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1 Introduction

In the design of climate change and environmental policies a key question is how much to sub-

sidize the development of new clean technologies. There is a consensus among economists

that market mechanisms alone cannot provide the socially optimal amount of “green” in-

novation because of the well-known combination of negative environmental externalities -

environmental benefits are not appropriately valued by markets - and positive knowledge

externalities - innovators may not reap all of the benefits of their innovations (Jaffe et al.,

2005; Popp et al., 2009). However, once some mechanism is in place to internalize the

environmental externality, there is no reason a priori to implement R&D policies targeted

specifically at clean technologies. Positive externalities in knowledge production may be ad-

dressed by generic instruments, such as intellectual property rights protection and tax rebates

for research and development activities that apply to all industries equally1 (Schneider and

Goulder, 1997). Yet, in theory, subsidies to private R&D activities should reflect the size of

the external spillovers from the research (Goulder and Schneider, 1999). Consequently, the

optimal level of subsidies for clean R&D crucially depends on the magnitude of knowledge

spillovers from clean technologies, relatively to the amount of knowlege spillover generated

by the dirty technologies they replace (Smulders and Withagen, 2012).

In this paper we use a new dataset that includes over one million patented inventions in

clean and dirty technologies and three million citations to these patents to compare the

magnitude of knowledge spillovers from clean and dirty technologies. We further examine

potential drivers behind the observed differences in knowledge spillovers. Our data covers

four sectors where we can clearly distinguish between clean and dirty inventions: energy

production (renewables vs. fossil fuel energy generation), automobiles (electric cars vs.
1For example in France all companies incurring R&D expenses are eligible to receive a research tax credit,

which covers 30% of all R&D expenses up to 100 million, and 5% above this threshold, irrespective of the
technology covered by the R&D activities.
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internal combustion engines), fuel (biofuel vs. oil-based gasoline) and lighting (LEDs vs.

incandescent light). Following a long tradition in the literature, we use patent citations

to measure knowledge spillovers (Trajtenberg, 1990; Cabellero and Jaffe, 1993; Jaffe and

Trajenberg, 1999; Hall et al., 2005). Patent documents offer a paper trail of knowledge

flows as inventors are required to reference previous patents which have been useful for

developing the new knowledge described in the patent. Patent citations are not without

limitations, but an important advantage of our dataset is that it allows us to deal with

most of the problems usually associated with their use. For example, we can identify (and

discard) self-citations by inventors, as well as citations added by patent examiners, which

might not capture external knowledge spillovers. Our large sample size enables us to include

patent office-by-year-by-sector fixed effects, thereby purging the estimates of a wide variety

of potential confounding factors, including the growing number of patents issued, the rising

number of citations received, and differences in patent citation practices across patent offices,

time and technological areas. We also control for the stock of past patents from the same

technological field (narrowly defined) and for the individual quality of patents using various

established measures of patent value, such as the grant status and the number of countries

in which a patent is filed.

We find consistent evidence that clean patents generate larger knowledge spillovers than their

dirty counterparts. All other things being equal, clean patented inventions receive 43% more

citations (between 23% and 160%, depending on the technology) than dirty inventions. Our

results hold for all four technological fields. Interestingly, the gap between clean and dirty

technologies has been constantly increasing during the past 50 years. We show that clean

patents are not only cited more often, they are also cited by patents that are themselves

cited more often (irrespective of their technological area). When considering the whole chain

of citations made to each patent based on a methodology derived from the Google Pagerank

algorithm, we also find strong evidence of larger spillovers from clean technologies. Our con-
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clusions are robust to a large number of sensitivity tests. These include discarding citations

added by patent examiners, correcting for self-citations at the applicant level, looking at

different subsamples and including additional control variables.

Our paper revolves mostly around a distinction between radically clean innovations (e.g.

electric cars, wind turbines) and dirty innovations (e.g. combustion engines, coal power

plants). Yet, some inventions in the dirty category relate to energy efficiency improvements

that make the dirty technology less dirty. We identify these inventions and label these “grey”

innovations. We then compare knowledge spillovers between clean, grey and “truly dirty”

innovations. The analysis suggests a clear ranking: clean technologies exhibit significantly

higher levels of spillovers than grey technologies, which themselves outperform truly dirty

technologies.

How can we account for the larger knowledge spillovers from clean technologies? Two ex-

planations stand out from our investigation. First, using a generality measure introduced

by Trajtenberg et al. (1997), we examine the extent to which follow-up technical advances

from clean and dirty patents are spread across different technological fields, rather than

being concentrated in just a few of them. We find that clean patents have more general

applications than dirty inventions (i.e., they are more likely to have the characteristics of a

General Purpose Technology, see Bresnahan and Trajtenberg, 1995, and Popp and Newell,

2012). Second, clean technologies might simply benefit from steep learning curves associ-

ated with new technological fields. We partially control for this by including a measure of

previous patenting within the technology class of a given patent in our regressions, but this

effect might not be well captured by a patent stock variable. We therefore compare clean

patents with other emerging technologies such as biotechs, IT, nanotechnology, robot and

3D. We find mixed results across these different technologies, but overall clean patents ap-

pear much closer in terms of knowledge spillovers to these radically new fields than to the

dirty technologies they replace. In particular knowledge spillovers from clean technologies
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appear comparable in scope to those in the IT sector, which has been the driver behind the

third industrial revolution. This suggests that the clean advantage might simply be a feature

of the radical novelty of the field.

Our results have a number of immediate implications. Firstly, with respect to climate

change policy, our findings provide support for the idea that pollution pricing should be

complemented with specific support for clean innovation—e.g. through additional R&D

subsidies—that goes beyond standard policies in place to internalize knowledge externali-

ties. Indeed, the higher spillover effects from clean innovation compared to dirty innovations

(including “grey” energy efficiency technologies) uncovered in this paper justify higher sub-

sidies to clean R&D in a first best policy setting. Radically new clean technologies should

receive higher public support than research activities targeted at improving on the existing

dirty technologies. However, such specific support could equally be justified for a range of

other emerging areas, such as nanotechnologies or IT. Therefore our results go some way into

supporting the recommendation by Acemoglu et al. (2012) that only clean (and not dirty)

technologies should receive R&D subsidies.2

Secondly, our results lend support to the idea that a redirection of innovation from dirty

to clean technologies reduces the net cost of environmental policies and can lead to higher

economic growth in the short run, if the benefits from higher spillovers exceed the costs of

higher carbon prices. Indeed, if the factors leading to an under-provision of knowledge are

more severe for clean technologies and if new clean technologies are induced by environ-

mental regulation, environmental policies could generate growth by unintendedly correcting

a market failure that has been hampering the economy, irrespective of the environmental

problem (Neuhoff, 2005). In fact, the presence of a market failure associated with R&D
2Interestingly, though, for a reason that is not present in their model: Acemoglu et al. (2012) do not

assume different spillovers from clean and dirty technologies. The crucial assumption on which the results
by Acemoglu et al. (2012) hold is that patents last only for one period. Greaker and Heggedal (2013) show
that it is possible to obtain similar results when relaxing this assumption if one now assumes that clean
technologies exhibit larger knowledge spillovers than dirty technologies.
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spillovers from clean innovations is one of the possible theoretical foundations for the Porter

hypothesis (Porter and van der Linde, 1995) according to which environmental regulations

may enhance firms’ profits and competitiveness (see Ambec et al., 2013, for a recent review).

For example, in Mohr (2002), the existence of knowledge spillovers prevents the replace-

ment of an old polluting technology by a new, cleaner and more productive technology, as

firms have a second-mover advantage if they wait for someone else to adopt. The introduc-

tion of an environmental regulation induces firms to switch to the new, cleaner technology.

This simultaneously improves environmental quality and eventually increases productivity.3

Our results however suggest that the potential growth effects of environmental policies very

much depend on the type of displacement being induced by increasing support for clean

technologies. If this leads to less investment in dirty technologies, as evidenced by Aghion

et al. (2012), there seems to be scope for medium run growth effects. If innovation in other

emerging areas is crowded out, such effects are less likely.

Our results also have implications for the modeling of climate change policy. For example,

Fischer and Newell (2008) and Fischer et al. (2013) assess different policies for reducing

carbon dioxide emissions and promoting innovation and diffusion of renewable energy, with

an application to the electricity sector. They model R&D investments and learning-by-

doing, but assume that knowledge spillovers have the same intensity across clean and dirty

technologies. Our paper suggests that this assumption does not hold in practice and provides

precise estimated parameters that can be used to more adequately model the difference

between clean and dirty technologies.

Our paper relates to three main strands of the literature. First, our work draws on the

extensive empirical literature that has used patent data to analyze the determinants and the

effects of knowledge spillovers. Pioneers of patent citation data as a measure of knowledge
3It should be kept in mind that higher spillovers are a necessary but not a sufficient condition for growth

effects from climate policies.
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spillovers include Scherer (1965) and Schmookler (1966). Griliches et al. (1991) and Griliches

(1992) survey this earlier literature. Since then, a large number of papers have used this

method to investigate knowledge diffusion (see, among others, Trajtenberg, 1990; Caballero

and Jaffe, 1993; and Hall et al., 2001). In particular, many papers have focused on the

geography of knowledge spillovers (Jaffe et al., 1993; Jaffe and Trajtenberg, 1996, 1999;

Thompson and Fox-Kean, 2005).

Second, in the energy literature some papers have recently attempted to compare knowl-

edge spillovers from energy technologies with those of non-energy technologies. Bjorner and

Mackenhauser (2013) compare the spillover effects of private energy research with those of

other (non-energy) private research. They find that spillover effects of energy research may

be lower than for other types of private research. Popp and Newell (2012) use US patent ci-

tation data to compare the social value of alternative energy patents to that of other patents

filed by the same firms. They find that alternative energy patents are cited more frequently

by subsequent patents, and by a wider range of technologies, than other patents filed by the

same firms. However, none of these papers distinguishes between clean and dirty technologies

within energy technologies.

Third, our paper is closely related to the literature on the impact of environmental policies

on economic growth, which is itself rooted in the endogenous growth literature (Romer, 1990;

Aghion and Howitt, 1992, 1996 and 1998; Grossman and Helpman, 1991). Smulders and de

Nooij (2003) introduce a difference in spillovers from the clean and the dirty sector into a

model in which both the rate and direction of technological change are endogenous. They

discuss the implication of this difference for growth in the long run. In a Schumpeterian

growth model where new technologies are both more productive and more environmentally-

friendly, Hart (2004) shows that environmental policy can stimulate economic growth (see

also Hart, 2007, and Ricci, 2007b, for similar types of models, and Ricci, 2007a, for a review

of this literature).
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The remainder of the paper is organized as follows. In the next section we present the dataset

and conduct some preliminary data exploration. In section 3, we present our empirical

strategy and discuss the results of our estimations. We investigate several characteristics

of clean technologies which might account for our findings in section 4. We discuss the

implications of our findings in the final section.

2 Data and descriptive statistics

2.1 The patent database

In order to analyze knowledge spillovers we use data from the World Patent Statistical

Database (PATSTAT), maintained by the European Patent Office (EPO). PATSTAT in-

cludes close to 70 million patent documents from 107 patent offices filed as far back as 1844.

We identify clean and dirty patents using the International Patent Classification (IPC) and

the European Patent Classification (ECLA). For this purpose we rely heavily on work carried

out at the OECD and the EPO, which has recently developed a patent classification scheme

for "Technologies related to climate change mitigation and adaptation" (see Veefkind et al.,

2012, for more information on how this scheme was constructed). 4We focus on four sectors

where we can precisely distinguish between clean and dirty patents: energy (renewables vs.

fossil fuel energy generation), automotive (electric cars vs. internal combustion engines), fuel

(biofuel vs. oil-based gasoline) and lighting (LEDs vs. incandescent light). Our paper rests

primarily on a distinction between radically clean innovations (electric cars, solar energy...)

and their dirty counterparts (gasoline-fueled cars, coal-based electricity generation...). How-

ever, an important feature of the dirty category is that some patents included in this group
4This new scheme was defined with the help of experts in the field, both from within and outside the

EPO, including from the Intergovernmental Panel on Climate Change (IPCC). It brings together technologies
related to climate change that are scattered across many IPC sections and includes around 1,000 classification
entries and nearly 1,500,000 patent documents.
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aim at improving the efficiency of dirty technologies (for example motor vehicle fuel effi-

ciency technologies), making the dirty technology less dirty. We are able to identify these

energy-efficiency patents in the energy and the automotive sector. We refer to these patents

as “Grey” inventions. The list of patent classification codes used to identify clean and dirty

patents is shown in table 2.

Given that the same invention may be patented in several countries, our level of observation

is the patent family (the set of patents covering the same invention in several countries). In

other words, we treat multiple filings of an invention as one invention and count citations by

patent family instead of individual patents. In total, our sample spans from 1950 to 20055

and includes over 1 million inventions with approximately 3 million citations made to these

inventions. A breakdown of the number of inventions in each sector can be found in table 1.

Clean inventions represent around 25% of our sample.

Patent data have a number of attractive features. First, patents are available at a highly

technologically disaggregated level. This allows us to distinguish between clean and dirty

innovations in several sectors, including energy and transportation. In comparison, R&D

expenditures of a car company cannot usually be broken down into clean and dirty innova-

tion. Second, patent documents contain citations to "prior art" as inventors are required to

reference previous patents that have been used to develop the new technology described in

the patent. 6These citations thus represent a paper trail of knowledge flows. It is therefore

not surprising that patent data have been widely used in empirical studies of knowledge

spillovers (Jaffe et al., 1993; Jaffe and Trajtenberg, 1999; Keller, 2004). However, there are
5We stop in 2005 to allow at least five years for patent to get cited. The majority of citations occur

during the first five years of a patent.
6Not properly referencing priori art can lead to the invalidation of the patent and is therefore a dangerous

strategy: “Failure of a person who is involved in the preparation or prosecution of a United States patent
application to disclose material prior art can result in the patent not issuing, or if issued, being held unen-
forceable or invalid. As in many instances, the issue of whether prior art is material to patentability can be
quite subjective; it is critical that inventors, assignees, and attorneys be acquainted with the obligations to
disclose such prior art.” (Silverman, 2003)
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Table 1: Number of clean and dirty inventions by sector

Sector Clean Grey Pure Dirty Total

Car 74,774 132,812 212,761 420,347
Energy 102,031 1,414 638,011 741,456
Fuel 11,956 27,911 39,867
Light 61,605 209 61,814

Total 250,366 134,226 878,892 1,263,484

a few drawbacks to bear in mind. First, not all inventions are patented, so that patent cita-

tions underestimate the actual extent of knowledge spillovers. In particular, other channels

of knowledge transfers, such as non-codified knowledge and embodied know-how (inter-firm

transfer of knowledge embodied in skilled labor, knowledge flows between customers and

suppliers, knowledge exchange at conferences and trade fairs, etc.) are not captured by

patent citations. It is however reasonable to assume that knowledge spillovers within and

outside the patent system are correlated. Second, citations made to patents by the same

inventor (refered to as self-citations) represent transfers of knowledge that are mostly in-

ternalized, whereas citations to patents by other inventors are closer to the true notion of

diffused spillovers. However, this problem can be (at least partly) resolved by excluding

self-citations by the inventor. A third concern is that some citations are added by patent ex-

aminers during the examination process. These might not capture pure knowledge spillovers

if the inventor was genuinely unaware of that invention. 7 Fortunately, our patent data

indicate whether the citations was included by the applicant or the patent examiner. We

can thus check the robustness of our results to excluding citations added by patent examiners.

7Of course, if the inventor has deliberately ommitted to cite a relevant invention, then citations added by
patent examiners actually capture true knowledge spillovers.
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Table 2: Mean number of citations

Clean Dirty Diff.

Citations received 3.358 2.286 1.072***
(9.186) (5.922) [0.015]

Citations received within 5-years 1.863 1.070 0.793***
(5.257) (3.126) [0.008]

Notes: The first two columns report the mean values and standard deviation in
parentheses. The last column is reports a t-test for the difference in means with
the standard error in parentheses. *** indicates significance at 0.1% level.

2.2 Exploratory data analysis

The objective of this paper is to compare the extent of knowledge spillovers that arise from

clean and dirty innovations. Following a long tradition in the literature, we measure knowl-

edge spillovers by the number of forward citations received by clean and dirty patents. As

shown in table 2, aggregating all technologies together, clean inventions receive on average

3.36 citations throughout their life time while dirty inventions receive on average 2.29 cita-

tions. This difference is highly statistically significant (see column 4). An obvious problem

with this simple comparison is that clean patents are relatively newer, and hence have had

less time to be cited. The average age of clean patents (the time between the publication

year and today) is 15 years as opposed to 28 years for dirty patents. In order to partly deal

with this truncation issue, we look at the number of citations received within the first five

years of the patents’ publication (Hall et al., 1993). We find that the difference between the

number of citations received by clean and dirty inventions is still significant: clean patents

receive 79% more citations than dirty patents (see Table 2). Looking separately at the four

technological fields in table 3, we find that the mean number of citations and the differences

between clean and dirty patents vary across sectors. For all sectors apart from fuel, clean

inventions are more cited than dirty ones and this difference is always significant. Citations

within a five year window also exhibit statistically significant differences.
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Table 3: Mean number of citations by sectors

Clean Dirty Diff.

Car

Citations received 4.224 3.199 1.026***
(9.605) (7.175) [0.031]

Citations received within 5-years 2.572 1.652 0.920***
(5.905) (4.174) [0.018]

Fuel

Citations received 2.511 4.048 -1.537***
(5.977) (9.394) [0.093]

Citations received within 5-years 1.590 1.201 -0.388***
(2.955) (3.320) [0.035]

Energy

Citations received 2.740 1.828 0.912***
(7.007) (5.110) [0.018]

Citations received within 5-years 1.248 0.769 0.478***
(3.391) (2.334) [0.009]

Light

Citations received 3.511 1.388 2.124**
(11.905) (3.910) [0.824]

Citations received within 5-years 2.162 0.612 1.549**
(6.777) (1.829) [0.469]

Notes: The first two columns report the mean values and standard deviation in
parentheses. The last column is reports a t-test for the difference in means with
the standard error in parentheses. ** and *** indicate significance at 1% and
0.1% level respectively.
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3 Econometric analysis

3.1 Basic specification and estimation results

Results from the exploratory data analysis point to larger knowledge spillovers from clean

technologies. The results from this analysis can however be driven by some unobserved shocks

to citation patterns disproportionaly affecting clean patents. For example, the number of

citations received by patents have increased recently due to the development of online patent

search engines which facilitate identification of previous patents. Since clean patents are on

average younger, they are likely to have been disproportionately affected by changes in the

IT system. Moreover, the truncation issue is exacerbated for patents of older vintage. Even

if each patent have the same amount of time to be cited, the increase in the universe of citing

patents would increase the total number of citations made. Econometric methods allow us

to control for these potential confounding factors.

Our strategy is to estimate a simple count data model of the type

Ci = exp(�Cleani + �Xi + ✏i) (1)

where Ci is the number of citations received by patent i (excluding self-citations), Cleani is

a dummy variable indicating whether patent i is clean, Xi are controls and ✏i is the error

term. Our sample is the population of clean and dirty patents. Hence, the main coefficient

of interest, �, captures the difference between the number of citations received by clean and

dirty patents, all other things being equal. Given the count data nature of the dependent

variable, we estimate Equation 1 by Poisson pseudo-maximum likelihood. We condition out

the patent office-by-year-by-sector fixed effects using the method introduced by Hausman,

Hall and Griliches (1984), which is the count data equivalent to the within groups estimator
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for OLS.8

We include a number of control variables to purge the estimates from as many potential

confounding factors as possible. First, as explained above, the average number of citations

received and made has been rising over time (Hall et al., 2001). Moreover, differences in

patent office practices across time and technological areas may produce artificial differences

in citations intensities. We therefore include a full range of patent office-by-year-by-sector

fixed effects. Practically speaking, this means that we effectively compare for example clean

energy patents filed at the USPTO in 2000 with dirty energy patents filed at the USPTO

that same year. To account for seasonality effects, we also include month dummy variables.

Second, the main problem we face is the fact that clean technologies are relatively newer,

which makes them intrinsically different from dirty technologies. Note that the direction of

the potential bias is not obvious. On the one hand, inventors start from a lower knowledge

base which may lead to greater opportunities for big breakthroughs and larger positive

spillovers than more mature technologies. On the other hand, the number of opportunities

to be cited is smaller for clean technologies because we only know about citations received

so far. As a result, we might be overestimating or underestimating spillovers effects from

clean patents, depending on which effect dominates. In order to make a first attempt at

controlling for this issue, we include the stock of past patents from the same technological

field (defined on the basis of 4-digit IPC code) in the regressions.9 Clearly, the stock of past
8This is implemented by the xtpoisson, fe command in STATA. Note that Poisson models estimated by

pseudo-maximum likelihood can deal with over-dispersion (see Santos Silva and Tenreyro, 2006), so that neg-
ative binomial models offer no particular advantage. In particular, we find the pseudo-fixed effects negative
binomial estimator available in stata (xtnbreg, fe) untrustable, since it does not truly conditions out the fixed
effects (only the overdispersion coefficient is assumed to vary across units - see Allison and Waterman, 2002,
and Greene, 2007, for more information on this issue). However, as a robustness check we also estimated
Equation (1) using an unconditional negative binomial estimator with patent office, year, month and sector
dummies (including a whole range of sector by year by patent office dummies is computationally infeasible)
and find very similar results. The coefficient obtained for the clean dummy variable is 0.495 (standard error
0.000).

9We also tried including higher-order polynomial terms of the past patent stock. This does not alter the
results in any way.
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patents might not perfectly capture the level of development of the technology and we come

back to this point later.

Finally, citations might not exclusively capture knowledge flows, but also the quality of the

patent. In order to control for this problem we include three measures of paten quality: the

patent’s family size, a dummy variable indicating a “triadic” patent, and a dummy variable

indicating the grant status. Patent family has been used widely as a measure of patent

quality (Lanjouw and Mody, 1996; Lanjouw and Shankerman, 2004; Harhoff et al., 2003).

We define family size as the number of patent offices where the same invention has been

filed. Triadic patents are patents which have been filed in the US, European, and Japanese

patent offices. Triadic patents have also been used extensively as a way to identify high-

value patents (Grupp et al., 1996; Grupp, 1998; van Pottelsberghe, Dernis, and Guellec

2001; Dernis and Khan, 2004; Guellec and van Pottelsberghe, 2004). The grant status of

an invention indicates whether the patent has been granted by the patent office yet and

obviously indicates a higher quality patent.

Results from Equation 1 can be found in Table 4. The results from the econometric analysis

confirm those of the exploratory data analysis: conditional on sector, patent office, applica-

tion year, quality and level of technology development, clean inventions appear to give rise

to larger knowledge spillovers than dirty inventions. On average across the four technolog-

ical fields, we find that clean inventions receive between 38% and 43% more citations than

dirty ones depending on the specification. We get the strongest effect when adding all three

measures of quality as controls, but there is little variation across specifications. Given that

these quality measures all enter with a highly statistically significant coefficient, column 4

is our preferred specification. Notably, the stock variable is always negative and significant,

indicating that the latest patents in a field receive a decreasing number of citations as the

field grows over time.

In order to investigate the evolution of the relative intensity of spillovers across time, we

15



Table 4: Basic results

(1) (2) (3) (4)

Clean invention 0.382*** 0.406*** 0.407*** 0.426***
(0.000) (0.000) (0.000) (0.000)

Past patents stock -0.102*** -0.074*** -0.069*** -0.065***
(0.000) (0.000) (0.000) (0.000)

Family size 0.106*** 0.081*** 0.073***
(0.000) (0.000) (0.000)

Triadic 0.520*** 0.445***
(0.0050) (0.000)

Granted 0.944***
(0.000)

Patent office-by-year-by-sector yes yes yes yes
Month fixed effect yes yes yes yes

Obs. 1,242,907 1,242,907 1,242,907 1,242,907

Notes: Robust standard errors, p-values in parentheses (* p<0.05, ** p<0.01, *** p<0.001). The
dependent variable is the total number of citations received excluding self-citations by inventors. All
columns are estimated by fixed-effects Poisson pseudo-maximum likelihood.

run our estimation for each five years period between 1950 and 2005 and plot the coefficient

obtained for clean invention in Figure 110. We find that there has been a clear increase in

the clean premium over time, with a strong acceleration between 1980 and 2000. In the last

10 years of our dataset clean inventions have been receiving over 50% more citations than

dirty ones.

In Table 5 we present the regressions results for each technology separately. We find that

clean inventions receive between 23% and 160% more citations than dirty inventions de-

pending on the sector. The light and energy sectors exhibit the greatest clean invention

advantage in terms of citations. Interestingly, clean patents also receive more citations than

dirty patents in the fuel sector now that confounding factors are properly controlled for.
10The standard errors are always smaller than 0.001. We do not plot them.
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Figure 1: The gap in knowledge spillovers between 1950 and 2005
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Table 5: Results by sector

Car Fuel Energy Light

Clean invention 0.350*** 0.229*** 0.485*** 1.596***
(0.000) (0.000) (0.000) (0.000)

Past patents stock -0.066*** -0.146*** -0.044*** -0.142***
(0.000) (0.000) (0.000) (0.000)

Family size 0.058*** 0.061*** 0.061*** 0.103***
(0.000) (0.000) (0.000) (0.000)

Triadic 0.567*** 0.239*** 0.477*** 0.391***
(0.000) (0.000) (0.000) (0.000)

Granted 1.142*** 0.728*** 0.731*** 0.899***
(0.000) (0.000) (0.000) (0.000)

Observations 417,696 38,648 736,641 60,962

Notes: Robust standard errors, p-values in parentheses (* p<0.05, ** p<0.01, ***
p<0.001). The dependent variable is the total number of citations received excluding
self-citations by inventors. All equations include patent office-by-year and month fixed
effects. All columns are estimated by Poisson pseudo-maximum likelihood.
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3.2 Grey innovation

As explained above, two types of innovations can lead to a mitigation of greenhouse gases:

Firstly, radical innovations that require consumers or technology providers to substitute to

a different product or research area; e.g. electric vehicles replacing internal combustion

engine propelled vehicles. Secondly, more incremental and complementary innovations that

improve the carbon efficiency of currently used (dirty) products, e.g. making combustion

engines more fuel-efficient. We label this latter category as “grey” inventions. In the results

presented thus far we have included grey innovations in the “dirty” category. Given the fact

that the response to policy might be different (see Aghion et al., 2012, for a further discussion

on this issue) between clean, “grey”, and “true dirty” innovations, we examine the difference

in knowledge spillover between these three categories.

In Tables 6 and 7 we explore these differences for the automotive and energy generation

technology groups for which the distinction between ’grey’ and ’truly dirty’ innovations is

most easily made. Each table is constructed in the same way. In column 1, we reproduce the

results from Table 5 where grey innovations are included in the dirty category. In column 2

we compare clean patents with grey patents, column 3 compares grey and truly dirty patents,

and finally column 4 compares clean with truly dirty patent only. This analysis suggests a

clear ranking: clean technologies exhibit significantly higher levels of spillovers than grey

technologies, which themselves outperform truly dirty technologies.

3.3 Citation networks

A potential concern with citation counts as used in the previous sections is that a citation

from an obscure patent is given the same weight as a citation from a highly-cited work.

Therefore, it is perfectly possible that dirty patents receive less citations than clean patents

but are cited by patents that are more influential (i.e., more cited themselves). We explore

18



Table 6: Clean, Grey and Pure Dirty - Car

Clean vs. Clean vs. Grey vs. Clean vs.
Grey and Pure Dirty Grey Pure Dirty Pure Dirty

Clean/Grey invention 0.350*** 0.127*** 0.304*** 0.484***
(0.000) (0.000) (0.000) (0.000)

Past patents stock -0.066*** -0.140*** -0.109*** -0.080***
(0.000) (0.000) (0.000) (0.000)

Family size 0.058*** 0.052*** 0.080*** 0.053***
(0.000) (0.000) (0.000) (0.000)

Triadic 0.567*** 0.559*** 0.476*** 0.546***
(0.000) (0.000) (0.000) (0.000)

Granted 1.142*** 1.133*** 1.173*** 1.054***
(0.000) (0.000) (0.000) (0.000)

Observations 417,696 206,176 343,075 285,246

Notes: Robust standard errors, p-values in parentheses (* p<0.05, ** p<0.01, *** p<0.001). The de-
pendent variable is the total number of citations received, corrected for self-citations by inventors. The
sample includes clean and less dirty patents in the energy sector. All equations include patent office-by-
year and month fixed effects. All columns are estimated by Poisson pseudo-maximum likelihood.

Table 7: Clean, Grey and Pure Dirty - Energy

Clean vs. Clean vs. Grey vs. Clean vs.
Grey and Pure Dirty Grey Pure Dirty Pure Dirty

Clean/Grey invention 0.485*** 0.241*** 0.307*** 0.486***
(0.000) (0.000) (0.000) (0.000)

Past patents stock -0.044*** 0.044*** -0.115*** -0.044***
(0.000) (0.000) (0.000) (0.000)

Family size 0.061*** 0.074*** 0.060*** 0.061***
(0.000) (0.000) (0.000) (0.000)

Triadic 0.477*** 0.439*** 0.444*** 0.478***
(0.000) (0.000) (0.000) (0.000)

Granted 0.731*** 0.655*** 0.745*** 0.733***
(0.000) (0.000) (0.000) (0.000)

Observations 736,641 101,057 635,588 735,343

Notes: Robust standard errors, p-values in parentheses (* p<0.05, ** p<0.01, *** p<0.001). The de-
pendent variable is the total number of citations received, corrected for self-citations by inventors. The
sample includes clean and less dirty patents in the energy sector. All columns include patent office-by-
year and month fixed effects. All columns are estimated by Poisson pseudo-maximum likelihood.
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this possibility in this section.

3.3.1 Citation counts of inventions citing clean and dirty technologies

We start by comparing knowledge spillovers (still measured by citation counts) from in-

ventions that cite clean patents with knowledge spillovers from inventions that cite dirty

patents.11 This amounts to looking at the next link in the history of clean and dirty inven-

tions. The results are shown in Table 8. Column 1 shows the results when all technologies

are pooled together. Columns 2 to 5 show the results separately for each technology. For

example in column 2 we compare patents that cite clean car patents with patents that cite

dirty car patents in terms of their knowledge spillovers. We find that inventions that cite

clean inventions are themselves more cited by about 30% than inventions that cite dirty

inventions. This result is true across all four technologies, although the magnitude of the

difference varies. This shows that clean patents are not only cited more often, they are also

cited by patents that are themselves cited more often (irrespective of their own technological

area).

3.3.2 Patent Rank

So far we have found that clean inventions are not only more cited than their dirty counter-

parts but are also cited by more influential patents. However, these results only encompass

two tiers of citations (the initial citations to clean and dirty patents, and the citations to

these citations). In order to take into account the whole citation network of clean and dirty

patents, we apply the random surfer PageRank algorithm (Page et al., 1999) to our patent

dataset. This algorithm was originally used by the web search engine Google to help de-
11We drop patents that cite both clean and dirty patents from the sample. Thus we compare knowledge

spillovers from inventions that cite clean patents (but not dirty patents) with knowledge spillovers from
inventions that cite dirty patents (but not clean patents). Note that both categories may also cite “neutral”
patents that are neither clean nor dirty.
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Table 8: Spillovers from patents citing clean and dirty patents

All Car Fuel Energy Light

Citing clean invention 0.291*** 0.189*** 0.099*** 0.385*** 0.757***
(0.000) (0.000) (0.001) (0.000) (0.000)

Past patents stock -0.010* -0.010 -0.047*** -0.001 -0.069***
(0.039) (0.070) (0.000) (0.913) (0.000)

Family size 0.024*** 0.025*** 0.026*** 0.022*** 0.043***
(0.000) (0.000) (0.000) (0.000) (0.000)

Triadic 0.153*** 0.167*** 0.080** 0.147*** 0.116***
(0.000) (0.000) (0.009) (0.000) (0.000)

Granted 0.935*** 0.990*** 0.841*** 0.879*** 1.002***
(0.000) (0.000) (0.000) (0.000) (0.000)

Obs. 1,008,441 386,458 50,408 504,261 67,314

Notes: Robust standard errors, p-values in parentheses (* p<0.05, ** p<0.01, *** p<0.001). The depen-
dent variable is the total number of citations received, corrected for self-citations. The sample includes
patents which have cited clean or dirty technologies in the car, energy, fuel and light sectors (column
1), in the car sector (colunn 2), in the energy sector (column 3), in the fuel sector (column 4) and in
the light sector (column 5). The equation in column 1 includes patent office-by-year-by-sector fixed ef-
fects, and month fixed effects while all other equations patent office-by-year and month fixed effects. All
columns are estimated by Poisson pseudo-maximum likelihood.

termine the relevance or importance of a webpage. It does so by analyzing the network of

hyperlinks of web pages. The basic idea is that a webpage is considered important if many

other webpages point to it, or if many webpages point to the webpages that point to it (or

both), and so on. To date, a few papers have applied this method to rank the importance of

patent documents (Lukach and Luckach, 2008; Shaffer, 2011). The resulting PatentRank has

the advantage to readily identify patents that are modestly cited but nevertheless contain

ground-breaking results. For example, many ground-breaking but older patents may not

have been widely cited because the scientific community was smaller when they were pub-

lished. The PatentRank also normalizes the impact of patents from different areas allowing

for a more objective comparison (Maslov and Redner, 2009). By applying this algorithm to

our data, we can test whether the clean premium found in the previous sections is also valid

when considering the whole network of patent citations.

The PatentRank of each patent is defined as the weighted sum of PatentRanks of all citing
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patents. A patent has a high rank if it has more backward citations or if citing patents have

higher ranks themselves. The PatentRank is computed recursively and the process iterates

to converge. The PatentRank r(i) of a patent i is defined according to the following:

r(i) =
↵

N

+ (1� ↵)
X

j✏B(i)

r(j)

F (j)

where N is the total number of patents, B(i) is the set of patents that cite patent i (i.e.

the number of forward citations to patent i), and F (j) is the number of backward citations

(i.e. number of citations made by patent j). Dividing citing patent ranks by the number

of citations made has two effects. First, it distributes the rank to all citations fairly, and

secondly, it normalizes the sum of each patent effects and ranks vector to one. The parameter

↵, the damping factor, is used to avoid sink patents (i.e. patents that are never cited) because

sink patents will lead to an endless loop.12

Having constructed the PatentRank of all clean and dirty patents in our data set, we re-

estimate Equation (1) using the PatentRank as the dependent variable. As the patent rank

is positive and non-null, we log the dependent variable and simply estimate by OLS.13 As

shown on Table 9, we find that clean inventions have a significantly higher PatentRank across

all sectors taken together and individually.14 Hence, when considering all citation networks,

clean inventions seem to be more popular among researchers than dirty inventions. This
12The mechanism behind the ranking is equivalent to the random-surfer behavior, a person who surfs the

web by randomly clicking links on the visited pages but periodically gets bored and jumps to a random
page altogether. Therefore, when a user is on a web page, she will select one output link randomly with
probability ↵ or will jump to other webpages with probability 1 � ↵. It can be understood as a Markov
process in which the states are web pages, and the transitions are all equally probable and are the links
between webpages.

13Estimating a Poisson model changes the size of the coefficient but the results are similar (the coefficient
on clean patents is positive and significant at the 0.1% level).

14The PatentRank is significantly higher for clean and grey inventions when compared to true dirty in
both the energy and car sectors. However, the clean premium is not significant when comparing clean and
grey inventions. Clean inventions are therefore cited by a larger number of patents and/or more influential
ones. See Tables 15 and 16 in appendix for results details.
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Table 9: PatentRank results

All Car Fuel Energy Light

Clean invention 0.155*** 0.139*** 0.093*** 0.159*** 0.596***
(0.000) (0.000) (0.000) (0.000) (0.000)

Past patents stock -0.023*** -0.031*** -0.061*** -0.015*** -0.058***
(0.000) (0.000) (0.000) (0.000) (0.000)

Family size 0.046*** 0.063*** 0.033*** 0.039*** 0.066***
(0.000) (0.000) (0.000) (0.000) (0.000)

Triadic 0.155*** 0.137*** 0.137** 0.144*** 0.085***
(0.000) (0.000) (0.002) (0.0050) (0.000)

Granted 0.102*** 0.141*** 0.074*** 0.063*** 0.095***
(0.000) (0.000) (0.000) (0.000) (0.000)

Obs. 664,158 257,209 24,682 352,945 36,723

Notes: Robust standard errors, p-values in parentheses (* p<0.05, ** p<0.01, *** p<0.001). The
dependent variable is the page rank index. The equation in column 1 includes patent office-by-year-
by-sector fixed effects, and month fixed effects. Columns 2 to 5 include patent office-by-year and
month fixed effects. All columns are estimated by OLS.

confirms that knowledge spillovers from clean technologies are larger than those generated

by dirty technologies.

3.4 Robustness Checks

We conducted a number of robustness checks on the basic specification and we report the

main ones here. All tables of results are presented in the annex.

Five years window

As in section 2.2 we look at the number of citations received within a five-year window to at

least partially overcome the truncation bias that is due to the fact that we observe citations

for only a portion of the life of an invention, with the duration of that portion varying across

patent cohorts (see Table 17). The coefficients obtained for the clean dummy barely change.
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Discarding citations

We discard citations added by patent examiners in Table 18.15 By restricting the citation

counts to the ones made by the applicant only, we address the concern that patent citations

added by examiners might not capture actual knowledge spillovers. The results obtained

when all sectors are pooled together barely change but the only noticeable difference is that

the clean dummy is no longer significant on the fuel sector when citations added by examiners

are excluded. In Table 19 we correct for self-citations at the level of the applicant (the firm

or the individual who filed the patent) rather than at the level of individual inventors. The

results don’t change qualitatively.

Various subsamples

In Table 20 we look at different subsamples. We start by restricting the sample to patents

that received at least one citation. Given that a large fraction of patents (69%) are never

cited, spillovers from clean technologies might be biased if there are disproportionately more

dirty patents that are never cited. We also look at highly valuable inventions by focusing

on triadic patents (i.e., patents that have been filed at the USPTO, the EPO and the Japan

Patent Office, see above). This can give us some insight into whether the clean advantage

is still present for the upper part of the distribution. In addition, we restrict our sample to

patents filed at the US patent office and at the European Patent Office. None of these tests

modify our main finding (coefficient on clean between 0.319*** and 0.469***).

Additional control

We add the number of claims as an additional control variable for patent quality in Table 21.

The claims specify the components of the patent invention and hence represent the scope
15Note that we restrict the sample to patent offices for which distinction between citation added by patent

examiner or applicant is made.
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of the invention (Lanjouw and Schankerman, 1999). This information is only available in

our patent database for a limited number of patent offices, implying that our sample size is

significantly reduced. For this reason we do not include the number of claims in our baseline

regressions, but overall the results barely change (coefficient on clean = 0.404***).

Extreme Outcomes

So far we have focused on the effect of clean patents on the average citation outcomes.

It is also interesting to examine extreme outcomes and whether clean patents are more

or less likely to be considered a breakthrough in terms of citation impact. We define a

breakthrough invention as a patent falling in the top 1% or 5% of the citation frequency

distribution. We also estimate the probability that a patent has received at least one citation.

We estimate a logistic regression of the likelihood that a patent’s impact falls within these

extreme outcomes:

Topcitei = ↵ + �Cleani + �Xi + ✏i (2)

where Topcitei equals one if patent i falls within the top 1% or 5% (defined as cite p99,

andcite p95 respectively) in terms of future citations received or if patent i receives at least

one citation (cite > 0). Cleani and controls Xi are identical to the previous section. Table

22 shows that a clean patent has a 107% (respectively 85%) greater likelihood of being in

the top 1% (resp. 5%) of patents in terms of the number of citations received. A clean

patent has a 53% higher chance of receiving at least one citation. We conclude from these

results that the higher intensity of knowledge spillovers from clean technologies is even more

pronounced for highly-valuable patents.
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4 Drivers of the clean advantage

All our findings point to larger knowledge spillovers from clean technologies. This suggests

that clean technologies may share common characteristics which increase the likelihood of

spillovers. In the following section we explore three possible explanations for our findings.

4.1 Localized knowledge spillovers

The existence of localized knowledge spillovers has been widely documented Audretsch and

Feldman (2004). In one of the earliest papers on this subject, Jaffe et al. (1993) show that

spillovers from research to firms are more intense when the firm is closer to the institution

that generated the research. Adding an element of time, Jaffe and Trajtenberg (1996, 1999)

show that patent citations tend to occur initially between firms that are close to each other,

and later on spread to a larger geographical area and other countries. Using European patent

data, Maurseth and Verspagen (2002) show that patent citations occur more often between

regions which belong to the same country, same linguistic group and geographical proximity

(see also Peri, 2005). Similar results have been found for energy technologies (see Braun et

al, 2010 and Verdolini and Galeotti, 2011).

In our case, if the clean industry is more clustered geographically than the dirty industry, this

could explain why clean technologies tend to generate larger knowledge spillovers. Although

we do not have detailed information on the exact localization of inventors, we do have

extensive information on their country of residence. We use this information to distinguish

between within-country citations and cross-border citations. By looking at international

citations, we greatly limit the possibility of localized spillovers. The results are presented in

Table 10. We find that clean technology receive significantly more citations than their dirty

counterparts when considering either intra-national (column 2) or international citations

(column 3). Interestingly, the point estimate is extremely close in these two cases. This
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Table 10: Within vs. across-country spillovers

Citations received Citations received Citations received
within country across country

Clean invention 0.426*** 0.415*** 0.438***
(0.000) (0.000) (0.000)

Past patents stock -0.064*** -0.068*** -0.061***
(0.000) (0.000) (0.000)

Family size 0.073*** 0.064*** 0.077***
(0.000) (0.000) (0.000)

Triadic 0.449*** 0.347*** 0.543***
(0.000) (0.000) (0.000)

Granted 0.944*** 0.758*** 1.179***
(0.000) (0.000) (0.000)

Obs. 1,242,623 1,223,267 1,241,959

Notes: Robust standard errors, p-values in parentheses (* p<0.05, ** p<0.01, *** p<0.001). The de-
pendent variables are the total number of citations (column 1), within a country (column 2), across
country (column 3) corrected for self-citations by inventors. All equations include patent office-by-
year-by-sector fixed effects, and month fixed effects. All columns are estimated by Poisson pseudo-
maximum likelihood.

demonstrates that the advantage of clean patents cannot be explained by a more clustered

clean industry.

4.2 Generality

Clean technologies may have more general applications and this might explain why they in-

duce larger knowledge spillovers. We first explore whether clean inventions are more likely to

be cited within or across their originating technological field16. We find that clean inventions

are more cited within their own field than dirty inventions are. However, clean inventions

are also significantly more cited across their field (see Table 11). This is an indication that

clean inventions have more general applications than their dirty counterparts as they are

more likely to be cited by a patent from a completely different sector.

To further investigate the generality of clean and dirty inventions, we use a measure of
16A technological field is defined at the IPC 3-digit code
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Table 11: Intra vs. inter-sectoral spillovers

Citations received Intra-sectoral citations Inter-sectoral citations

Clean invention 0.426*** 0.449*** 0.247***
(0.000) (0.000) (0.000)

Past patents stock -0.065*** -0.061*** -0.165***
(0.000) (0.000) (0.000)

Family size 0.073*** 0.074*** 0.072***
(0.000) (0.000) (0.000)

Triadic 0.445*** 0.478*** 0.463***
(0.000) (0.000) (0.000)

Granted 0.944*** 0.958*** 0.562***
(0.000) (0.000) (0.000)

Obs. 1,213,707 1,242,441 1,249,771

Notes: Robust standard errors, p-values in parentheses (* p<0.05, ** p<0.01, *** p<0.001). s. The depen-
dent variables are the total number of citations (column 1), within a technological field (based on IPC 3 digit
code) (column 2), across technological field (column 3) corrected for self-citations by inventors. All equations in-
clude patent office-by-year-by-sector fixed effects, and month fixed effects. All columns are estimated by Poisson
pseudo-maximum likelihood.

generality based on the Herfindahl index of concentration introduced by Trajtenberg, Jaffe

and Henderson (1997). It measures the extent to which the follow-up technical advances (ie

the citations) are spread across different technological fields, rather than being concentrated

in just a few of them. The generality of a patent is defined in the following way:

Generalityi = 1�
niX

j

s

2
ij (3)

where sij is the percentage of citations received by patent i that belong to patent class

j (definited at 3-digit IPC code), out of ni patent classes. An originating patent with

generality approaching one receives citations that are very widely dispersed across patent

classes; a generality equal to zero corresponds to the case where all citations fall into a single

class.

We carry out regressions using this generality measure as a new outcome variable and find

that clean patents are significantly more general than dirty patents, as shown in Table 12.
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Table 12: Generality

All Car Fuel Energy Light

Clean invention 0.229*** 0.422*** 0.061** 0.057*** 0.184
(0.000) (0.000) (0.004) (0.000) (0.105)

Past patents stock -0.040*** -0.150*** -0.018 0.025*** 0.005
(0.000) (0.000) (0.051) (0.000) (0.351)

Family size -0.012*** -0.035*** -0.017** -0.013** -0.017***
(0.000) (0.000) (0.001) (0.002) (0.000)

Triadic -0.088*** -0.088*** -0.158*** -0.028* -0.038*
(0.000) (0.000) (0.000) (0.025) (0.021)

Granted -0.076*** -0.178*** -0.033* 0.006 -0.019*
(0.000) (0.000) (0.026) (0.294) (0.027)

Observations 564,523 227,755 22,067 288,390 33,073

Notes: Robust standard errors, p-values in parentheses (* p<0.05, ** p<0.01, *** p<0.001). The
dependent variable is a generality measure based on Herfindahl index of concentration. Equation is
column 1 includes patent office-by-year-by-sector fixed effects, and month fixed effects while all other
equations include patent office-by-year and month fixed effects. All columns are estimated by OLS.

This result holds true across all sectors with the exception of the light industry, where the

difference between clean and dirty inventions is not statistically significant.17

4.3 Clean versus other emerging fields

Technologies that contain a high degree of new knowledge (radical innovations) are likely to

exhibit higher spillover effects than technologies that contain a low degree of new knowledge

(incremental innovations). Clean technologies are new and rather undeveloped technolo-

gies. In contrast, the dirty technologies they replace are much more mature and developed.

Therefore research in clean technologies might yield spillovers that are completely different

in scope from research in dirty technologies, not because they are clean but simply because

they can be considered as radically new innovations. In order to investigate this assumption

we compare knowledge spillovers between clean inventions and other radically new technolo-
17Note that there is a potential selection bias here, as patents that have never been cited have no generality

measure and are therefore left out of the sample.
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Table 13: Comparing spillovers from clean and other new technologies

Dependent variable IT Biotechs Nano Robot 3D

Clean invention -0.130*** 0.430*** -0.216*** -0.124* -0.264***
(0.000) (0.000) (0.000) (0.000) (0.000)

Past patents stock -0.010 -0.144*** -0.041*** -0.048*** -0.045***
(0.181) (0.000) (0.000) (0.000) (0.000)

Family size 0.019*** 0.034*** 0.069*** 0.069*** 0.068***
(0.1000) (0.000) (0.000) (0.000) (0.000)

Triadic 0.578*** 0.676*** 0.511*** 0.520*** 0.510***
(0.000) (0.000) (0.000) (0.000) (0.000)

Granted 1.176*** 0.827*** 0.875*** 0.883*** 0.888***
(0.000) (0.000) (0.000) (0.000) (0.000)

Observations 1,513,383 466,609 250,747 268,839 256,059

Notes: Robust standard errors, p-values in parentheses (* p<0.05, ** p<0.01, *** p<0.001). The
dependent variable is the total number of citations received, corrected for self-citations by inventors.
The sample includes all clean patents (car, fuel, energy and light) and patents from the following tech-
nologies: IT (column 1), bioechs (column 2), nano (column 3), robot (column 4), and 3D (column
5). All equations include patent office-by-year and month fixed effects. All columns are estimated by
Poisson pseudo-maximum likelihood.

gies, namely IT, biotechnologies, nanotechnologies, robots and 3D (see Table 13). We also

compare clean technologies with these emerging technologies in terms of their generality

(see Table 14). Results show that clean inventions receive 43% more citations than biotech

inventions. However, clean inventions receive significantly fewer citations than inventions in

the IT, nanotechnology, robot and 3D industries. We find that clean inventions are more

general than inventions in IT or biotechnologies, but are less general than all three others.

Taken together, this results suggest that the relative novelty of clean technologies might

explain why they exhibit larger spillovers. Looking at the coefficients obtained for the clean

invention variable, it is interesting to note that knowledge spillovers from clean technologies

appear comparable to those in the IT sector, which has been behind the third industrial

revolution.
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Table 14: Comparing the generality of clean and other new technologies

IT Biotechs Nano Robot 3D

Clean invention 0.092*** 0.233*** -0.262*** -0.268*** -0.152***
(0.000) (0.000) (0.000) (0.000) (0.000)

Past patents stock -0.012*** 0.002 0.030*** 0.028*** 0.029***
(0.001) (0.450) (0.000) (0.000) (0.000)

Family size -0.021*** -0.015*** -0.009*** -0.008*** -0.007***
(0.000) (0.000) (0.000) (0.000) (0.000)

Triadic -0.066*** -0.041*** -0.044*** -0.034*** -0.043***
(0.000) (0.000) (0.000) (0.000) (0.000)

Granted -0.023*** -0.053*** -0.026*** -0.025*** -0.028***
(0.002) (0.000) (0.000) (0.000) (0.000)

Observations 760,996 241,598 132,603 142,164 136,621

Notes: Robust standard errors, p-values in parentheses (* p<0.05, ** p<0.01, *** p<0.001). The de-
pendent variable is the generality of patents. The sample includes all clean patents (car, fuel, energy
and light) and patents from the following technologies: IT (column 1), biotechs (column 2), nano (col-
umn 3), robot (column 4), and 3D (column 5). All equations include patent office-by-year and month
fixed effects. All columns are estimated by OLS.

5 Discussion and conclusion

In this paper we compare the relative intensity of knowledge spillovers from clean and dirty

technologies. To measure knowledge spillovers, we use a rich dataset of 3 million citations

received by over a million inventions patented in more than 100 countries. This analysis is

crucial to answer the question of whether clean technologies warrant higher subsidies than

dirty ones. Our results unambiguously show that clean technologies induce larger knowledge

spillovers than their dirty counterparts. This result is valid across the four technological

fields: energy, automotive, fuel and lighting. We conduct a large number of sensitivity

tests and the findings are remarkably robust. In particular, this result is confirmed when

using using a completely novel methodology to measure knowledge spillovers that does not

only count immediate forward citations but takes into account the whole network of patent

citations.

We explore three potential explanations for our findings. First, we find no evidence that
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the clean industry is more geographically clustered. Second, we find that clean inventions

have wider technological applications than dirty inventions. They are more cited outside of

their originating field, and are cited by a wider range of sectors on average. Third, clean

inventions are relatively newer and might therefore benefit from early returns to scale and

steep learning curves. Comparing clean technologies with other radically new technological

fields such as IT, biotechnologies and nanotechnologies, we are left to conclude that most

of the clean premium in terms of knowledge spillovers can be accounted for by its relative

novelty. Interestingly we observe that knowledge spillovers from clean technologies appear

comparable in scope to those in the IT sector.

Our results have two important policy implications. Firstly, the larger knowledge spillovers

from clean technologies uncovered in this study justify higher subsidies for clean R&D or

specific R&D programs for clean technologies, in addition to implicit support for clean R&D

trough climate policies such as carbon taxation. Radically new clean technologies should

receive higher public support than research activities targeted at improving on the existing

dirty technologies.18 However, such specific support could equally be justified for a range

of other emerging areas, such as nanotechnologies or IT. This recommendation has been

made in the past, for instance by Hart (2008) or Acemoglu et al. (2012) but it is the

first time to our knowledge that it is substantiated by robust empirical evidence.19 While

a first best policy scenario would suggest a combination of emissions pricing and R&D

subsidies specifically targeted at clean technologies, in times of tight government budgets
18Importantly, our results suggest that the relative support to clean R&D should grow over time. In-

cidentally, in a recent working paper Daubanes et al. (2013) show that gradual rise in subsidies to clean
R&D activities causes a less rapid extraction of fossil resources, because it enhances the long-run resource
productivity.

19Interestingly, statistics in OECD countries show that there is higher public R&D spending in clean
technologies than in dirty ones. A look at the International Energy Agency’s R&D expenditures data reveals
that between 2000 and 2012, OECD countries have spent 198 million euros on dirty cars and 18 billion euros
on dirty energy while spending 327 million euros on clean cars (65% more than dirty cars) and 25 billion
euros on clean energy (35% more than dirty energy). However, these numbers do not include subsidies to
private clean R&D, which also warranted in a first best policy setting.
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it might be difficult to achieve the necessary subsidy levels. There might also be concerns

over governments’ ability to channel funds to R&D projects with the highest potential either

because of information asymmetry or because of political interference. In this case our results

would support a second best policy with more stringent emission pricing and regulation that

would otherwise be the case (see for example Gerlagh et al, 2009; Hart, 2008; Kverndokk et

al, 2004; Kverndokk and Rosendhal, 2007).

Secondly, our results lend support to the idea that a redirection of innovation from dirty

to clean technologies may not only reduce the net cost of environmental policies but could

theoretically, by unintendedly correct a market failure that has so far been hampering the

economy (irrespective of the environmental problem) lead to higher economic growth in

the medium run, if the benefits from higher spillovers exceed the costs of higher carbon

prices. Therefore our paper provides support for Porter-type effects of environmental policies.

Our results however suggest that the potential growth effects of environmental policies very

much depend on the type of displacement being induced by increasing support for clean

technologies. If clean innovation crowds out dirty innovation, as shown by Aghion et al.

(2012) for the car industry, there is scope for medium run growth effects. If innovation in

other emerging areas is crowded out, such effects are less likely. At any rate, one should keep

in mind that higher spillovers are only a necessary but not a sufficient condition for growth

effects from green policies.

Our work can be extended in several directions. First, it would be interesting to investigate

how knowledge spillovers affect firms’ decisions to invest in radical innovation (clean technolo-

gies) or in incremental innovation (less dirty technologies), and how they respond to R&D

subsidies targeted at clean technologies. Second, an interesting direction is to understand

the spatial pattern of knowledge diffusion for clean technologies, including the transfer of

knowledge across borders, in particular between developed and developing countries. Third,

we could use micro data to estimate the impact of knowledge spillovers from clean and dirty
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technologies on firms’ productivity. These parameters are crucial to empirically validate the

potential impact of green policies on economic growth.
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Table 15: PatentRank - Clean, Grey and Pure Dirty - Energy

Clean vs. Clean vs. Grey vs. Clean vs.
Grey and Pure Dirty Grey Pure Dirty Pure Dirty

Clean/Grey invention 0.159*** 0.017 0.110*** 0.159***
(0.000) (0.325) (0.000) (0.000)

Past patents stock -0.015*** 0.033*** -0.037*** -0.015***
(0.000) (0.000) (0.000) (0.000)

Family size 0.039*** 0.051*** 0.037*** 0.039***
(0.000) (0.000) (0.000) (0.000)

Triadic 0.144*** 0.207*** 0.129*** 0.145***
(0.000) (0.000) (0.000) (0.000)

Granted 0.063*** 0.071*** 0.056*** 0.064***
(0.000) (0.000) (0.000) (0.000)

Observations 352,945 55,641 298,7557 352,158

Notes: Robust standard errors, p-values in parentheses (* p<0.05, ** p<0.01, *** p<0.001). The de-
pendent variable is the total number of citations received, corrected for self-citations by inventors. The
sample includes clean and less dirty patents in the energy sector. All equations include patent office-by-
year and month fixed effects. All columns are estimated by Poisson pseudo-maximum likelihood.

Table 16: PatentRank - Clean, Grey and Pure Dirty - Energy

Clean vs. Clean vs. Grey vs. Clean vs.
Grey and Pure Dirty Grey Pure Dirty Pure Dirty

Clean/Grey invention 0.139*** 0.045*** 0.144*** 0.194***
(0.000) (0.000) (0.000) (0.000)

Past patents stock -0.031*** -0.063*** -0.053*** -0.041***
(0.000) (0.000) (0.000) (0.000)

Family size 0.063*** 0.066*** 0.067*** 0.055***
(0.000) (0.000) (0.000) (0.000)

Triadic 0.137*** 0.119*** 0.123*** 0.143***
(0.000) (0.000) (0.000) (0.000)

Granted 0.141*** 0.144*** 0.135*** 0.123***
(0.000) (0.000) (0.000) (0.000)

Observations 257,209 130,096 208,146 176,560

Notes: Robust standard errors, p-values in parentheses (* p<0.05, ** p<0.01, *** p<0.001). The de-
pendent variable is the total number of citations received, corrected for self-citations by inventors. The
sample includes clean and less dirty patents in the energy sector. All equations include patent office-by-
year and month fixed effects. All columns are estimated by Poisson pseudo-maximum likelihood.
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Table 17: Five-year window

All Car Fuel Energy Light

Clean invention 0.378*** 0.288*** 0.142*** 0.471*** 1.520***
(0.000) (0.000) (0.001) (0.000) (0.000)

Past patents stock -0.045*** -0.0548*** -0.082*** -0.019 -0.117***
(0.000) (0.000) (0.003) (0.061) (0.000)

Family size 0.077*** 0.056*** 0.060*** 0.057*** 0.104***
(0.000) (0.000) (0.217) (0.000) (0.001)

Triadic 0.491*** 0.642*** 0.330*** 0.557*** 0.383***
(0.000) (0.124) (0.990) (0.453) (0.006)

Granted 0.992*** 1.192*** 0.681*** 0.765*** 0.913***
(0.000) (0.000) (0.000) (0.000) (0.000)

Observations 1,236,899 416,328 37,829 733,768 60,150

Notes: Robust standard errors, p-values in parentheses (* p<0.05, ** p<0.01, *** p<0.001). The
dependent variable is the total number of citations received within a five-year period after the publi-
cation year, corrected for self-citations by inventors. The equation in column 1 includes patent office-
by-year-by-sector fixed effects, and month fixed effects while all other equations patent office-by-year
and month fixed effects. All columns are estimated by Poisson pseudo-maximum likelihood.

Table 18: Citations made by applicants only

All Car Fuel Energy Light

Clean invention 0.346*** 0.387*** 0.067 0.278*** 1.311***
(0.000) (0.000) (0.122) (0.000) (0.000)

Past patents stock -0.032*** -0.026** -0.101** 0.001 -0.133***
(0.000) (0.002) (0.004) (0.947) (0.000)

Family size 0.050*** 0.060*** 0.040*** 0.033*** 0.099***
(0.000) (0.000) (0.000) (0.000) (0.000)

Triadic 0.457*** 0.422*** 0.299** 0.488*** 0.425***
(0.000) (0.000) (0.001) (0.000) (0.000)

Granted 0.290*** 0.388*** 0.182** 0.134*** 0.503***
(0.000) (0.000) (0.001) (0.000) (0.000)

Observations 1,244,653 418,396 38,715 738,282 60,745

Notes: Robust standard errors, p-values in parentheses (* p<0.05, ** p<0.01, *** p<0.001). The
dependent variable is the total number of citations received, excluding citations made by patent
examiners and corrected for self-citations by inventors. The sample only includes patent offices
for which the information on whether citations are added by the applicant or the patent exam-
iner are available. The equation in column 1 includes patent office-by-year-by-sector fixed effects,
and month fixed effects while all other equations patent office-by-year and month fixed effects. All
columns are estimated by Poisson pseudo-maximum likelihood.
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Table 19: Excluding self-citations at applicant level

All Car Fuel Energy Light

Clean invention 0.349*** 0.330*** 0.354*** 0.292*** 1.137***
(0.000) (0.000) (0.000) (0.000) (0.000)

Past patents stock -0.045*** -0.030*** -0.043*** -0.059*** -0.145***
(0.000) (0.000) (0.000) (0.030) (0.000)

Family size 0.044*** 0.052*** 0.039*** 0.036*** 0.083***
(0.000) (0.000) (0.000) (0.000) (0.000)

Triadic 0.214*** 0.225*** 0.204*** 0.166** 0.084
(0.000) (0.000) (0.002) (0.001) (0.284)

Granted 0.435*** 0.507*** 0.363*** 0.408*** 0.457***
(0.000) (0.000) (0.000) (0.000) (0.000)

Observations 481,879 182,152 259,138 18,529 27,286

Notes: Robust standard errors, p-values in parentheses (* p<0.05, ** p<0.01, *** p<0.001). The de-
pendent variable is the total number of citations received, corrected for self-citations at the inventor
and the applicant levels. The equation in column 1 includes patent office-by-year-by-sector fixed ef-
fects, and month fixed effects while all other equations patent office-by-year and month fixed effects.
All columns are estimated by Poisson pseudo-maximum likelihood.

Table 20: Different subsamples

nozero triadic US patent office EU patent office

Clean invention 0.319*** 0.391*** 0.428*** 0.469***
(0.000) (0.000) (0.000) (0.000)

Past patents stock -0.052*** -0.047*** -0.035*** 0.012
(0.000) (0.000) (0.000) (0.311)

Family size 0.057*** 0.029*** 0.049*** 0.038***
(0.000) (0.000) (0.000) (0.000)

Triadic 0.354*** 0.161*** 0.459***
(0.000) (0.000) (0.000)

Granted 0.624*** 0.624*** 0.939*** 0.686***
(0.000) (0.000) (0.000) (0.000)

Observations 560,813 51,304 150,696 11,462

Notes: Robust standard errors, p-values in parentheses (* p<0.05, ** p<0.01, *** p<0.001). The de-
pendent variable is the total number of citations received, corrected for self-citations by inventors, in
all columns. The sample includes (i) patents that receive at least one citation in column 1; (ii) triadic
patents (filed at EPO, USPTO and JPO) in column 2; (iii) patents first filed in the US patent office
only in column 3; (iv) patents first filed in the European patent office only in column 4. All equations
include patent office-by-year-by-sector fixed effects, and month fixed effects. All columns are estimated
by Poisson pseudo-maximum likelihood.
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Table 21: Claims as an additional control

Claims

Clean invention 0.404***
(0.000)

Past patents stock -0.042***
(0.000)

Family size 0.036***
(0.000)

Triadic 0.233***
(0.000)

Granted 0.740***
(0.000)

Claims 0.010***
(0.000)

Obs. 194,043

Notes: Robust standard errors, p-values
in parentheses (* p<0.05, ** p<0.01, ***
p<0.001). The dependent variable is the
total number of citations received ex-
cluding self-citations by inventors. The
equation includes patent office-by-year-
by-sector fixed effects, and month fixed
effects. The equation is estimated by
Poisson pseudo-maximum likelihood.
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Table 22: Extreme outcomes

cite p99 cite p95 cite >0

Clean invention 1.077*** 0.855*** 0.535***
(0.000) (0.000) (0.000)

Past patents stock -0.227*** -0.157*** -0.065***
(0.000) (0.000) (0.000)

Family size 0.108*** 0.123*** 0.521***
(0.000) (0.000) (0.000)

Triadic 0.093*** 0.858*** 0.199***
(0.000) (0.000) (0.000)

Granted 3.691*** 3.026*** 0.350***
(0.000) (0.000) (0.000)

Observations 1,163,227 1,237,924 1,250,592

Notes: Robust standard errors, p-values in parentheses (* p<0.05, **
p<0.01, *** p<0.001). The dependent variable is an indicator variable
equal to 1 if (i) the patent is in the top 1% in terms of patent citations
in column 1 (cite p99); the patent is in the top 5% in terms of patent
citations in column 2 (cite p95): (iii) the patent has received at least
one citation in column 3 (cite >0). All equations include patent office-
by-year, month, and sector fixed effects. All columns are estimated by
logit regression.
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