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1. Introduction

Most would agree that modern economic growth is ultimately based in advances in science (Mokyr,

2002). Although universities and public research institutes are responsible for performing scienti�c

research, in many industries the leading �rms have also made signi�cant contributions to scienti�c

knowledge. Beginning with the German chemical �rms in the 1880s, corporate research labs became

more widespread in the 1930s, led by companies such as AT&T and DuPont. Scholars have argued

that such investments have been a source of advantage to these �rms (Griliches, 1986; Gambardella,

1995; Cockburn and Henderson, 1998). Corporations invested in science primarily to develop sig-

ni�cant new products and processes, but also to help absorb external knowledge, and perhaps to

attract talented workers.

However, since the 1990s, many leading �rms have signi�cantly reduced their investment in

research.1 Articles in the popular press lament the demise of top-�ight corporate labs, crediting the

rise of small research-intensive start-ups, often fuelled by venture capitalists (e.g., Economist, 2007).

Other accounts blame the growing �nancial considerations that cloud the judgment of managers

(Lazonick, 2013). Figure 1 shows that the share of research in the total non-federal investment in

R&D, a rough approximation for the share of research in private R&D, has steadily declined since

the 1990s.

[Insert Figure 1 here]

In this paper, we provide new evidence on the changing structure of corporate research. Over

the period 1980�2007, we �nd that investments in scienti�c research by publicly traded American

companies, as measured by publications in scienti�c journals by company scientists, has diminished

over time. Moreover, the implied value of scienti�c capability has also declined. Speci�cally, we

show: (i) a decline in publications by large American �rms; (ii) a decline in the market value

premium of the stock of publications; (iii) a fall in the acquisition premium paid for publications

in M&A; and (iv) a decline in post-acquisition publication activity by target-�rm scientists. By

contrast, (v) patenting by �rms has increased and (vi) the implied value patents, including the

premium paid for patents in M&A, has remained stable, or perhaps even increased. These patterns

are present across a range of industries, except biotechnology.

1For simplicity, we use the terms �science� and �basic research� interchangeably. This usage is not universally
agreed upon, and with good reason. However, our choice is with an eye to the di¢ culty of empirically successfully
distinguishing between scienti�c and basic research. When not likely to create confusion, we sometimes simply use
�research�for brevity.
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We interpret these patterns as part of a longer historical process wherein �rms are specializing in

di¤erent parts of the innovation value chain, with many large �rms becoming less reliant on internal

research and more reliant upon external inventions. Large �rms continue to value the golden eggs

of science (as re�ected in patents, and in citations to scienti�c publications in patents) but not

the golden goose itself (a �rm�s scienti�c capabilities). These patterns may also involve a greater

emphasis on the �D�of R&D, and on short-term and incremental innovation, which often does not

require large investments in science (e.g., Lazonick and Tulum, 2011).

A concern is that our results may merely re�ect changes in how �rms protect their knowledge.

Large �rms may still be investing in science but may be publishing less, perhaps in order to patent

or better protect their research �ndings. In principle, the strengthening of intellectual property,

particularly patents, should encourage rather than discourage �rms from publishing (Gans, Murray,

and Stern, 2013). But even if the �rms are eschewing publication to avoid inadvertent disclosure of

commercially valuable �ndings, we would expect that they would particularly avoid applied scienti�c

journals. Applied journals are more likely to contain �ndings close to commercial applications. We

�nd instead that the decline in �rm publications is especially marked for publications in high-

impact scienti�c journals, as well as in journals dedicated to basic rather than applied research.

Moreover, provided that science remains valuable, changes in publication behavior should not a¤ect

the premium for scienti�c capability paid by acquiring �rms in M&A, contrary to what we �nd.

Overall, our results suggest that large �rms are withdrawing from investing in science internally

and focusing more on development (less �R� and more �D,") rather than simply changing their

publication behavior.

Firms would reduce investment in science if science itself becomes less useful for innovation

(Jones, 2009; Gordon, 2012). However, we do not see any decline in the number of patent citations

to science over time, nor do we �nd any evidence that the science used in inventions is growing

older. Thus, the decline in private investments in science cannot be explained away by a reduction

in the usefulness of new science. The patterns in citations to scienti�c journals by patents also

make it unlikely that our results are driven by reduced incentives to absorb external knowledge.

There is substantial evidence that many large �rms increasingly rely on external knowledge to

fuel their growth (Arora and Gambardella, 1990; Arora, Fosfuri, and Gambardella, 2001; Higgins

and Rodriguez, 2006; Mowery, 2009). A greater division of innovative labor should increase, not

decrease, the incentives of large �rms to invest in science for absorptive capacity purposes. Indeed,

we �nd that �rms with higher scienti�c capability cite more recent science in their patents, and this
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e¤ect has not declined over time.

Although problems of appropriating the bene�ts of scienti�c research are well known, there is no

evidence that these problems have worsened over time. If anything, stronger patent and copyright

laws appear to have made scienti�c knowledge easier to protect. Nor do our �ndings re�ect a

purely American phenomenon, driven by idiosyncratic changes in American institutions. We �nd

similar results for European �rms (both public and private) that we matched with our patent and

publication data.

We argue that lower investments in science by large �rms likely re�ect reduced incentives to

develop signi�cant new products and processes internally. Two pieces of evidence support this

interpretation. First, increased global competition (as measured by changes in Chinese import

penetration) is associated with reductions in investments in science, R&D expenditures, and physical

investment, and a decline in the stock market value of publication stock. Interestingly, however, the

propensity to patent increases, as does the stock market value of patent stock. These contrasting

trends suggest that increased global competition is associated with a shift away from the creation

of new knowledge and toward the commercial application and protection of existing knowledge.

Second, the decline in investments in science is also associated with narrowing �rm scope. A

famous conjecture in innovation studies is that investments in basic research are more pro�table in

diversi�ed �rms, either because of scope economies in research (Henderson and Cockburn, 1996)

or because �[a] broad technological base insures that, whatever direction the path of research may

take, the results are likely to be of value to the sponsoring �rm�(Nelson, 1959: 302). Using �rm-

level data on sales concentration to measure �rm scope, we �nd that moving from the lowest to

the highest decile of decrease in �rm scope is associated with a drop of 87 percent of the sample

average in publications. Also, we �nd a decline in the stock market value of publications as �rms

narrow their scope. Thus, narrower �rm scope may be an additional mechanism behind the decline

in scienti�c capability of large �rms.

Our �ndings have important implications for managers and policy makers alike. We �nd that sci-

enti�c capability continues to be important for innovation but that large �rms face lower incentives

to develop signi�cant new products and processes internally, and have reduced their investments in

science. To some extent, they rely upon startups to develop new inventions. In turn, such startups

themselves rely, at least in part, upon university research. The decline in public support for scienti�c

research, manifest in tightening budgets at NSF and NIH, may therefore depress the production of

new knowledge signi�cantly.
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This withdrawal of large �rms from science has been accompanied by a growing division of inno-

vative labor in which large �rms focus on development and commercialization, leaving universities

and small �rms to generate new ideas (e.g., Arora and Gambardella, 1994). However, our results

also suggest that small, science-intensive �rms cannot simply rely on generating scienti�c knowl-

edge and hope to be acquired. Because the rewards for pure scienti�c capability have diminished,

these �rms also have to invest in �nding tangible commercial applications of their ideas. To the

extent that universities and small �rms are ill-equipped to undertake this more applied research,

ine¢ ciencies may result.

Our results also inform debates on the e¤ects of competition and globalization on innovation.

Research in the Schumpeterian tradition warns that competition may be detrimental to innovation

because, by destroying monopoly rents, it may reduce the incentives to innovate (Schumpeter,

1942). On the other hand, the desire to escape the competition may induce incumbents to invest

and innovate more (e.g., Aghion et al., 2005; Bloom et al., 2011). Our results indicate that both

forces are at work, but for di¤erent types of research (basic versus applied). Competition may

also be behind the narrowing scope of �rms, which may reduce their incentives to invest in longer-

term and more basic scienti�c research, while enhancing incentives to undertake more incremental,

patentable research.

The remainder of the paper is organized as follows. Section 2 provides some historical and

conceptual background for the empirical analysis, and relates our work to the existing literature.

Section 3 discusses our data sources. Sections 4 to 7 describe our econometric speci�cations and

present our estimation results. Section 8 discusses some of the implications of our �ndings, while

Section 9 concludes.

2. Background

2.1. Evolution of corporate research and the division of innovative labor

Several institutions contribute to the advancement of science. Historically, universities and government-

sponsored programs, such as the National Institutes of Health in the U.S., have been the most

important. Despite the well-known problems in appropriating the bene�ts of investing in scienti�c

research, �rms have also invested in scienti�c research, and some corporate laboratories have made

very signi�cant contributions to science.

Corporate investments in science began modestly. The leading �rms of the 1870s and 1880s,

such as the railroad companies and Western Union, which relied heavily upon externally generated
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inventions, established industrial labs to evaluate the quality of inputs (Mowery, 1995; Carlson,

2013). Growing competition, anti-trust pressures, and the increasing output of university-trained

PhDs led companies such as GE and DuPont to invest in internal research to generate new products

and processes to create new markets and fuel growth (e.g., Hounshell and Smith, 1986). The

process gained momentum during the inter-war years, as corporations grew larger and more anxious

to control and �routinize� innovation. Landmark discoveries (e.g., synthetic rubber, nylon), the

growing practical applicability of recently discovered scienti�c principles, and the rapid increase in

government funding in the United States led to more companies investing in internal research after

World War II.

But corporate research often failed to deliver returns to shareholders. Discoveries such as nylon

and the transistor were few and far between. And even when fundamental advances in science or

technology were made, the sponsoring �rms often failed to pro�t from these advances (Teece, 2010).

The graphical user interface, for instance, was invented in Xerox�s PARC, but other �rms, most

notably Apple and Microsoft, reaped the rewards. By the 1980s, �rms began to look to universities

and small start-ups as sources of ideas and new products, using a mix of contracts, licenses, alliances,

and outright acquisitions. Many corporate labs were closed, downsized, or redirected toward more

commercial applications (Pisano, 2010). NSF data indicate that in 1985, �rms with more than

10,000 employees accounted for 73 percent of non-federally funded R&D. By 1998, this share had

dropped to 54 percent. By 2008, large �rms accounted for 51 percent of company-funded domestic

R&D. An additional indicator of the decline in the relative importance of large �rms is the sharp

drop in share of large �rms in the R&D 100 awards winners: whereas 41 percent of the awards went

to Fortune 500 �rms in 1971, only 6 percent went to Fortune 500 �rms in 2006 (Block and Keller,

2009).

Several factors contributed to the growing importance of small �rms, particularly in science-

intensive sectors. One is the more prominent role played by universities and other research institu-

tions in the commercialization of science. The 1980 Bayh-Dole Act encouraged universities to more

aggressively license and commercialize their discoveries, and scientists found it increasingly attrac-

tive to start their own businesses. The success of Genentech, a biotechnology company founded by

biochemist and Nobel Prize�winner Herbert Boyer and venture capitalist Robert A. Swanson, show-

cased the potentially huge rewards associated with such a strategy. Also, start-ups�high-powered

incentives were di¢ cult to replicate in large, established �rms, where bureaucracy, politics, and

the burden of past legacies tend to thwart radical change (Schumpeter, 1942; Leibenstein, 1966;

6



Christensen and Bower, 1996; Sull et al., 1997). Changes in the institutional and legal environment

have complemented these trends. Start-ups can get �nancing from venture capitalists and SBIR and

other government programs (Kortum and Lerner, 2000; Lerner, 1999; Mazzucato, 2013). Intellec-

tual property rights have been signi�cantly strengthened starting from the early 1980s, �rst in the

U.S. and subsequently in other countries (Ja¤e and Lerner, 2004; Guellec and van Pottelsberghe

de la Potterie, 2007). These developments have promoted a new division of labor, where small

start-ups specialize in scienti�c research and larger, more established �rms specialize in product

development and commercialization (Arora and Gambardella, 1994).

2.2. Conceptual background and contribution to the literature

Typically, investments in scienti�c research are undertaken by �rms to create new products or

processes and to absorb outside technology. Innovations sometimes arise directly from scienti�c ad-

vance (e.g., new drugs), sometimes they arise as indirect outputs of scienti�c research (e.g., laser),

and sometimes scienti�c research perform a very indirect role by enhancing the productivity of tech-

nical search, by guiding it toward more fruitful pastures (Evenson and Kislev, 1976, Gambardella,

1995; Fleming and Sorenson, 2004).

Investments in scienti�c research also help �rms absorb outside technology (Cohen and Levinthal,

1989; Arora and Gambardella, 1994; Gambardella, 1992). Scientists can help identify promising new

inventions, may engage with outside researchers who are creating new breakthroughs, and may help

with assimilating and adapting outside technology. Publishing in academic journals and attending

conferences, in particular, may be the most e¤ective way to remain �plugged in� to the external

scienti�c network (Rosenberg, 1990; Cockburn and Henderson, 1998).

Tracing the use of science in innovation is not easy. Narin et al. (1997) proposed using citations

by patents to scienti�c publications as a proxy. We �nd that patents continue to cite science at the

same rate as before, and the age of the cited publications is constant over time, indicating that new

scienti�c discoveries continue to be relevant for innovation. Moreover, publishing �rms cite more

recent science than non-publishing �rms, indicating that scienti�c capability continues to bestow

an advantage in terms of being able to absorb more recent scienti�c �ndings.2

2Engaging in scienti�c activities also enhances the reputation of the �rm and certi�es the quality of its research
to prospective investors, employees, government agencies, and sophisticated customers (Lichtenberg, 1988; Hicks,
1995; Audretsch and Stephan, 1996). Clinical studies, for instance, are routinely used by �rms in the pharmaceutical
industry to advertise the e¤ectiveness of their drugs to doctors and hospitals (Azoulay, 2002). Also, to the extent that
allowing employees to publish helps �rms recruit more talented researchers, participating in the process of advancing
science can be a pro�table strategy for some �rms (Stern, 2004; Roach and Sauermann, 2010). Our �ndings do not
speak to these possible reasons for engaging in scienti�c research.

7



Many scholars have documented the bene�ts of investment in science. Griliches (1986) analyzes

the drivers of productivity and pro�ts for a sample of the 1,000 largest manufacturing �rms in

the U.S. For the period 1957�1977, he �nds that the share of basic research in the �rm�s R&D

expenditure was positively related to measures of productivity growth. Hall, Ja¤e, and Trajtenberg

(2005) use a market value approach to measure the return to R&D investment for U.S. �rms in

the 1980s. Koenig (1983) �nds the drug output of large pharmaceutical companies is positively

related to their publication output (especially highly cited clinical articles). In 10 science-intensive

technological domains, Van Looy et al. (2003) �nd a positive relationship between the science

intensity of patents (i.e., the citations to the scienti�c, non-patent literature) and technological

productivity. A positive relationship can also be found between the market valuation of �rms and

the science intensity of their patents (Deng, Ley, and Narin, 1999) or their stocks of scienti�c

publications (Simeth and Cincera, 2013).

We extend these studies by including data from a later period and by focusing on smaller �rms,

which appear to be an increasingly important location for private-sector research. Consistent with

Griliches (1986), we �nd that a positive private value for scienti�c capabilities, but that in the latter

part of our sample, this valuation has fallen considerably. Also, in addition to stock market value

for publicly held corporations, we use acquisition price for Thomson SDC Platinum target �rms.

This allows us to examine the value of scienti�c capability for �rms that get acquired, which are

often small and privately held.3

Industry studies have also documented the bene�ts to investments in science. In the pharma-

ceutical industry, strong correlations between measures of connectedness with the wider scienti�c

community and �rms� internal organization and performance in drug discovery have been docu-

mented by Cockburn and Henderson (1998). Meoli, Paleari, and Vismara (2013) analyze a sample

of 254 biotech �rms that went public in Europe between 1990 and 2009. They �nd that university-

a¢ liated �rms received a premium and were more likely to be targets of M&A activity after going

public. Simeth and Cincera (2013) also �nd that the market value of publicly traded �rms in

high-tech is positively related to publication stock for the period 1990�2003.These studies do not

examine how the implied value of investments in science has changed over time.4 We use data

on both publication output and the implied stock market value of the stock of publications for a

much larger sample of all publicly traded American �rms and verify that similar patterns hold for

3Another di¤erence with Griliches (1986) is that we primarily use the stock of scienti�c publications to measure
scienti�c capability, consistent with Gambardella, (1992), Arora and Gambardella (1994) and Cockburn and Henderson
(1998).

4However, Simeth and Cincera�s (2013) results also imply a decline in the value of publications.
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European �rms. We additionally use data on acquisitions of small, research-based �rms to infer the

implied value managers place on scienti�c capability in the target �rms.

Yet, despite the potential bene�ts, managing scienti�c research inside a �rm is di¢ cult. There

are well-known problems with appropriating the results of scienti�c discoveries. Even when patents

are e¤ective, research, as opposed to development, tends to involve projects with long time horizons

and uncertain outcomes. Choosing suitable research projects, providing researchers with appropriate

goals, and monitoring their performance is di¢ cult, especially for managers whose expertise is

commercial rather than scienti�c (see Kay, 1988). Investments in research are more productive when

researchers have creative freedom and operate in an �open,�university-like institutional arrangement

(e.g., Dasgupta and David, 1994). Often this requires insulating research from the rest of the

business. Such isolation from the business can result in corporate research diverging from the

�rm�s strategic needs, making it less relevant to the �rm (Hounshell and Smith, 1986; Argyres and

Silverman, 2004, Arora et al., 2014).

A related literature deals with the institutional arrangements for �open science�inside pro�t-

oriented �rms. (e.g., Dasgupta and David, 1994; Murray, 2004; Gans et al., 2013). This literature

highlights a key trade-o¤ between value creation (which is enhanced by allowing free reign to the

creativity of researchers) and the need for appropriation (e.g., Stern, 2004; Patacconi et al., 2012).

Our �ndings suggest that many of these questions may become moot for large �rms.

The di¢ culty of managing research in large �rms suggests a division of innovative labor between

established �rms and smaller �rms and start-ups (Jewkes, Sawers, and Stillerman, 1969; Arora et

al., 2001). In this view, smaller �rms have a comparative advantage in generating ideas whereas

larger �rms have an advantage in exploiting them. Large �rms may invest in scienti�c capability

to be e¤ective buyers of knowledge. Arora and Gambardella (1994) argue that scienti�c capability

(as measured by publication stock) enables pharmaceutical �rms to be more discerning in sourcing

innovations from biotechnology �rms. The division of innovation labor often involves innovations

being transferred through acquisitions. A few papers focusing on M&A stress the di¢ culties acquir-

ers face in making productive use of knowledge assets they buy, particularly of the human capital

they acquire in the form of inventors and researchers. For instance, Valentini (2012) concludes that

acquisitions in medical devices and photographic equipment between 1988 and 1996 resulted in a

greater focus by the acquirer on short-term results. Consistent with this, we �nd that scientists

who move to large �rms after an acquisition have progressively reduced publication over time.

Finally, our paper speaks to the long-standing debate on competition and incentives to innovate.
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Schumpeter (1942) famously argued that perfect competition may not be the market structure most

conducive to innovation because lower price-cost margins may discourage investments in R&D. On

the other hand, successful innovation may be the most e¤ective way to �escape�competition and

low price-cost margins (e.g., Aghion et al., 2005). Empirical work on the topic, while extensive,

has been largely inconclusive (see Cohen 2010 for a survey). Bloom et al. (2011) use a panel of

up to half a million �rms over 1996�2007 across twelve European countries, and �nd that Chinese

import competition led to increases in patenting, IT, and TFP. For a smaller sample of 459 R&D-

performing �rms, they also �nd that Chinese import competition led to an increase in R&D. We

con�rm Bloom et al.�s �nding that greater Chinese import penetration is associated with an increase

in patenting. However, we also �nd that competition from China is associated with reductions in

investments in science, R&D expenditures, and physical investment. These �ndings suggest that

low-cost competition may have di¤erent e¤ects depending on the type of activity. It may encourage

incremental and appropriable (i.e., patentable) research, but may discourage more long-term, basic

research.

3. Data

We combine data from �ve main sources: (i) U.S. Compustat, (ii) M&A data from Thomson SDC

Platinum, (iii) scienti�c publications from ISI Web of Knowledge, and (iv�v) patent data from

PatStat (USPTO and EPO). We use three di¤erent �rm samples. Our principal results pertain to

publicly traded �rms in the U.S. We also provide additional evidence using a large sample of M&A

deals and public and private European �rms. The latter two samples are described in more detail

along with the corresponding empirical results.

We focus our econometric analysis on U.S. Compustat �rms with at least one patent over the

period 1975�2007, leaving us with 1,014 �rms and 11,304 �rm-year observations. To capture their

investment in science, we match these �rms to ISI Web of Science (matching �rm name with the

a¢ liation �eld for each publications record). We identify 312K publications with at least one author

employed by a Compustat �rm in our sample. To measure investment in technology, we match our

�rm sample to patents granted by U.S. and European patent o¢ ces from PatStat. To avoid double

counting of patents on the same invention, we exclude European patents that belong to the same

family as an already matched U.S. patent.

The main variables used in the analysis of Compustat �rms include market value, book value
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of capital, R&D stock, publications stock, and patents stock.5 Panel A in Table 1 summarizes

descriptive statistics for Compustat �rms. The mean market value of the �rms in our sample is

$5.9 billion (of which $3 billion are in physical assets), and average R&D spending is $129 million.

Their scienti�c publications stock is 58 and patents stock is 174. Approximately 28 percent of our

sample �rms publish a scienti�c article at least once during the sample period.

[Insert Table 1 here]

4. Investment in Science and Technology Over Time

Figures 2�4 plot the data patterns of investment in science and technology over time. These �gures

do not account for changes in sample composition over time. Later in the econometric analysis we

present the corresponding within-�rm analysis that accounts for changes in sample composition.

Figure 2 reports on Compustat �rms with at least one year of positive R&D expenditures for

the period 1980�2007. Consistent with the broad trend reported in Figure 1, Figure 2 shows that

large American �rms are reducing their investment in science whereas their investment in R&D

more broadly has not decreased, and their patenting output has increased. The share of �rms that

publish each year has dropped over time from a high of 30 percent in 1980 to a low of close to 10

percent in 2007. On the other hand, the share of patenting �rms has increased over time from 20

percent in 1980 to just under 30 percent in 2007. R&D intensity (R&D over sales) has also been

rising from 1 percent in 1980 to 2 percent in the mid-90s.

Figure 3 presents time trend in outsourcing of science and technology. For publishing �rms,

we plot the percentage of �rms that acquire at least one publishing �rm in the given year, and

for each patenting �rm we plot the percentage of �rms that acquire at least one patenting �rm in

the given year. Both these percentages are rising steadily, consistent with the view of technological

outsourcing is rising over time. Note that we do not measure other ways, such as contract research

or licensing, through which �rms can outsource research.

Outsourcing of research can potentially o¤set the decline in investment in science by large �rms.

5Following Griliches (1986), market value is de�ned as the sum of the values of common stock, preferred stock, and
total debt net of current assets. The book value of capital includes net plant, property and equipment, inventories,
investments in unconsolidated subsidiaries, and intangibles other than R&D. R&D stock is calculated using a perpetual
inventory method with a 15 percent depreciation rate (Hall et al., 2005). So the R&D stock, , in year  is
 =  + (1 ¬ �)¬ 1 where  is the R&D expenditure in year  and � = 015. Publications stock in year
 is calculated in the same way as   =  + (1 ¬ �) ¬ 1 where  is the
citations-weights �ow of publications in year . Citation weights are the ratio between the number of citations an
article receives and the average number of citations received by all articles published in the same year. Patents stock
is computed in an equivalent way using patents data.
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However, as Figure 4 shows, even after combining internally generated publications with those that

are acquired, we still see the pattern declining investment in science as in Figure 2.

[Insert Figures 2�4 here]

5. Econometric Results

5.1. Internal investment in science

Columns 1�3 in Table 2a present the estimation results of time trends in investment in science

using within-�rm speci�cations. We report robust standard errors and cluster by �rm. Publication

intensity (number of publications, weighed by citations received, over R&D stock) clearly falls over

time. The estimates imply that between 1980 and 2007, publication intensity fell by 66 percent of

average sample value. We �nd a similar trend for patents (column 2), but not for R&D intensity

(R&D expenditures over sales), which remains stable over time. While our within-�rm estimation

controls for changes in the sample composition over time, our results can still be driven by younger

�rms that entered the sample in the second half of our sample. To check the robustness of our

results to this concern, we also explored speci�cations where we restrict our sample to �rms that

are present in both early and late sample periods. The results remain robust.6

These changes in publication output could re�ect either a reduction in the private value of

scienti�c capability or an increase in the marginal cost (or both). An increase in marginal cost

would reduce the quantity of research but also increase its average value. To distinguish between

shifts in value or cost, we estimate a Tobin�s q�type equation. We examine how the elasticity

of market value with respect to publication and patent stocks has changed over time. Column 4

includes interactions between publication stocks with a time trend, as well as between patent stocks

and time trend. We cluster standard errors by �rm, and include 248 four-digit industry �xed e¤ects.

The coe¢ cient estimate on the interaction between publication stock and time trend is negative

and statistically highly signi�cant. Based on these estimates, between 1980 and 2007, the elasticity

of market value with respect to publication stock dropped from 0.074 to 0.02. For patents, the

elasticity rose from 0.066 in 1980 to 0.182 in 2007. Columns 5�6 split the sample at its median year

to allow for a more �exible analysis of how the coe¢ cient estimates change over time. The same

pattern of results holds. In unreported speci�cations, we �nd that our results are also robust to

6For example, for �rms that are in our sample for at least 20 years, the coe¢ cient estimate on time trend is -0.030
(a standard error of 0.009). For �rms that are present at least 10 years, the coe¢ cient estimate is -0.038 (a standard
error of 0.006).
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the exclusion of the dot com bubble years. Speci�cally, the exclusion of the period 1998-2000 does

not materially change our results.

Interpreting estimates from market value regressions is not straight forward. Our interpretation

is that the decline in publishing output re�ects a reduction in the derived demand for private

investment in scienti�c research. Taken together, the results in Table 2a imply that the decline in

publication output is not merely a matter of possibly higher marginal cost of research but instead

re�ects a reduction in the �demand� for scienti�c capability. The results imply that whereas the

private value of technical capability has increase (or, at a minimum, has not decreased), scienti�c

capability has become privately less valuable.

[Insert Tables 2a and 2b here]

5.2. Publication output as a measure of investment in science

Scienti�c publications are a common measure of investments in basic research and hence of the

accumulated scienti�c capability of the investing �rm. However, it is possible that our results

simply re�ect changes in publication behavior. For instance, stronger intellectual property rights

may induce �rms to keep their scienti�c discoveries secret and to rely more heavily on patents. If

�rms have changed publication practices, scienti�c publications may become a less accurate measure

of scienti�c capability. To investigate this possibility, we separate trends in company publication

by the type of journal. Insofar as companies change publication strategy to be able to patent their

research �ndings or to avoid information leakage, we would expect publications in applied journals

to decline faster than those in basic research journals. This is because applied journals are more

likely to contain commercially sensitive and patentable information. As Table 2b shows, we �nd

the opposite.

For the results reported in Table 2b, we match all journals in our data to the CHI journal

database (Leten, Kelchtermans, and Belderbos, 2010, Keltcherman, Leten, and Belderbos, 2011).

The complete CHI database includes a list of 17,753 journals which have been classi�ed by their

level of research �basicness�. About 40 percent of the publications in our sample were matched to

CHI journals. Columns 1 and 2 distinguish between �rm publications in basic and applied journal.

A publication is classi�ed as basic if it is published in a journal with a CHI level of 4 (the highest

value), and as applied if it is published in a journal with a CHI level of 1 (the lowest level). We �nd

that the decline in publications over time (within �rms) is strongly evident for basic publications,

but not for applied publications. This suggests that the decline in publications documented in Table
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2a is driven by a decline in basic research. Column 3 examines the time trend in the share of �rm

publications in basic journals (CHI level of 4), for the subsample of publishing �rms. We �nd that

the share of basic publications in total �rm publications has fallen over time.

Columns 4�5 present the estimation results for stock market value. Column 4 includes separate

measures for basic and applied publication stocks. The decline over time in the elasticity of value

with respect to publications is evident for basic publications (an estimate of -0.019), but not applied

publications (an estimate of 0.001). Column 5 focuses on the subsample of publishing �rms and

shows that the elasticity of �rm value with respect to the share of �rm publications in basic journals

is positive and quantitatively large (an estimate of 0.051), and that this elasticity has fallen in value

over time. Finally, in unreported regressions we �nd that all these results hold also when we use

the journal impact factor as our measure of publication quality, instead of classifying publications

by the CHI index.

In sum, Table 2b shows that �rms are publishing less largely because they are publishing less

basic research rather than publishing less applied research. Further, the decline in the value of

scienti�c capability is largely because basic scienti�c capability is less valuable. These patterns are

inconsistent with the notion that the decline in publication re�ects mere changes in publication

behavior. Rather, large �rms appear to have changed their R&D composition� they have been

moving away from basic research and toward more applied/patentable research.

5.3. Patterns within technology domains

Tables 3�4 explore how the above patterns of results vary across industries. We classify �rms into

technology areas based on the distribution of their patents across the following technology �elds:

biotechnology, chemicals, pharmaceuticals, electronics, information technologies, semiconductors,

and telecommunications. Overall, we �nd that the trends reported in Table 2a are present in

all technology domains. In Table 3, we interact a time trend with technology dummies. Column 1

shows that publication intensity falls in all technologies. The rate of decline varies and the decline is

steeper in pharmaceuticals, IT, and semiconductors compared to chemicals and biotechnology. Table

4 examines the relationship between scienti�c capability (measured as the stock of publications) and

�rm value. As in Table 2a, it shows that the implied private value of scienti�c capability has declined

in all technology domains except biotechnology. The principal takeaway from Tables 3�4 is that

the decline in research that we have documented is broad based, and not driven by any particular

technology domain.
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[Insert Tables 3�4 here]

5.4. Value of scienti�c capability in M&A

Our estimates of the private value of scienti�c capability rely upon stock market values. These

re�ect the collective judgment of investors. Managers, on the other hand, allocate resources to

invest in science and technology. We use the prices that �rms in our sample pay to acquire other

�rms to con�rm that the implied value that managers put on scienti�c capability have also fallen

over time. Our sample includes all deals from SDC Platinum with non-missing acquisition price,

percentage of acquired equity, assets and sales. From the M&A listed in SDC Platinum, we select

acquisition deals that provide information on deal value, net total assets and acquired stakes, and

restrict the sample to targets from OECD countries. We match SDC Platinum �rms to ISI and

PatStat to develop measures of the publication and patents of the target �rms. Our estimation

sample includes 29,752 deals. Of the acquired �rms, 46 percent are American and 19 percent are

British. The vast majority of our sample of acquirers are publicly listed (96%), and about half of

them are American. Prior to the acquisition completion year, 971 target �rms have at least one

academic publication and 4,174 �rms have at least one patent.

Panel B in Table 1 above summarizes the descriptive statistics for target �rms. The average

target �rm is valued at $162 million, has $79 million in assets, generates $138 million in annual

sales, and makes $17 million in pro�ts. Of the target �rms that have at least one publication, the

mean stock of publications is about 4 with a median value of 0.2. Of the target �rms with at least

one patent, the mean stock of patents (the sum of USPTO and EPO patents) is 30 with a median

value of 3.6.

Table 5 presents the estimation results for the value of scienti�c capability based on acquisition

price. The estimation results are consistent with the stock market regressions. Column 1 interacts

publication and patent stocks with time trend. Consistent with our previous �ndings, the elasticity

of acquisition price with respect to publication stock is falling over time. On the other hand, the

elasticity of acquisition price with respect to patent stock is rising, albeit much less than what we

found in the sample of publicly traded (Compustat) �rms.

Columns 2�3 use more �exible speci�cations which split the sample at the median year value.

As before, the coe¢ cient estimate on publication stock is very large and statistically signi�cant in

the early sample period (0.169), and falls to zero in the later sample period (-0.043). We easily

reject the null hypothesis that these two coe¢ cients are statistically identical. Column 4 shows
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that the same pattern of results continues to hold when we restrict the sample to target �rms that

either patent (USPTO or EPO) or publish. Column 5 shows that the results are not driven by the

1999�2001 IT bubble.7

The main takeaway from Table 5 is that the value managers place on scienti�c capability of

their target �rm (as proxied by its stock of publications) has fallen over time whereas the value they

place on the technical capability of their target �rm (as proxied by its stock of patents) has not

decreased. This is broadly consistent with the conjecture that large �rms are shifting their focus

away from basic research and toward more applied activities.

[Insert Table 5 here]

5.5. Post-acquisition publication behavior

If the value of scienti�c capabilities has declined and acquiring �rms are becoming more reluctant

to harbor internal science, we would expect to see a decline in publication activity by researchers of

the target �rms after the acquisition. Measuring post-acquisition publication activity is challenging

because the acquired �rm may cease to exist as an independent unit following the acquisition. To

account for publications of potentially dissolved units, we include publications by acquiring �rms in

the post-acquisition period where the authors also appear on pre-acquisition publications belonging

to the acquired �rm. We follow the same procedure when constructing the �ow of post-acquisition

patents.8 If large �rms are withdrawing from science, then the scientists who are hired through

acquisitions should reduce their publication activity post-acquisition, and the reduction should be

larger for more recent acquisitions.

Table 6 presents the estimation results of a within-�rm variation in publication behavior post-

acquisition. For each �rm, we examine a three-year window around the acquisition year and estimate

the e¤ect of a post-acquisition dummy� a dummy that receives the value of one for the three post-

7 It is possible that the sample of acquired �rms has changed over time, either due to better coverage by SDC or
because of improvements in M&A institutions. Improved coverage or lower transaction costs for M&A can result in
more marginal targets being acquired. Thus, one might expect lower valuations for intangibles. As shown in Table A1,
Tobin�s q values do not vary substantially over time, inconsistent with the coverage of lower quality acquisitions over
time. To further test this concern, we re-estimated our baseline speci�cations from Table 4 by removing acquisitions
in the upper and lower percentile of the Tobin�s q distribution. The results remain robust, which is again inconsistent
with the concern that acquisitions with lower Tobin�s q became more prevalent toward the end of the estimation period
due to better coverage by SDC. Furthermore, concerns about lower valuation should result in lower intercept terms,
not necessarily a downward bias in the coe¢ cient of publications (or of the other measures of scienti�c capability).
Indeed, we �nd no decline in the coe¢ cients of patent stock, net assets, or sales. Thus, it is unlikely that our �ndings
are driven by changes in the composition of the sample of acquired �rms over time.

8We use a three-year window to track publications after acquisition by the target �rm. Around 90 percent of the
publications continue to carry the name of the acquired �rm, but about 10 percent of the post-acquisition publications
are in the name of the acquiring �rm but with an author who appears on a previous publication of the target �rm.
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acquisition years and zero for three pre-acquisition years. Columns 1�6 present the estimation

results for the �ow of publications. Column 1 shows that publications tend to drop post-acquisition.

Comparing columns 2 and 3, we see that the drop is especially marked for acquisitions in the

second half of our sample period: The coe¢ cient on the post-acquisition dummy falls from 0.013 for

acquisitions between 1985 and 1996, to -0.198 for acquisitions between 1997 and 2004. The di¤erence

is statistically signi�cant and meaningful. Whereas there is very little decline in publication post-

acquisition in the early part of the sample period, for later deals, after-acquisition publications drop

by about 33 percent of the sample mean.

This pattern of results also holds when we weigh publications by citations (the coe¢ cient esti-

mate on publications �ow drops from a positive 0.9 in the �rst sample period, to a negative -1.8 in

the later sample period). For deals after 1997, the post-acquisition publication decline is 27 percent.

Columns 7�9 report the same analysis for patents. We �nd that on average, patenting activity

rises after the �rm has been acquired. However, this rise takes place mostly in the �rst half of the

sample, while in the second half there is no change in patenting activity post-acquisition.

In sum, Table 6 provides additional support for the conjecture that �rms have lowered their

willingness to pay to acquire external scienti�c capability over time. In part, at least, this is

because the acquiring �rms are less willing to invest in science internally. The fruits of scienti�c

capability, patents, continue to be valued but scienti�c capability itself is not.

[Insert Table 6 here]

6. Mechanisms

6.1. The use of science in innovation

Firms invest in science for several reasons. One key reason is that scienti�c discoveries may them-

selves lead to innovation. If new scienti�c knowledge is becoming less relevant for commercial

innovation, �rms will be less likely to invest in research. Tracing the application of science to

commercial ends is very di¢ cult. One proxy, admittedly highly imperfect, is the citations patents

make to scienti�c publications. Narin et al. (1997) pioneered the use of this measure to show

that U.S. patents relied upon publications by public and for-pro�t institutions. They found that,

of the papers published in 1988 cited by patents issued in 1993, over 40 percent were from public

research institutes, while nearly 27 percent were produced by �rms. If applying scienti�c knowledge

to industry is becoming much harder or more costly, there ought to be fewer citations to science by

patents.
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Table 7 presents the estimation results for within-�rm OLS speci�cations for number of patent

citations to science. Because we are interested in patent citations to science, we exclude references

to journals that are not considered scienti�c. We also remove publications in trade journals and

conference proceedings.9 As shown in column 1, patent citations to science remain stable over

time. Columns 2 and 3 split the sample by �rms that invest in science and �rms that do not. For

both subsamples we �nd an insigni�cant coe¢ cient estimate on time trend. Columns 4�7 explore

variation across broad technology �elds. No �eld experiences a decline in the number of citations

to science over time. In unreported regressions, using either market value or acquisition value, we

�nd that the decline in the value of scienti�c capability is robust to controlling for the share of

references to science. Consistent with this, NSF data show that whereas about 10.6 percent of U.S.

utility patents cited scienti�c publications in 1998, the share had increased to 11.9 percent by 2010.

Over the same period, the share of scienti�c publications cited in a patent had largely remained

unchanged, at around 1.7 percent (NSF S&E Indicators, 2012, Table 5-49).

[Insert Tables 7�8 here]

Though patents may continue to cite science, perhaps they are citing older science. If innovation

is less likely to require new scienti�c knowledge, �rms may reduce their own investment in creating

such new knowledge. Further, investments in scienti�c capability may serve to absorb and use

existing scienti�c knowledge, the vast bulk of which is external to the �rm. If, over time, external

scienti�c knowledge has become more accessible to �rms due to developments in markets for tech-

nology and improvements in information technology, the need to invest in scienti�c capability may

have fallen.

We explore the empirical support for these ideas by examining trends in whether innovations

rely upon increasingly older scienti�c knowledge, and how this di¤ers with the scienti�c capability

of the �rm. Speci�cally, we ask if the average age of scienti�c publications cited by patents has

changed over time, and whether these trends di¤er between �rms that do publish and those that do

not. We expect that if innovation is less reliant upon recent scienti�c knowledge, the average age of

the publications cited by patents should increase. If scienti�c capability enables �rms to use more

recent science in their innovations, this should be re�ected in a lower average age of publications

9As robustness checks, we also excluded references to articles that are not published in journals in the CHI journal
database. In the �clean� sample, mean patent citations to science at the �rm-year level is 2.4 (a median of 0.5).
As an additional robustness check, we reran estimates restricting our attention to citations to journals with a high
(above median) ISI impact factor. We �nd results very similar to those reported in the paper. Our results are also
not sensitive to whether the cited article is coauthored with a university scientist.
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cited by their patents That is, publishing �rms should cite more recent publications in their patents

than non-publishing �rms. However, if scienti�c capability is less relevant for absorbing external

knowledge, the di¤erence in the vintage of articles cited by publishing and non-publishing �rms

should shrink over time.

Table 8 presents the results where we use �rm-year observations with at least one patent citation

to science. This leaves us with 850 �rms and 6,251 observations. Our dependent variable is the

average publication year of cited articles. As before, we remove publications in trade journals and

conference proceedings and non-leading journals by �eld. Our results are remarkably insensitive to

whether we use industry �xed e¤ects (columns 1 and 2) or �rm �xed e¤ects (columns 3 and 4), and

they are very similar across major technology �elds (columns 5�8).

The �rst point to note is that the coe¢ cient of the time trend ranges between 0.97 and 1.02,

and it is statistically indistinguishable from 1. In plain words, patents that are a year younger cite

papers that are on average published one year later than papers cited by one year older patents.

The vintage of science used in innovation, as measured by the relative average age of the scienti�c

literature cited by patents, has remained unchanged.

Second, the coe¢ cient of the log of publications ranges from about 0.22 to 0.35. Thus, a doubling

of publication stock is associated with a reduction of about three months (column 1) to four months

(column 3) in the average age of the cited scienti�c publications.10 This suggests that scienti�c

capability is important in enabling �rms to absorb more recent scienti�c knowledge, although of

course it is also likely that �rms that publish also work on more cutting-edge innovation.

Finally, there is very little evidence to suggest that investments in science have become less

e¤ective over time in helping �rms absorb external science. Columns 2 and 4 include an interaction

between the stock of publications and a time trend. The coe¢ cient of the time trend is small

and insigni�cant. It is similarly small and insigni�cant when we look across technology domains,

with the exception of chemicals.11 To sum up, we �nd no evidence that science has become less

relevant for innovation, or that the relevant scienti�c knowledge is of older vintage. We also �nd no

evidence that internal scienti�c capability is becoming less e¤ective in helping �rms absorb scienti�c

knowledge.

10For instance, from column 1, a doubling of publication stock implies that the average publication year of the cited
publication increases by 0.22, which is equivalent to reducing the average age by nearly three months.
11Of course, there are additional dimensions other than quick absorption of external knowledge that absorptive

capacity may a¤ect. For example, absorptive capacity may allow �rms to identify relevant knowledge that is geo-
graphically distant from the �rm, or assess the quality of this knowledge, or how close it is from a technical standpoint
to the �rm core knowledge. It would be interesting to examine these additional dimensions in future work.
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6.2. American regulatory changes

Changes in the U.S. regulatory environment such as the Sarbanes-Oxley Act of 2002 and the Bayh�

Dole Act of 1980 are said to have discouraged large American �rms from making longer-term

investments, including investments in scienti�c capability. To test the conjecture that our results

are driven by American regulatory changes, we expand our data to European �rms. We match

publication and patent records to all European �rms from Amadeus (private and public �rms). We

identify about 58,000 publications by 3,642 �rms, and 210,000 patents by 10,053 �rms. Lacking

data on R&D expenditures for European �rms, we restrict attention to �rms that either patent or

publish at least once during the sample period of 1997�2007, the period for which �nancial data

are available. Of these �rms, about 31 percent publish at least once, and the vast majority, over 90

percent, patent at least once between 1997 and 2007.

Table 9 presents the estimation results for within-�rm changes in number of publications and

patents. We observe a very similar pattern of results for the European �rm sample. Publications

decline over time (column 1), even after we control for �rm sales, which are only available a sub-

sample of �rms for 1997�2007 (column 2). Publications decline at about the same rate for private

as for public �rms (column 3), which rules out the short-termism that is sometimes attributed to

public equity markets as a reason. The rate of decline is similar when we restrict attention to �rms

that are present in the sample for longer than 10 years (column 4), and even greater when we focus

only on �rms that started to invest in science prior to 1980 (column 5). Finding that European

�rms display similar reductions in investment in science as American �rms is not consistent with

the idea that speci�c regulatory changes in American institutions drive the results of this paper.

[Insert Table 9 here]

6.3. Globalization

Another possible explanation for why large �rms have reduced their investments in scienti�c capa-

bility is increased competition from overseas, particularly from low-wage countries. To explore this

mechanism, we follow Bloom et al. (2011) and calculate the level of Chinese import penetration as

the share of the value of imports originating from China in the total imports in an industry from

1998 to 2008.12 For each industry we compute the change in Chinese import penetration from 1998

12The import data is from the UN Comtrade database that tracks annual bilateral import and export trade volumes
between pairs of countries. We aggregate the trade value between China to industry four-digit SIC level from the
six-digit product level, and normalize the Chinese imports by domestic production �gures from Eurostat�s Prodcom
database. Please see Bloom, Draca, and Van Reenen (2011) for more details.
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to 2008. We observe a signi�cant rise in imports from China over time across industries: import

rates more than double, from an average of 2 percent in 1998 to 5 percent in 2008. We use changes

in Chinese import penetration as our measure of increased globalization.

Columns 1�2 of Table 10 show a strong negative relationship between increased imports from

China and the number of publications. The dependent variable is the three-year change in publica-

tions, and the regressors are also computed as three-year changes, with the obvious exception of the

time trend. The standard errors are adjusted to allow for the serial correlation and are clustered

at the �rm level. Controlling for changes in Chinese import penetration explains the within �rm

decline in publications over time. Not controlling for Chinese imports (column 1), the coe¢ cient

estimate on time trend is negative and statistically signi�cant from zero (-0.011 with a standard

error of 0.005). Yet, controlling for Chinese imports (column 2), the coe¢ cient estimate of the time

trend in publication is small and insigni�cantly di¤erent from zero.

Columns 3�5 presents the results for the relationship between three-year changes in Chinese

import penetration and corresponding changes in patent output, R&D expenditures, and physical

investment. As with publications, we �nd a negative relationship for R&D and physical investment.

It appears that increases in import competition from low-wage countries (proxied here by imports

from China) tend to reduce forward-looking investments in both tangible and intangible capital.

Interestingly, however, and consistent with Bloom et al. (2011), the propensity of our �rms to

patent appears to increase in sectors that experience an in�ux of Chinese imports over time.

Table 11 presents the estimation results for stock market value. Column 1 includes interactions

terms between changes in Chinese import penetration and publication and patent stocks. We �nd

that the stock market value of publications declines with an increase in Chinese imports, but the

value of patent stock does not. Columns 2 and 3 report results for industries which experienced

a sharp rise in Chinese import penetration and those that experienced only a modest increase in

Chinese imports. As shown in Column 2, the decline in the value of publications and the increase

in the value of patents over time are strongly evident in the industries facing high competition from

China, but not in those insulated from Chinese imports (column 3). For industries insulated from

Chinese imports, the value of publications and patents remains stable over time.

Overall, therefore, our evidence suggests that growing globalization is a plausible mechanism

for why large �rms in advanced economies are withdrawing from science. Firms in sectors that

experience a large increase in Chinese import penetration also appear to disproportionately reduce

their investments in science, R&D expenditures, and physical investment, while increasing their
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propensity to patent. The stock market value of publications also declines with an increase in

Chinese imports, while the value of patent stock tends to increase.

It is important to stress that, as with other analyses, we are measuring association rather

than causal structure. For instance, it is possible that industries where opportunities for radical

innovation� innovation drawing upon scienti�c knowledge� are declining are also those which face

greater import competition from China. Our objective here is not to provide de�nitive results but

to see whether the data provide prima facie support for some mechanisms relative to others. We also

emphasize that the decline in the value that large �rms attach to scienti�c capability predates 2001,

the year China entered the WTO. Thus, China should be seen as an instantiation of a broader trend,

not fully captured in our empirical analysis, wherein the growth of competition from lower-wage

countries is pushing �rms away from science and toward more applied research.

[Insert Tables 10�11 here]

6.4. Firm scope

Large �rms may also be withdrawing from science because they are pursuing more focused strategies.

We use �rm-level data on sales concentration from the Compustat line of business database to test

the idea that �rms with an increasingly narrower product base are most likely to reduce their

investments in science. Between 1980 and 2007, after controlling for the increase in size of �rms,

there is very little decrease in the scope of �rms. Based on a regression of Her�ndal-Hirschman

Index (HHI) of sales concentration by industry segments on a time trend, sales, and industry �xed

e¤ects, we estimate that over the sample period, the HHI of the average �rm increased by about

6.5% of the initial value, or less than 0.2% per year. This masks considerable variation across �rms

in �rm scope. We therefore examine the relationship between changes in �rm scope, as measured

by how concentrated the �rm�s sales are across industry segments, to its publication output.

The results of Table 12 are e¤ectively within-�rm estimates, relating changes research to changes

in the �rm�s scope. The dependent variable in Column 1 is the three-year change in the output of

scienti�c publications, and the key independent variables are also computed as three-year changes.

As before, the standard errors are robust to serial correlation and clustered at the �rm level. We

see that there is a strong negative relationship between changes in �rms scope and publications,

controlling for size and changes in the R&D stock. Based on the estimates from column 1, we �nd

that moving from the lowest to the highest decile of decreases in �rm scope is associated with a

drop of 87 percent of sample average decline in publications. However, as columns 2 and 3 show, the
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decline in patents and R&D investment is much smaller and we cannot reject the null hypothesis

of no decline.

Columns 4�5 examine whether the decline in the stock market value of publications is more

pronounced in the subsample of �rms that have become more focused over time. Column 4 shows

that for �rms which have narrowed their scope, the implied stock market value of publications

declines over time. By contrast, as Column 5 shows, for �rms whose scope has widened, there is

no such decline. Also consistent with the general trends reported earlier, the implied stock market

value of patents increases rather than decreases, for both types of �rms. Moreover, the implied

value of patent for �rms with narrowing scope grows at least as fast as that of �rms whose scope

has not narrowed over time. Overall, our results are consistent with the conjecture that investments

in science bene�ts mostly diversi�ed �rms. Firms that have narrowed their scope derive less value

from scienti�c capability and have accordingly reduced their investments in science.

[Insert Table 12 here]

7. Discussion

The discourse among managers and strategy consultants often centers on how �rms can grow. In-

novation features prominently in such discussions. Innovation has many sources but in the ultimate

analysis, without advances in the stock of scienti�c knowledge, technical progress will eventually

falter, as will the rate of innovation. Of course, �rms have drawn upon the stock of public scienti�c

knowledge to fuel their innovation e¤orts, but they also invested in developing and maintaining

internal scienti�c capability as well. In so doing, they hoped for new goods and services to emerge

from research labs, but also banked on in-house scientists to guide technical search, acquire relevant

external technology, and serve as talent magnets. They did so understanding that investments in

internal scienti�c capability would not pay o¤ right away but would take time to materialize. Only

�rms willing to take the long view would invest in internal science.

Our results highlight two key, possibly interrelated factors that in recent times may have induced

large �rms to adopt more short-term strategies and reduce their investments in science.

One factor is narrower �rm scope. At least since the 1990s, many �rms have been focusing on

their �core competencies,�possibly as the result of growing competition. While concentrating on a

narrower set of products or a smaller portion of the value chain can have advantages, basic research

(and its unpredictable fruits) may be less valuable to these �rms. This can in principle explain both

a reduction in investment in science by less diversi�ed �rms, and a lower implied value for basic
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research investment.

Another factor that may have induced �rms to withdraw from science is globalization. Glob-

alization and increased competition may reduce the payo¤ to innovation, reducing the value of

scienti�c capability. Competition from low-cost countries can also depress private investments in

science by reducing cash �ows, thereby reducing the amount of internal funds available to fund

research. This second �nancial constraints argument can explain why �rms invest less in science,

but is hard to reconcile with a decline in the market value premium for scienti�c capability. If �rms

that invest in scienti�c capability are the ones that are able to overcome �nancial constraints, then

the market should respond positively to such investments, not negatively. One possibility is that

markets, as well as managers, become more short-term oriented when �rm pro�tability declines (as

a result of global competition). Alternatively, it could be that investment in internal science is an

ine¢ cient relic of a past long gone, when big American and European �rms could a¤ord to �waste�

resources. In this view, large �rms are ine¢ cient performers of research and need to be pushed to

outsource research to smaller and more nimble partners.

We �nd little support for other potential explanations for our results. One is that large �rms

have merely changed their publication practices rather than reduce their investment in science. A

decline in publication output may re�ect not changes in R&D composition, but rather a rejection of

�open science�in favor of greater focus on patents or secrecy.13 Were this so, we would expect large

�rms to reduce publications in applied scienti�c journals, which contain �ndings more likely to be

commercially relevant. We �nd instead that the decline in �rm publications is most prominent for

publications in high-impact scienti�c journals, as well as in journals dedicated to basic rather than

applied research. Furthermore, if changes in publication were simply due to changes in disclosure

strategy but �rms continued to value scienti�c capability to the same extent, we would not expect to

�nd any reduction in the premium �rms pay to acquire scienti�c capability through M&A. Instead,

we �nd that the premium for the scienti�c capability of �rms acquired in M&A has declined. This

suggests that the decline in publications and the increase in patenting are not merely driven by

a change in publication strategy. Rather, large �rms appear to be moving away from basic and

scienti�c research and toward more applied and incremental research.

13On conceptual grounds, Gans et al. (2013) argue that patenting and publishing are complements rather than
substitutes. Complementarities between patenting and publishing exist to a large extent due to the dual disclosure
strategies of inscribing the same piece of knowledge both in a patent and in a publication (Murray, 2002; Fabrizio
and Di Minin, 2008). Because of this complementarity, stronger patent protection ought to increase rather than
decrease publication. However, scientists with limited time may allocate more time to patents and less to publications
if �rms are increasing the rewards for patents as compared to publications. This would make patenting and publishing
substitutes rather than complements (Bhaskarabhatla and Hegde, 2014).
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Other mechanisms for which we �nd little support in our data include a reduction in the relevance

of science for innovation, a diminished importance of absorptive capacity, and changes in U.S.

regulatory environment. One, admittedly imperfect, way of tracing the application of science to

technology is to use the citations patents make to scienti�c publications. We show that scienti�c

knowledge continues to be relevant for innovation (i.e., patents continue to cite science) and that new

science in particular remains important (i.e., the vintage of scienti�c knowledge used in innovation

has not changed over time). Thus, our �ndings suggest that the withdrawal of �rms from science is

likely to leave an important gap in the relevant scienti�c base for innovation.

Using patent citations to scienti�c publications we also show that �rms with higher scienti�c

capability are able to draw upon more recent scienti�c knowledge in their innovations, and that the

relatively higher absorptive capacity they so enjoy has not eroded over time. This suggests that the

reduction in investments in science is unlikely to be because scienti�c capability is now less helpful

in enabling �rms to use external knowledge. Finally, using data on European �rms, we show that

American regulatory changes are unlikely to drive our results. Needless to say, all these tests have

limitations (for instance, absorptive capacity could confer other advantages to �rms rather than

simply facilitating access to more recent scienti�c knowledge) and further exploring potential causal

mechanisms remains an important avenue for future research.

8. Concluding Remarks

Our results indicate that the willingness of large �rms to invest in scienti�c capability has declined.

This is re�ected in their behavior (e.g., their propensity to publish), the acquisition price of the

science-intensive �rms they acquire, and the stock market premium that investors attach to scienti�c

capability of the �rms. It is also consistent with other evidence reported in the literature on the

increase in alliances and licensing, as well as qualitative evidence on the decline in corporate research.

A pessimistic interpretation of these results is that private research is in decline. Established

companies can no longer emulate �rms such as DuPont, AT&T, or Merck, whose investments in

research in the past have signi�cantly advanced the frontiers of human knowledge. Unless public

funding can make up the de�cit, technical progress will slacken and eventually reduce productivity

growth. Managers in established �rms, struggling to satisfy increasingly assertive investors, may

be disinclined to make long-term risky bets on internal science. They may look to other means to

achieve their growth targets, including international expansion and sourcing inventions and knowl-

edge from outside the �rm.
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The last option, external sourcing of innovation, points to a less alarming interpretation. It

may well be that other organizations� smaller �rms and universities� are making up the shortfall

in investment in research. According to this interpretation, what is happening is a reallocation of

research from large corporate labs to more e¢ cient organizations. To the extent that public support

for research falls, external sourcing may be a less viable option because the aggregate production

of knowledge falls.

Admittedly, the enhanced e¢ ciency of how research is performed can substantially o¤set the

shortfall in the quantum of investment in research. Even so, scienti�c entrepreneurs need to heed

these trends. Acquisition is a common exit for start-ups. If acquirers will not pay for scienti�c

research, as our results show, it implies that start-ups will have to invest longer, until such time as

the research bears fruit and the resulting innovations can be converted into patents and products.

Not all organizations that are good at research are also good at converting their research into

commercially relevant forms. Requiring all research-intensive start-ups to move downstream will

undoubtedly be ine¢ cient. More importantly, it would dissuade some start-ups from investing in

research, reducing the overall investment into an activity that is believed to have high social returns.
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VARIABLES No. Obs. Mean Std. Dev. 10th 50th 90th

Panel A: Compustat firms

Market value  ($, mm) 11,304 5,920 20,278 33 677 12,208

Assets t -1 ($, mm) 11,304 3,017 9,681 24 397 7,328

Sales t-1 ($, mm) 11,304 3,410 9,805 35 677 12,208

Publication stock 11,304 58 389 0 0 20

Publication flow 11,304 10 58 0 0 8

Patent stock 11,304 174 664 2 19 314

Patent flow 11,304 26 101 0 2 46

Panel B: Acquisition target firms (SDC Platinum)

Target value  ($, mm) 26,884 155 251 6 57 424

Net assets  ($, mm) 26,884 75 116 2 30 209

Sales  ($, mm) 26,884 133 51 4 51 400

Publication stock 836 3 13 0 0.2 6

Patent stock 3,767 31 73 0 4 87

TABLE 1. SUMMARY STATISTICS FOR MAIN VARIABLES
Distribution

Notes: This table presents summary statistics for the main variable used in the estimation for our sample of
Compustat and SDC firms. Panel A includes R&D-performing Compustat firms, and Panel B includes all target
firms from SDC Platinum in the period 1985–2007 with deal value and assets information.



(1) (2) (3) (4) (5) (6)

Dependent variable:
Pubs 
/R&D

Patents/ 
R&D

R&D/ 
Sales

VARIABLES
1980–19

97
1998–20

07

Time trend -0.042** -0.037** 0.004 0.091*
(0.006) (0.006) (0.006) (0.046)

Time trend ×ln(Publication Stock )t-1 -0.002**
(0.0008)

Time trend × ln(Patent Stock )t-1 0.004**
(0.001)

ln(Publication Stock )t-1 0.074** 0.066** 0.024
(0.014) (0.024) (0.027)

p-value  for difference in estimates:

ln(Patent Stock )t-1 0.066** 0.095** 0.153**
(0.014) (0.023) (0.023)

Dummy for Research Lab 0.217* 0.058
(0.091) (0.076)

p-value  for difference in estimates:

ln(Assets )t-1 0.306** 0.266** 0.372**
(0.017) (0.026) (0.038)

ln(R&D Stock )t-1 0.066** 0.049** 0.076**
(0.014) (0.018) (0.015)

ln(Sales )t-1 -0.403** -0.229** -0.167** 0.488** 0.522** 0.422**
(0.049) (0.049) (0.045) (0.019) (0.033) (0.042)

Firm fixed effects Yes Yes Yes No No No

Industry dummies - - - Yes Yes Yes

R2 0.918 0.852 0.845 0.842 0.853 0.818

Observations 11,304 11,304 11,304 11,304 5,288 6,016

TABLE 2a. RESEARCH AND THE STOCK MARKET VALUE OF R&D-
PERFORMING FIRMS

ln(Market value )

Notes:  This table presents estimation results for investments in research by publicly listed R&D-
performing American firms for the period 1980–2007. Standard errors (in brackets) are robust to 
arbitrary heteroskedasticity and allow for serial correlation through clustering by firms. * significant 
at 5%; ** significant at 1%.

p-value <0.01

p-value <0.01



(1) (2) (3) (4) (5)

Dependent variable: 
Share  
basic

Publications: Basic Applied All All All

Time trend -0.005** -0.001 -0.023** 0.086* 0.115
(0.002) (0.003) (0.008) (0.046) (0.072)

Time × ln(Basic publication stock )t-1 -0.019*
(0.001)

Time  × ln(Applied publication stock )t-1 0.001

(0.001)

Time × ln(Share basic publication stock )t-1 -0.003**
(0.001)

Time trend × (Publication stock )t-1 -0.001
(0.001)

ln(1+Basic  publication stock )t-1 0.071**
(0.014)

ln(1+Applied  publication stock )t-1 -0.024
(0.015)

ln(1+Publication stock )t-1 0.047**
(0.013)

ln(Share basic publication stock )t-1 0.051**
(0.019)

Time trend × ln(Patent stock )t-1 0.005** 0.003**
(0.001) (0.001)

ln(1+Patent stock )t-1 0.064** 0.063**
(0.013) (0.017)

ln(R&D stock )t-1 0.013** 0.034** -0.214** 0.071** 0.033**
(0.006) (0.011) (0.055) (0.005) (0.007)

ln(Sales )t-1 0.015 0.032** 0.117** 0.489** 0.669**
(0.009) (0.013) (0.067) (0.019) (0.028)

ln(Assets ) 0.308** 0.219**
(0.017) (0.026)

Two-digit industry dummies Yes Yes Yes Yes Yes
Country target dummies Yes Yes Yes Yes Yes
Acquisition year dummies Yes Yes Yes Yes Yes

R2 0.944 0.871 0.935 0.853 0.891

Observations 11,304 11,304 4,955 11,304 4,955

Flow of scientific 
publications ln(Market value)

TABLE 2b. PUBLICATIONS AS A MEASURE OF INVESTMENT IN 
SCIENTIFIC RESEARCH

Notes:  This table presents estimation results when we distinguish between basic and applied scientific 
publications as indicated by the CHI journal database. Publications are classified as basic if they are 
published in journals with a CHI level of 4, and as applied if they are published in journals with a CHI level 
of 1. Columns 3 and 5 include only publishing firms. Publications and patents are always weighed by 
citations. Standard errors (in brackets) are robust to arbitrary heteroskedasticity. * significant at 5%; ** 
significant at 1%.



(1) (2) (3)

Dependent variable:
Publications 

/R&D
Patents/ 
R&D R&D/ Sales

Time trend -0.037** -0.049** -0.001
(0.003) (0.003) (0.003)

Time trend  ×:

Dummy for Biotechnology 0.016** -0.020** 0.028**
(0.005) (0.006) (0.006)

Dummy for Chemicals 0.015** 0.004 -0.002
(0.004) (0.004) (0.004)

Dummy for Pharmaceuticals -0.021** -0.010 -0.004
(0.005) (0.007) (0.006)

Dummy for Electronics -0.005 0.019** -0.007
(0.004) (0.005) (0.004)

Dummy for IT -0.011** 0.002 -0.001
(0.004) (0.005) (0.004)

Dummy for Semiconductors -0.024** -0.005 0.013**
(0.004) (0.005) (0.004)

Dummy for Telecommunications 0.007 0.029** 0.013**
(0.005) (0.005) (0.004)

Firm fixed effects Yes Yes Yes

R2 0.919 0.854 0.845

Observations 11,304 11,304 11,304

TABLE 3. INVESTMENT IN RESEARCH BY INDUSTRY 
OVER TIME 

Notes:  This table examines time trends in research across industries. Firms are 
classified into industries based on the distribution of their patents by technology 
areas. Standard errors (in brackets) are robust to arbitrary heteroskedasticity and 
allow for serial correlation through clustering by firms. * significant at 5%; ** 
significant at 1%.



(1) (2) (3) (4) (5) (6) (7)

Dependent variable:

Variables Biotech
Chemi-

cals Pharma
Elect-
ronics IT

Semicon-
ductors Telecom

Time trend × ln(Publication Stock )t-1 -0.001 -0.002* -0.003* -0.003** -0.003** -0.003* -0.005**
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Time trend × ln(Patent stock )t-1 0.005** 0.004** 0.007** 0.006** 0.007** 0.004* 0.009**
(0.002) (0.001) (0.002) (0.001) (0.001) (0.002) (0.002)

ln(Publication stock )t-1 0.134** 0.154** 0.139** 0.114** 0.157** 0.068** 0.136**
(0.021) (0.017) (0.022) (0.016) (0.018) (0.022) (0.020)

ln(Patent stock )t-1 -0.035 -0.002 -0.086** 0.034 -0.038 0.148** -0.065*
(0.027) (0.024) (0.029) (0.021) (0.025) (0.036) (0.031)

Time trend -0.009 0.012 0.005 0.024* 0.020* 0.034** 0.013
(0.013) (0.009) (0.015) (0.008) (0.009) (0.012) (0.011)

ln(Assets )t-1 0.315** 0.453** 0.320** 0.349** 0.310** 0.274** 0.228**
(0.041) (0.028) (0.041) (0.023) (0.026) (0.034) (0.031)

ln(R&D stock )t-1 0.021 0.053** 0.070 0.012 0.007 0.063** -0.006
(0.016) (0.012) (0.018) (0.007) (0.009) (0.017) (0.011)

ln(Sales )t-1 0.418** 0.323** 0.390** 0.543** 0.579** 0.505** 0.677**
(0.042) (0.030) (0.037) (0.026) (0.029) (0.035) (0.034)

R2 0.846 0.828 0.833 0.836 0.816 0.851 0.836

Observations 1,465 3,025 1,604 4,590 3,391 2,013 2,064

ln(Market value )

TABLE 4. RESEARCH AND STOCK MARKET VALUE BY INDUSTRY OVER TIME

Notes:  This table examines time trends in the stock market value of research across industries. Standard errors (in 
brackets) are robust to arbitrary heteroskedasticity and allow for serial correlation through clustering by firms. * 
significant at 5%; ** significant at 1%.



(1) (2) (3) (4) (5)

All Years 1985-1997 1998-2007
Innovating 

targets
Excluding 

IT

Time trend × ln(Publication stock )t-1 -0.018** -0.017** -0.019**
(0.005) (0.005) (0.005)

Time trend × ln(Patent stock )t-1 0.003** 0.002 0.003**
(0.001) (0.001) (0.001)

ln(1+Publication stock )t-1 0.292** 0.169** -0.043 0.266** 0.314**
(0.064) (0.040) (0.069) (0.062) (0.065)

p-value  for difference in estimates:

ln(1+Patent stock )t-1 0.039** 0.069** 0.072** 0.033* 0.041**
(0.012) (0.008) (0.011) (0.015) (0.012)

ln(Assets ) 0.592** 0.586** 0.595** 0.649** 0.598**
(0.007) (0.010) (0.010) (0.019) (0.007)

ln(Sales ) 0.167** 0.177** 0.157** 0.077** 0.168**
(0.007) (0.009) (0.010) (0.016) (0.007)

Time trend 0.018** 0.011* 0.019**
(0.003) (0.005) (0.003)

Two-digit industry dummies Yes Yes Yes Yes Yes
Country target dummies Yes Yes Yes Yes Yes
Acquisition year dummies Yes Yes Yes Yes Yes

R2 0.654 0.678 0.633 0.646 0.661

Observations 26,884 14,990 11,894 4,684 25,004

TABLE 5. RESEARCH AND TARGET'S FIRM VALUE OVER TIME

Dependent variable: ln(Target's firm value )

p g p p
stocks. The sample includes all SDC Platinum deals with non-missing information on target firm value, 
assets and sales. The sample period is 1985–2007. Column 4 includes only target firms with at least 
one patent or scientific publication. Standard errors (in brackets) are robust to arbitrary 
heteroskedasticity and allow for serial correlation through clustering by firms. * significant at 5%; ** 
significant at 1%.

p-value <0.01



(1) (2) (3) (4) (5) (6) (7) (8) (9)

Dependent variable:

Acquisition year: All
1985-
1996

1997-
2004

1985-
2004

1985-
1996

1997-
2004 All 1985-1996

1997-
2004

Post-acquisition dummy -0.079** 0.013 -0.198** -0.298 0.902** -1.839** 1.171** 2.036** 0.184
(0.023) (0.025) (0.041) (0.200) (0.248) (0.326) (0.467) (0.629) (0.698)

p-value  for difference in estimates:

Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes

Mean dependent variable 0.57 0.57 0.58 6.1 5.6 6.7 8.6 6.6 10.3

R2 0.865 0.901 0.819 0.614 0.640 0.590 0.953 0.911 0.97

Observations 19,475 10,615 8,860 19,475 10,615 8,860 22,369 11,040 11,329

TABLE 6. RESEARCH BY TARGET FIRMS IN THREE-YEAR WINDOW AROUND ACQUISITION 
YEAR

Notes: This table reports the results of OLS regressions that examine the effect of being acquired on publishing and patenting activity. Post-
acquisition dummy receives the value of one for observations where the year is later than the acquisition value and zero otherwise. We 
include observations in a three-year window from the acquisition year. Robust standard errors are in brackets. * significant at 5%; ** 
significant at 1%.

Flow of patents

Count Weighed by citations Count 

Flow of scientific publications

p-value <0.01 p-value <0.01 p-value <0.01



(1) (2) (3) (4) (5) (6) (7)

Variables All
Publishing 

firms

Non-
publishing 

firms
Pharma and 

Biotech Chemicals Electronics
Telecom 
and IT

Time trend 0.001 0.021 -0.017 0.045 0.016 0.046** -0.001
(0.015) (0.017) (0.020) (0.055) (0.040) (0.014) (0.014)

Cites made 0.089** 0.089** 0.089** 0.122** 0.100** 0.079** 0.133**
(0.011) (0.015) (0.013) (0.044) (0.029) (0.012) (0.017)

Firm fixed effects Yes Yes Yes Yes Yes Yes Yes

R2 0.582 0.497 0.596 0.621 0.637 0.485 0.526

Observations 11,304 4,411 6,893 2,138 3,275 5,023 4,041

Notes:  This table examines time trends in citations to scientific articles by patents for our Compustat sample of R&D-
performing firms. Standard errors (in brackets) are robust to arbitrary heteroskedasticity and allow for serial 
correlation through clustering by firms. * significant at 5%; ** significant at 1%.

Dependent variable: Number of patent citations to science

TABLE 7. USE OF SCIENCE IN INNOVATION: CITATIONS BY PATENTS TO 
SCIENTIFIC PUBLICATIONS



(1) (2) (3) (4) (5) (6) (7) (8)

Variables
Within-

industries
Within-

industries
Within-
firms

Within-
firms

Pharma and 
Biotech Chemicals Electronics

Telecom 
and IT

Time trend 0.974** 0.977** 1.001** 1.007** 0.983** 1.065** 0.978** 1.019**
(0.012) (0.015) (0.018) (0.024) (0.036) (0.030) (0.031) (0.033)

ln(Patent stock )t-1 -0.122* 0.123* 0.012 0.011 0.278 0.016 0.216 0.201

ln(Publication stock )t-1 0.224** 0.254** 0.317* 0.353* 0.249 0.286 0.219 0.265
(0.036) (0.071) (0.158) (0.191) (0.208) (0.195) (0.198) (0.191)

Time trend × ln(Publication 
stock )t-1 -0.002 -0.002 0.002 -0.013** 0.001 -0.004

(0.004) (0.005) (0.006) (0.005) (0.005) (0.005)

(0.063) (0.063) (0.107) (0.107) (0.209) (0.155) (0.132) (0.146)

ln(Sales )t-1 -0.058 -0.058 -0.668** -0.672** -0.548** -0.533** -0.439* -0.655**
(0.055) (0.055) (0.131) (0.132) (0.172) (0.163) (0.213) (0.210)

Industry fixed effects Yes Yes - - - - - -

Firm fixed effects No No Yes Yes Yes Yes Yes Yes

R2 0.580 0.580 0.691 0.691 0.786 0.735 0.714 0.736

Observations 6,251 6,251 6,251 6,251 1,789 2,529 3,418 3,041

TABLE 8. USE OF SCIENCE IN INNOVATION: AVERAGE AGE OF SCIENCE CITED IN PATENTS 

Dependent variable: Average publication year of cited science

Notes:  This table examines the relationship between average publication year of cited articles and a firm's publication stock. The 
estimation sample consists of firms with patents that cite scientific articles. Standard errors (in brackets) are robust to arbitrary 
heteroskedasticity. * significant at 5%; ** significant at 1%.



(1) (2) (3) (4) (5)

Dependent variable: 

All

Non-
missing 

sales

Public 
vs. 

private

Sample 
years 
>10

First 
pub< 
1980

Time trend -0.046** -0.111** -0.045** -0.066** -0.212**
(0.011) (0.030) (0.011) (0.015) (0.050)

ln(Sales ) 0.322**
(0.137)

Time trend  × Dummy for 
public -0.012

(0.024)

Firm fixed effects Yes Yes Yes Yes Yes

R2 0.724 0.676 0.724 0.722 0.719
Observations 38,018 15,135 38,018 11,451 2,999
Notes:  This table examines time trends in scientific publications by European 
firms. We match our publication dataset to all Amadeus (private and public) 
firms. Financial data is available only from 1997, not for all firms. R&D is 
never reported. Standard errors (in brackets) are robust to arbitrary 
heteroskedasticity and allow for serial correlation through clustering by firms. * 

Flow of scientific publications

TABLE 9. INVESTMENT IN SCIENCE BY EUROPEAN 
FIRMS



(1) (2) (3) (4) (5)

Dependent variable: ΔPats ΔR&D ΔCapx

ΔChinese import penetration -1.725** 2.635** -0.431* -1.989**
(0.563) (0.716) (0.244) (0.403)

Time trend -0.011** 0.001 -0.063** -0.010** 0.003
(0.005) (0.007) (0.009) (0.003) (0.005)

ΔR&D stock 0.042* 0.038* 0.397**
(0.019) (0.019) (0.055)

ΔSales 0.474** 0.854**
(0.031) (0.053)

R2 0.002 0.005 0.038 0.260 0.337

Observations 4,354 4,354 4,354 4,354 4,354

TABLE 10. GLOBALIZATION AND INVESTMENT IN RESEARCH, 
1998-2007

Notes:  This table presents the estimation results for the effects of Chinese import 
penetration on investment by Compustat firms. Changes in Chinese import penetration are 
computed as the three-year change in import penetration.  Changes in R&D stock and sales 
are similarly calculated as 3 year changes. Standard errors (in brackets) are robust to 
arbitrary heteroskedasticity and allow for serial correlation through clustering by firms. * 

ΔPubs



(1) (2) (3)

High    

(75th pct.)

Low      

(25th pct.)

ΔChinese import penetration × 
ln(Publication stock )t-1 -0.803**

(0.330)

ΔChinese import penetration × 
ln(Patent stock )t-1 -0.018

(0.323)

Time trend × ln(Publication stock )t-1 -0.010** 0.001
(0.003) (0.001)

Time trend × ln(Patent stock )t-1 0.010** 0.001
(0.002) (0.002)

ln(Publication stock )t-1 0.084** 0.065 0.086**
(0.015) (0.042) (0.022)

ln(Patent stock )t-1 0.153** 0.031 0.068**
(0.016) (0.033) (0.028)

ln(Assets )t-1 0.436** 0.337** 0.288**
(0.037) (0.055) (0.032)

ln(R&D stock )t-1 0.096** 0.065** 0.154**
(0.010) (0.018) (0.013)

ln(Sales )t-1 0.339** 0.579** 0.387**
(0.039) (0.066) (0.033)

Time trend 0.174 0.175*
(0.118) (0.099)

ΔChinese import penetration -0.372**
(1.290)

R2 0.789 0.805 0.873

Observations 3,540 1,755 2,077

Chinese import 

Dependent variable: ln(Market value )

TABLE 11. GLOBALIZATION AND MARKET VALUE 

Notes: This table presents the estimation results for the effects of Chinese 
import penetration on the stock market value of publications. In column 1, the 
estimation period is 1998–2007. In columns 2 & 3, the estimation period is 
1980–2007. Standard errors (in brackets) are robust to arbitrary 
heteroskedasticity and allow for serial correlation through clustering by firms. * 
significant at 5%; ** significant at 1%.



(1) (2) (3) (4) (5)

Dependent variable: ΔPubs ΔPats ΔR&D

Dependent variable:
ΔHHI 
SIC>0 ΔHHI SIC≤0

ΔHHI SIC -0.323* -0.113 -0.060
(0.145) (0.097) (0.048)

Time trend -0.022 -0.006
(0.016) (0.004)

ΔR&D stock 0.240 0.378**
(0.161) (0.062)

ln(Sales )t-3 0.107** 0.036** 0.002
(0.040) (0.015) (0.007)

ΔSales 0.391**
(0.039)

Time trend × ln(Publication stock )t-1 -0.004** -0.001
(0.001) (0.001)

Time trend × ln(Patent stock )t-1 0.006** 0.004**
(0.001) (0.001)

ln(Publication stock )t-1 0.109** 0.051**
(0.020) (0.020)

ln(Patent stock )t-1 0.030 0.077**
(0.023) (0.018)

ln(Assets )t-1 0.296** 0.278**
(0.036) (0.023)

ln(R&D stock )t-1 0.043** 0.073**
(0.009) (0.007)

ln(Sales )t-1 0.580** 0.517**
(0.044) (0.026)

R2 0.039 0.113 0.282 0.887 0.827
Observations 7,573 7,573 7,558 2,609 6,653

Note: This table examines the relationship between narrower firm scope and investments in research 
and its implied value over time. Changes are at the three-year window preceding the focal year. For 
instance, column 1 uses the change in the flow of publications produced in the given year minus the 
flow of publications produced three years prior to that. Other changes are similarly defined. HHI is 
based on Compustat line-of-business data. Column 4 restricts the sample to firms that have narrowed 
their scope, whereas column 5 restricts the sample to firms that have increased their scope. All 
regressions include industry dummies. Standard errors (in brackets) are robust to arbitrary 
heteroskedasticity and allow for serial correlation through clustering by firms. * significant at 5%; ** 
significant at 1%.

ln(Market value )

TABLE 12.  NARROWER FIRM SCOPE 
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Figure 1: Investment in Science and Technology Over Time, NSF Data 
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Figure 2: Investment in Science and Technology Over Time 

Scientific publications (left axis) 

Patents (left axis) 

Note: This figure presents the share of publishing  and patenting firms of all Compustat firms with at least one year with non-zero 
R&D expenditures, over time. Data source: Compustat, Web of Science, PatStat. 
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Note: This figure presents the share of publishing firm that acquire targets with scientific publications, and the share of 
patenting firms that acquire targets with patents, over time (3-year moving average). The dotted line plots the share of firm 
scientific articles that are coauthored with an external scientist. Data source: SDC Platinum, Web of Science, PatStat. 

Figure 3: Sourcing of Science and Technology Over Time 
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Figure 4: Combining Investment in Science and Technology and 
Sourcing Over Time 
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