of 15% 

(e.g., Popp, 2004; Qiu & Anadon, 2012). Following Schilling and Phelps (2007), we included the 

annually depreciated value of pre-sample patents (before 2008) to control for unobserved 

heterogeneity in firm patenting activity.    

Prior private financing deals. We controlled for the impact of private investments by 

including the number of prior financing deals of each startup for each year. We applied an annual 

depreciation rate equal to the one we used for prior patents to account for the diminishing 

importance of financial investments over time.  

Prior public financing deals. Similar to private financial deals, we also included a measure 

that accounted for whether the startup received prior grants or other forms of financial support from 

public sources. As an additional robustness check on public financing and acknowledging the 

central role of the DOE, we compiled information on the number of grants or other types of 

financial support that the startups might have received from the DOE in the examined time frame. 

We obtained the data from the USA Spending database and counted the number of financing deals 

per startup. Overall, 96 of the cleantech startups in our sample (i.e., 12% of our sample) have 

received one or more DOE grant or other financial assistance.
12

   

Sub-sector, age, and size. Firm-level information on sub-sector, age, and size was extracted 

from the i3 Cleantech Group, FactSet, and Orbis databases, and complemented and verified in a 

web search. We included industry fixed-effects for the 17 sub-sectors in our statistical models. 

                                                           
12

  These include direct payments or reimbursements. 
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Figure 4 shows the average number of patents per sub-sector. We measured firm size by the number 

of employees, and age as the time interval since the founding year.  

---------------------------------- 

Insert Figure 4 about here 

---------------------------------- 

Location. While we look at the global collaborations of US startups, we also account for the 

physical location of the startups, particularly in regional hotspots. For example, the Silicon Valley 

and San Francisco area are together home to 168 of the 783 (i.e., 21% of our sample) cleantech 

startups. We examined whether firms that are located in geographically dense areas have higher 

propensities to innovate, achieve growth outcomes, or survive. We collected information on firm 

addresses from the i3 Cleantech Group, FactSet, and Orbis databases, and mapped the zip codes to 

the respective Metropolitan Statistical Area (MSA) 13 for 2011. We applied two different approaches 

to account for locational influences. The first approach was to capture the variance in the 

concentration of cleantech startups in the different MSA by using the percentage of total firms 

located in the respective MSA (for a similar approach, see, for example, DeCarolis & Deeds, 1999; 

Folta, Cooper, & Baik, 2006). As shown in Figure 5, around 40% of the firms are located in the San 

Francisco-Oakland-Fremont, Boston-Cambridge-Quincy, New York-Northern New Jersey-Long 

Island, San Jose-Sunnyvale-Santa Clara, and Los Angeles-Long Beach-Santa Ana region, and the 

rest of the firms are spread across the country or located in smaller regional hubs. The second 

approach was to directly include fixed effects for each MSA to check the robustness of the 

concentration measure.   

---------------------------------- 

Insert Figure 5 about here 

                                                           
13

  We also included the same evaluation for Combined Statistical Area (CSA) distinction, which revealed similar results in our 

statistical models. 
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---------------------------------- 

Figure 6 shows the average number of patents in the Top 15 MSAs. Not surprisingly, the San 

Jose-Silicon Valley area is among the highest in average patents per firm. However, the MSAs of 

Santa Rosa-Petaluma, CA, displayed an even higher average number of patents per startup. 

---------------------------------- 

Insert Figure 6 about here 

---------------------------------- 

RESULTS 

A summary of the descriptive statistics and correlations for the 783 startups in our sample, 

averaged over time, is provided in Table 2. Our dependent variables patenting activity and 

financing deals are not highly correlated with any of the other variables. The startups in our sample 

introduced an average of 1.8 patents every year (mean = 1.84 per firm-year), and, on average, 

attracted more than one financing deal every two years (mean = 0.66 per firm-year). Overall, while 

all of our startups had collaborations in at least one of the four two-year windows (2008-2009, …, 

2011-2012), 13.75% of the startups collaborated with at least one government organization between 

2008 and 2012.   

---------------------------------- 

Insert Table 2 about here 

---------------------------------- 

We analyze the data with negative binomial regressions for the count variables—patenting 

activity and financing deals—because of overdispersion. We use robust standard errors and include 

time- and sector-fixed effects in our models. For each outcome variable, we calculated three 

different models: Models 1 and 2 for the overall impact of the controls and partner type variables 

respectively, and Model 3 for the granular separation in collaboration types per partner. The 

estimates for industry and time period effects are, although estimated, not reported to conserve 
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space.
14

 Table 3 reports the estimated coefficients of four negative binomial regression models on 

patenting activity. The results indicate that—compared to startup collaborations with universities or 

research institutes, not-for-profit partners, other public organizations, and other startups or 

established firms—only the startups that collaborate with and are part of the network of the most 

central government organizations are associated with larger cleantech startup patenting (β = 2.16, p-

value < 0.01, Model 2). As negative binomial regressions model the log of incident counts, this 

estimate implies that a one-unit increase in centrality with governmental partners increases the log 

of patenting activity by approximately 2.16.
15

 Thus, we found support for H1. As hypothesized in 

H2, we found that market-based collaborations with governments are associated with reductions in 

innovation activities (β = -1.71, p-value < 0.01, Model 3). H3 is only partially supported, as joint 

technology development collaborations (β = 2.25, p-value < 0.01, Model 3) are associated with 

more startup innovation than licensing collaborations (β = 0.63, n.s., Model 3). However, when the 

analysis is conducted separately for the 59% of startups that are part of the larger ecosystem and for 

the 41% of startups that are largely operating in smaller networks (dyads, triads, etc., see Figure 2), 

we found that governmental licensing collaborations are associated with greater startup innovation 

activities for those that operate outside of the larger, connected ecosystem (Model 4). This 

interaction is depicted in Figure 6.  

---------------------------------- 

Insert Table 3 about here 

---------------------------------- 

---------------------------------- 

Insert Figure 6 about here 

                                                           
14   These estimates are available from the authors upon request. 
15

  This estimate can also be expressed in terms of a percentage increase, i.e., the incidence rate ratios (IRR), where percentage is 

determined by the amount that the IRR is either below or above 1. The IRR for collaboration with central governmental partners 

is 8.67 (IRR = eβ), which implies that patenting activity increases by approximately 767% with every one unit increase in 

centrality. The centrality measure is a continuous variable between 0 and 1 (see Table 2), where a one unit increase implies a 

large change from minimum to maximum levels of eigenvector centrality, which explains the large coefficient and IRR. 
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---------------------------------- 

The results on the impact of collaboration with governmental partners on the ability of 

startups to attract financial investments are shown in Table 4 (private financing deals). The results 

provide only partial support for H4, as both joint technology development and market 

collaborations have no significant effect on subsequent financing deals. However, we found that 

public licensing collaborations increase subsequent financing deals (β = 1.19, p-value < 0.01, 

Model 3) and therefore could serve as an important signal to investors.  

---------------------------------- 

Insert Table 4 about here 

---------------------------------- 

Additional Analysis 

To check the robustness of our results and to rule out alternative explanations, we specified 

several alternative econometric models and measures of central partners that revealed similar 

results, available upon request from the authors. The same models in a panel set-up using a fixed-

effect specification revealed robust coefficients and comparable results without inclusion of the 

time-invariant variables (see Table 5). Models using a binary variable on whether the startups 

achieved a growth outcome (IPO or M&A within 6 years after founding) in a logit regression 

revealed similar results to the private financing deals models. To understand the impact of our 

control variable on general public financing, all of the above models were calculated including a 

count variable on the number of awards that the startups received from DOE in the time frame, 

which also provided identical results. Finally, models using power centrality and average distance 

weighted reach as alternatives to eigenvector centrality measures also revealed similar results. 

---------------------------------- 

Insert Table 5 about here 

---------------------------------- 
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Furthermore, there may also be a concern that our dataset and the relationships we detected 

could be inflated due to an endogeneity problem. The ability of startups to find a governmental 

partner may be correlated to their innovation abilities, and we do not have access to a randomized 

control trial or other quasi-experimental approach (e.g., IV or DID). But our hypothesis and 

findings do not rely on a causal interpretation. Even if the results are explained by more innovative 

or capable startups pursuing collaboration with governmental partners, our results indicate that the 

more innovative startups see value in particular types of partners and collaborations. We further 

conducted propensity score matching and tested the treatment effect on similar firms based on age 

size, prior private and public financing deals, prior patents, and location. Our findings indicate 

significant Average Treatment Effects (ATE) (p < 0.1) for patenting activity, such as that firms with 

governmental partners showed a higher patenting activity. For private financing deals, our findings 

revealed significantly (p < 0.05) higher ATE of private financing deals for startups with 

governmental partner.   

DISCUSSION 

This study examines the impact of startup collaboration with network central government 

organizations on the ability of startups to innovate and to attract financial investments, when 

compared to collaboration with research institutes and universities, not-for-profit organizations, or 

other startups or established firms. Following the call of Laursen and Salter (2006, 2014), we 

develop a framework that separates the knowledge flows from these different partner types and 

show that each of them can have different effects on startup innovation activities. Our framework 

extends the emerging literature on entrepreneurial ecosystems by drawing on resource dependence 

theory to highlight collaboration with governmental partners that hold key resources for startup 

innovation. Our novel dataset on the global collaborations of 783 US cleantech startups between 

2008 and 2012 enables the quantification of the relation between startup innovation outcomes and 



30 

 

different types of collaborations with governments, i.e., market-based vs. technology-based or tacit 

from joint technology development vs. codified from acquiring public licenses. Overall, our study 

extends openness and alliance perspectives on firm innovation and contributes to the ecosystems 

literature in the following ways.  

Openness and Alliances 

Our study contributes to research on openness and interorganizational alliances with a focus 

on startups. Though prior research has often emphasized the benefits of collaboration with as many 

and diverse partners for innovation, we motivated a scenario that acknowledges that startups have 

more limited resources than other firms and that collaborating with a diverse set of partners is a 

resource intense endeavor. In this study, the relative impact of collaboration with all potential 

partner types on startup innovation activities not only considered potentially distinct dynamics by 

distinguishing knowledge flows and value appropriation from collaboration with network central 

government organizations and other central startups or established firms, but also between 

universities, private research institutes, and other not-for-profit partners such as NGOs or 

environmental groups. Our findings provide novel empirical evidence on the importance of 

collaboration with network central governmental partners that hold critical technological resources 

in the cleantech sector resulting from their long-term experience, expertise, and commitment. These 

technological resources might be highly complementary to the abilities of startups in identifying 

and responding to market opportunities by developing novel solutions to market needs using jointly 

developed or licensed technologies. Combined with the reduced concerns of appropriability and 

opportunistic or exploitative behavior as opposed to other firms or VCs, these unique characteristics 

make governments key, yet so far undervalued, partners.   
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Moreover, our findings on the types of collaborations and the importance of joint technology 

development collaborations for innovation activity and of licensing collaborations with 

governments for follow-on investments provide novel insights into when governmental partners are 

beneficial for startups, and enrich research on openness by developing even more “fine-grained 

items for each of the possible knowledge channels” (Laursen & Salter, 2006: 147). The 

quantification of the relation between joint technology development, licensing collaborations and 

startup innovation further provides a new perspective on the benefits of collaboration with 

governments through different forms of knowledge exchanges and possibilities of spillovers. While 

access to more implicit and tacit knowledge sources from joint technology development are more 

important for subsequent innovation activities than codified knowledge from public licensing, the 

latter is associated with an increased likelihood of attracting financial investments.  

Entrepreneurial Ecosystems 

Our study advances research on entrepreneurial ecosystems in two main ways. First, we 

suggest an important theoretical grounding for determining the top or ‘anchor’ partners that are 

associated with more entrepreneurial innovation by using resource dependence theory that takes an 

ego-centric view on organizations. With its focus on organizations’ management of their external 

relations to ensure access to those organizations in their environment that have greatest discretion 

over the most valuable technological resources (Pfeffer & Salancik, 1978), resource dependence 

theory offers avenues to understand which type of partner and collaboration is associated with 

highest levels of startup innovation. Our findings show that joint technology development and 

licensing collaborations with governments represent the most important components of the 

ecosystem that contribute to increased innovation. Moreover, our dynamic perspective on 

entrepreneurial innovation combined with a focus on the whole network of startups rather than 
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specific dyads contributes to the call for multiplex and dynamic applications of resource 

dependence theory (Hillman et al., 2009).  

Second, by highlighting the role of governmental intervention for entrepreneurial innovation, 

we bring the tools and concepts of entrepreneurial ecosystems focused on the firm-level to study a 

question that was previously mostly investigated at the macro-level in technological innovation 

systems (TIS) research (e.g., Bergek et al., 2008; Hekkert et al., 2007). While both approaches have 

the focus on organizations and networks in common, there are two main differences: (1) ecosystems 

research focuses on the impact of a firm’s collaborations with other organizations, whereas firms 

only constitute one of many organizations in the larger systemic context that jointly contribute to 

the development and diffusion of new technologies in innovation systems. (2) The ecosystems 

concept has been derived from a biological and ecological perspective, and generally assumes that 

the system develops organically and that firm interactions are primarily governed by market 

demands. Policy recommendations to improve ecosystem functioning are—if at all—mostly derived 

for local, geographically centered ecosystems. In contrast, the TIS approach takes a more macro-

level perspective on organizations and their global networks, and points to specific system 

bottlenecks—or ‘functions of innovation’—for designing adequate policies to steer system 

development. Our findings show that these research streams are highly complementary and can 

benefit from each other’s views in two ways: (a) by setting the boundaries of the entrepreneurial 

ecosystem outside of specific geographic hotspots or local clusters (Adner, 2006; Autio et al., 2014) 

and (b) by identifying system failures through the study of contextual factors that affect startup 

outcomes (Hekkert et al., 2007; Jacobsson & Bergek, 2011). These two contributions are outlined in 

the following. 

The TIS approach enables a systemic perspective to first identify system failures and then 

develop adequate policy responses to addressing these failures while recognizing the global nature 
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of innovation (Grubler et al., 2012). The focus on public steering and the importance of central 

partners underlines the importance of exploring cleantech innovation on a geographic scale that 

moves beyond the regional clusters or ‘hotspots’ such as Silicon Valley. Our findings suggest that 

central US government organizations associated with more positive outcomes for startups, i.e., 

primarily the national laboratories such as NREL located in Golden, Colorado (see Figure 1), were 

not only acting away from regional hubs such as Silicon Valley, but collaborated with startups that 

are physically dispersed across the US. Furthermore, we distinguished two larger ecosystems for 

cleantech startup innovation. We found that the codified knowledge exchanges in the form of public 

licenses only affected the innovation activities of those startups that did not have access to the 

knowledge flows within the larger ecosystem. Thus, these findings highlight the importance for 

future research to set ecosystem boundaries outside of specific geographic hotspots or local clusters 

for studying outcomes at the firm (startup) level.   

By putting the contextual factors that support increased levels of short-term entrepreneurial 

innovation at the center of analysis (most prominently on the types of partners and types of 

collaborations), the insights from entrepreneurial ecosystems research provide an avenue to account 

for the missing focus on entrepreneurial outcomes in TIS research (Ács, Autio, & Szerb, 2014). 

Much of the extant analyses on the function of ‘entrepreneurial activities’ in TIS are based on the 

pure number of new firm founding (i.e., quantity) with the implicit assumption that all startups 

innovate or have equal probabilities of success (e.g., Hekkert et al., 2007; Pacheco, York, & 

Hargrave, 2014; Sine, Haveman, & Tolbert, 2005). Resonating with the recent contribution of 

Guzman and Stern (2015)—highlighting the importance of studying entrepreneurial outcomes, or 

‘quality’ rather than ‘quantity’—our findings indicate that cleantech startups show different levels 

of innovation activities, and that the level of innovation is associated with very specific 

characteristics of their collaborative environment. In turn, collaboration with government 
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organizations, which are studied at a macro-level in TIS but were largely absent from the 

entrepreneurial ecosystems literature, seem to be important for startup outcomes in the US 

cleantech sector.   

Practical Implications 

Our findings are important for policymakers, entrepreneurs, and investors involved in the 

cleantech sector. Policymakers can benefit from our results to understand what types of 

governmental partners and collaborations are associated with more innovative startups and follow 

on investments. Our results highlighting the potential role of government organizations as partners 

complement existing research on the role of governments as financiers of innovation activities 

through supply-push or demand-pull policies, providing relevant information for resource 

allocation. Entrepreneurs and investors can benefit from our findings that may help support 

resource-constrained startups in identifying the type of partner and collaboration that is associated 

with the highest innovation and funding outcomes.  

Our findings underscore the need for policymakers to provide sufficient and stable funding 

for longer-term research activities for government organizations. We found that central 

governmental partners are the most important drivers of startup innovation activities, particularly in 

the form of joint technology collaborations. We proposed that government organizations possess 

critical technological resources for startup innovation activities that result from their long-term 

experience and expertise in the clean power and transportation sector. Furthermore, reduced 

concerns of appropriability and opportunistic behavior make government organizations key partners 

for startup innovation. Hence, our results point towards an approach for stimulating cleantech 

innovation that recognizes the importance of collaboration between historically-dominant 

centralized laboratories focused on national capabilities—e.g., R&D laboratories at public 
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incumbent firms such as Bell Labs, or governmental laboratories such as NREL—with private 

sector activities and more recent and smaller-scale phenomenon of startups. 

Our findings also indicate that access to central partners by being part of their ecosystem 

enables increased innovative activities—regardless of geographical proximity—at least in the 

cleantech sector. Hence, despite the recognized importance of geographical concentration in 

specific technological hotspots or physical proximity to these regions (Jaffe, 1986; Krugman, 1991; 

Owen-Smith & Powell, 2008; Powell et al., 1996; Saxenian, 1996), co-location in technology 

hotspots might be more important for startups operating in sectors that are characterized by frequent 

changes, high-turnover rates, and smaller capital requirements than in the energy space, such as in 

IT. This could be explained by the fact that clean technologies are more heterogeneous than those in 

other sectors (such as IT or biotech), with different technologies having very different knowledge 

bases ranging from semiconductor electronics and materials in solar, to aerodynamics and 

composite materials in wind, to enzymes and combustion in biofuels. The heterogeneity in the types 

of technologies in the cleantech sector may mean that different locations may be better for startups 

active in different technology areas; this would imply that having a critical mass of resources 

(including expertise) in one place for all of them might be more difficult. Hence, cleantech startups 

may have to resort more to collaboration, which in turn may be more geographically dispersed. 

Moreover, the importance of public licenses for innovation activities for those startups that are not 

part of the larger inter-connected network (see Figure 2) suggests that the value of public licenses 

differs based on the network position of the startup as compared to the geographical location of 

startups. Nevertheless, independent of network position or geographical location, public licenses are 

associated with improved follow-on investment outcomes, which could be a reflection of the fact 

that investors reward a particular technology ‘in hand’ more than a joint technology development 

collaboration.  
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Limitations and Future Research 

As with all empirical studies, ours is not without limitations. First, while we look at the global 

collaborations of startups, we only study the impact on cleantech startups located within the US. 

Nevertheless, our findings regarding the value of different types of partners and collaborations 

provide a relatively complete picture of the cleantech startup sector given that a large majority of 

cleantech startups are located in the US, our sample comprises the whole country, and we consider 

startup collaborations to global partners. However, we see exciting opportunities for future research 

to conduct comparative studies and explore the impact of different types of partners and 

collaborations in a different country context, as cleantech startups become more prevalent outside 

of the United States. Second, while we explore the impact of collaboration types on innovation in 

terms of increases in the number of patents, we do not use the approach of counting patent citations 

to address novelty or radicalness for two reasons. (1) Patent citations are an insufficient measure of 

novelty as citations are often added by patent examiners rather than the inventors, and tend to also 

depend on the sector and expertise of examiners in addition to the quality of the patent in itself (e.g., 

Lemley & Sampat, 2012; Nelson, 2009). (2) While our sample is unique in its newness, the time 

period from 2008 to 2012 includes very recent patents for relatively new firms for which citations 

may not a valid measure. Third, our focus on the short-term impact of collaboration on startups is 

driven by the short-term imperative for startups to achieve successful outcomes. However, future 

research could extend our findings and evaluate the impact of collaboration over a longer-term 

focus than our time frame from 2008 to 2012.  In addition, while we were able to show that 

particular collaborations are associated with better innovation outcomes, further knowledge of what 

types of resources and collaborations the ‘more successful’ firms are searching can greatly benefit 

entrepreneurs, investors, and policymakers alike. Additionally, even if more capable and innovative 

firms are those that are more likely to identify and secure such collaboration, future work may be 
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able to determine more definitively the extent to which better partners are far-sighted enough to 

seek value in government collaborations or whether the collaborations themselves make partners 

more innovative. Future work may be able to use regression discontinuity approaches to separate 

firm quality from direct collaboration impact, for example, or even study the reciprocal effects. 

Integrating a resource dependence theoretical lens into the entrepreneurial ecosystems literature 

may provide important further insights into such reciprocal effects besides the outlined theoretical 

grounding to determine the top partners and partnerships for increased innovation. According to 

resource dependence theory, next to managing resources, organizations can successfully deal with 

uncertainty by trying to shape governmental regulations for a more favorable environment. While 

this strategy is typically reserved for larger, established firms that have sufficient resources for 

engaging in political activities, the access to the relevant governmental bodies through technology 

and licensing collaborations can provide a more realistic opportunity for resource-constrained 

startups to also shape governmental regulations (Lin, 2014 provide similar arguments for why 

startups should forge relationships with governmental bodies). Fourth, while this study already 

provides a fine-grained analysis of partner types by splitting network measures into collaboration 

types, future research could look more explicitly at the interorganizational network and explore 

differences in terms of collaboration with suppliers, customers, or competitors. Fifth, while our 

results point to the value of collaboration, we look at the relationship between collaboration and 

startup innovation activity in a specific period (2008 – 2012) that faced a global financial crisis. 

Although we control for time-changes in the statistical models and our results emphasize on 

collaboration in a time of financial resource constraints, additional research on either other sectors 

during the financial crisis, or on the cleantech sector in less constrained periods, could test the 

extent to which the results are specific to a time of limited financing.  
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FIGURE 1 

Network graphs  
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Graph of start-up (black) collaborations with governmental partners (grey) weighted by the 

eigenvector centrality from 2009 (top left) to 2012 (bottom-right). The collaborations are 

technology-based (red) or market-based (blue). The most central governmental partners with the 

highest eigenvector centralities are labeled.  
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Graph of start-up (black) collaborations with other firms (grey) weighted by the eigenvector 

centrality from 2009 (top left) to 2012 (bottom-right). The collaborations are technology-based 

(red) or market-based (blue).  
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FIGURE 2 

Differentiation of larger, well-connected ecosystem 
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FIGURE 3 

Overview of Private Investments 
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FIGURE 4 

Average patenting activity per firm per sector  
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FIGURE 5 

Locational distribution of US cleantech startups 
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FIGURE 6 

Average patenting activity per firm per Metropolitan Statistical Area (MSA)
 16
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FIGURE 7 

Interaction Effect 
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TABLE 1 

Overview and explanation of the five collaboration types in the startup-database 
 

Collaboration Type Example 

Technology-based 

collaboration 

joint technology 

development  

Arcos Silicon and Broadcom Corporation partnered to 

improve the interoperability of their power-over-ethernet 

(PoE) products. 

Sapphire Power has partnered with University of California, 

San Diego to demonstrate the viability of saltwater algae in 

the production of biofuels. 

licensee Natcore has been granted a patent license agreement from 

NREL to develop and commercialize a line of black silicon 

PV products.  

Market-based 

collaboration 

procurement or 

customer 

As part of a purchase agreement, Sustainable Green will 

become exclusive distributor of MagneGas fuel over a two 

year period in Pacific Northwest. 

Avista Corp. is buying the power produced by the Palouse 

Wind project under a 30-year power purchase agreement 

and will take delivery of the power through a direct 

interconnect to the Avista 230 kV Benewah-to-Shawnee 

transmission line. 

Additional forms 

of collaboration 

licensor ABB has signed a licensing agreement with ECOtality to use 

ECOtality's technology for ABB's EV charging network. 

project 

development  

Obsidian Renewables partnered with Swinerton Builders to 

develop the Black Cap Solar facility. 
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TABLE 2 

Descriptive Statistics and Correlations of Variables Used in Regression Analysis 

  

N n Mean S.D. Min Max 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 Patenting activity 
2724 767 1.835 4.979 0 69 1               

2 Private financing deals 
2738 771 0.666 1.175 0 13 0.21 1              

3 EC1: Government partner 
3297 783 0.003 0.036 0 1 0.04 0.04 1             

4 EC1: University/research partner 
3297 783 0.002 0.04 0 1 0.00 0.00 0.16 1            

5 EC1: Nonprofit partner 
3297 783 0.002 0.04 0 1 -0.01 -0.01 0.00 0.00 1           

6 EC1: Other public partner 
3297 783 0.002 0.035 0 1 0.00 -0.01 0.00 0.00 0.00 1          

7 EC1: Cleantech startup partner 
3297 783 0.004 0.054 0 1 0.08 0.06 0.02 0.00 0.00 0.00 1         

8 EC1: Other inter-firm partner 
3297 783 0.002 0.03 0 1 0.00 0.05 0.00 0.02 0.00 0.00 0.04 1        

9 Pre-sample patents 
3297 783 3.868 11.004 0 94.42 0.33 0.08 -0.01 -0.01 0.00 0.04 0.02 0.01 1       

10 Prior private financing 
3297 783 1.42 2.079 0 15.57 0.34 0.45 0.05 0.04 0.03 0.02 0.08 0.07 0.26 1      

11 Prior public financing 
3297 783 0.051 0.258 0 3.15 0.00 0.02 0.01 0.10 0.01 0.01 -0.02 -0.01 -0.01 0.04 1     

12 DOE grants 
3297 783 0.042 0.242 0 4 0.08 0.03 0.07 0.08 -0.01 -0.01 0.04 0.01 0.08 0.1 0.05 1    

13 IPO or M&A 
2739 771 0.015 0.123 0 1 0.08 0.01 -0.01 -0.01 -0.01 0.03 -0.01 -0.01 0.04 0.07 -0.02 0.00 1   

14 Age 
3297 783 3.873 2.794 0 10 0.17 0.06 0.02 0.02 0.03 0.01 0.03 0.03 0.29 0.32 0.08 0.03 0.08 1  

15 Size (log) 
3042 716 3.13 1.612 0 8.92 0.32 0.23 0.00 -0.01 0.01 -0.01 0.05 0.08 0.28 0.36 -0.04 0.06 0.09 0.28 1 

16 Location (log MSA density) 
3297 783 3.094 1.456 0 4.78 0.12 0.14 0.00 0.00 0.03 -0.03 0.01 0.06 0.06 0.16 -0.06 -0.01 0.00 -0.01 0.08 

1 EC = Eigenvector Centrality 
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TABLE 3 

Estimated Coefficients from Negative Binomial Regressions  

(Robust Standard Errors in Parentheses) 

 Patenting activity 
Model 1:  

Controls 

Model 2:  

Partner Type 

Model 3:  

Partner and Collaboration 

Types 

Model 3a:  

Ecosystems 

Interaction 

Controls     
Pre-sample patents 0.06 0.07 0.07 0.07 

 
(0.01)** (0.01)** (0.01)** (0.01)** 

Prior private financing deals 0.19 0.19 0.18 0.18 

 
(0.02)** (0.02)** (0.02)** (0.022)** 

Prior public financing deals 0.09 0.10 0.10 0.10 

 
(0.11) (0.109) (0.112) (0.112) 

Part of large ecosystem 0.12 0.12 0.13 0.14 

 
(0.10) (0.10) (0.10) (0.10) 

Age -0.04 -0.04 -0.04 -0.04 

 
(0.02)+ (0.02)+ (0.02)+ (0.02)+ 

Size (log) 0.34 0.35 0.35 0.35 

  (0.04)** (0.04)** (0.04)** (0.04)** 

Location (log MSA density) 0.13 0.14 0.14 0.13 

 (0.03)** (0.03)** (0.03)** (0.03)** 

Partner Types     

Government partner  2.16   

 
 (0.83)**   

University/research partner  -0.94   

 
 (0.58)   

Nonprofit partner  -0.60   

 
 (0.76)   

Other public partner  -4.60   

 
 (1.11)**   

Cleantech startup partner  0.18   

 
 (0.55)   

Other inter-firm partner  -1.99   

 
 (0.92)*   

Partner and Collaboration Types     

Government technology collaboration   2.25 2.24 

 
  (0.65)** (0.65)** 

Government licensee collaboration   0.63 1.60 

 
  (0.46) (0.27)** 

Government market collaboration   -1.71 -1.71 

 
  (0.51)** (0.51)** 

     

Interaction Effect      

Government licensing collaboration x 

Ecosystem 
   

-2.34 

 
   (0.47)** 

University/research technology collaboration   0.89 0.89 

 
  (0.77) (0.77) 

University/research licensee collaboration   0.41 0.40 

 
  (0.35) (0.34) 

University/research market collaboration   -1.79 -1.78 

 
  (0.62)** (0.62)** 

Inter-firm technology collaboration   -0.16 -0.17 

 
  (0.46) (0.46) 

Inter-firm licensee collaboration   0.96 0.81 

 
  (0.34)** (0.34)* 

Inter-firm market collaboration   0.56 0.56 

 
  (0.81) (0.81) 

Additional Collaborations as Control 

Nonprofit partner   -0.31 -0.32 
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  (0.70) (0.70) 

Other public partner   -5.15 -5.13 

   (1.39)** (1.37)** 

Project development collaboration   -29.87 -29.89 

 
  (8.74)** (8.73)** 

Licensor collaboration   -1.80 -1.63 

 
  (1.21) (1.24) 

Time-fixed effects included Y Y Y Y 

Sector-fixes effects included Y Y Y Y 

Constant -2.04 -2.08 -2.10 -2.11 

 
(0.19)** (0.19)** (0.20)** (0.20)** 

lnalpha Constant 1.07 1.06 1.04 1.04 

  (0.05)** (0.05)** (0.05)** (0.05)** 

Observations 2,503 2,503 2,503 2,503 

Cragg & Uhler's R21  0.083 0.085 0.088 0.088   

McFadden's R2 0.240 0.245 0.252 0.253 

Log likelihood -3,605.74 -3,598.85 -3,587.16 -3,586.04 

Prob > chi2 0.000 0.000 0.000 0.000 

+ p<0.1; * p<0.05; ** p<0.01 

   
1    We reported pseudo R2 (Cragg & Uhler and McFadden) as a means to compare model fit. We are aware of the fact that pseudo R2 does not provide similar information as the R2 reported after 

OLS. 
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TABLE 4 

Estimated Coefficients from Negative Binomial Regressions  

(Robust Standard Errors in Parentheses) 

 Private financing deals 
Model 1:  

Controls 

Model 2:  

Partner Type 

Model 3:  

Partner and 

Collaboration Types 

Controls       

Prior patents -0.00 -0.00 -0.00 

 
(0.00) (0.00) (0.00) 

Pre-sample private financing deals1 0.25 0.24 0.25 

 
(0.02)** (0.02)** (0.02)** 

Prior public financing deals 0.08 0.08 0.09 

 
(0.15) (0.15) (0.15) 

Part of large ecosystem 0.16 0.16 0.17 

 
(0.07)* (0.07)* (0.07)* 

Age -0.10 -0.10 -0.10 

 
(0.02)** (0.02)** (0.02)** 

Size (log) 0.18 0.18 0.18 

  (0.02)** (0.02)** (0.02)** 

Location (log MSA density) 0.12 0.13 0.13 

 (0.02)** (0.02)** (0.02)** 

Partner Types    

Government partner  1.11  

 
 (0.81)  

University/research partner  -0.38  

 
 (0.62)  

Nonprofit partner  -1.75  

 
 (1.33)  

Other public partner  -0.84  

 
 (0.70)  

Cleantech startup partner  0.21  

 
 (0.39)  

Other inter-firm partner  0.04  

 
 (0.52)  

Partner and Collaboration Types    

Government technology collaboration   0.87 

 
  (0.73) 

Government licensee collaboration   0.91 

   (0.35)** 

Government market collaboration   -1.44 

 
  (0.91) 

University/research technology collaboration   -3.03 

 
  (1.57)+ 

University/research licensee collaboration   0.42 

 
  (0.44) 

University/research market collaboration   0.21 

 
  (0.53) 

Inter-firm technology collaboration   0.20 

 
  (0.56) 

Inter-firm licensee collaboration   0.70 

 
  (0.21)** 

Inter-firm market collaboration   -0.51 

 
  (0.65) 

Additional Collaborations as Control 

Nonprofit partner   -1.55 

 
  (1.41) 

Other public partner   -1.23 
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   (0.73)+ 

Project development collaboration   -3.80 

 
  (1.20)** 

Licensor collaboration   -0.60 

 
  (0.47) 

Time-fixed effects included Y Y Y 

Sector-fixes effects included Y Y Y 

Constant -1.82 -1.83 -1.85 

 
(0.14)** (0.14)** (0.14)** 

lnalpha Constant -0.12 -0.13 -0.16 

  (0.10) (0.10) (0.10) 

Observations 2,507 2,507 2,507 

Cragg & Uhler's R21  0.150 0.153 0.160 

McFadden's R2 0.063 0.064 0.067 

Log likelihood -2,732.82 -2,729.38 -2,719.99 

Prob > chi2 0.000 0.000 0.00 

+ p<0.1; * p<0.05; ** p<0.01 
   1 Similar to the patenting activity models, we changed the prior financing variable to include only pre-sample private financing deals to control for unobserved 

heterogeneity in firm patenting (e.g., Schilling and Phelps, 2007). However, including the same variable as in the patenting models (of the previous year) revealed 

similar results.  
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TABLE 5 

Estimated Coefficients from Fixed-Effects Negative Binomial Regressions  

(Standard Errors in Parentheses) 
 

 Patenting activity  Private financing deals 

  
Model 1:  

Partner Type 

Model 2: Partner and 

Collaboration Types 

Model 1:  

Partner Type 

Model 2: Partner and 

Collaboration Types 

Partner Types         

Government partner 0.80  0.24  

 
(0.41)+  (0.62)  

University/research partner 0.08  -0.97  

 
(0.57)  (0.744)  

Nonprofit partner -0.82  -1.80  

 
(0.71)  (0.97)+  

Other public partner -2.13  -0.08  

 
(1.34)  (1.04)  

Cleantech startup partner 0.19  0.15  

 
(0.32)  (0.38)  

Other inter-firm partner 0.34  0.52  

 
(0.93)  (0.73)  

Partner and Collaboration 

Types 
     

Government joint 

technology development 

collaboration  
 

0.76 

 

0.52 

  
(0.41)+  (0.66) 

Government licensee 

collaboration  

0.11 
 

0.01 

  
(0.43)  (0.48) 

Government market 

collaboration  

-0.23 
 

-0.39 

  
(0.78)  (1.11) 

University/research 

technology collaboration  

0.12 
 

-3.81 

  
(0.46)  (2.01)+ 

University/research 

licensee collaboration  

0.44 
 

-0.52 

  
(0.35)  (0.49) 

University/research market 

collaboration  

0.18 
 

0.85 

  
(0.55)  (0.76) 

Inter-firm joint technology 

development collaboration  

0.12 
 

-0.29 

  
(0.40)  (0.66) 

Inter-firm licensee 

collaboration  

0.36 
 

0.61 

  
(0.25)  (0.30)* 

Inter-firm market 

collaboration  

0.26 
 

0.22 

  
(0.47)  (0.74) 

Additional Collaborations as Control   

Nonprofit partner 
 

-0.67  -1.67 

  
(0.71)  (0.99)+ 
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Other public partner  -2.30  -0.32 

  (1.31)+  (1.03) 

Project development 

collaboration  

-4.91 
 

-1.72 

  
(7.75)  (2.51) 

Licensor collaboration 
 

-2.14  -0.13 

  
(1.30)+  (0.77) 

Time-fixed effects included Y Y Y Y 

Sector-fixes effects 

included 
N N N N 

Constant 0.74 0.73 1.33 1.37 

  (0.12)** (0.12)** (0.24)** (0.24)** 

Observations 1,459 1,459 1,695 1,695 

Log likelihood -1,645.68 -1,641.50 -1,310.41 -1,302.66 

Wald chi2 28.37 33.82 21.20 29.80 

Prob > chi2 0.001 0.006 0.012 0.020 

 


