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Use of Bayesian Decision Analysis to Minimize Harm
in Patient-Centered Randomized Clinical Trials in Oncology
Vahid Montazerhodjat, PhD; Shomesh E. Chaudhuri, MS; Daniel J. Sargent, PhD; Andrew W. Lo, PhD

IMPORTANCE Randomized clinical trials (RCTs) currently apply the same statistical threshold
of alpha = 2.5% for controlling for false-positive results or type 1 error, regardless of the
burden of disease or patient preferences. Is there an objective and systematic framework for
designing RCTs that incorporates these considerations on a case-by-case basis?

OBJECTIVE To apply Bayesian decision analysis (BDA) to cancer therapeutics to choose an
alpha and sample size that minimize the potential harm to current and future patients under
both null and alternative hypotheses.

DATA SOURCES We used the National Cancer Institute (NCI) Surveillance, Epidemiology, and
End Results (SEER) database and data from the 10 clinical trials of the Alliance for Clinical
Trials in Oncology.

STUDY SELECTION The NCI SEER database was used because it is the most comprehensive
cancer database in the United States. The Alliance trial data was used owing to the quality and
breadth of data, and because of the expertise in these trials of one of us (D.J.S.).

DATA EXTRACTION AND SYNTHESIS The NCI SEER and Alliance data have already been
thoroughly vetted. Computations were replicated independently by 2 coauthors and
reviewed by all coauthors.

MAIN OUTCOMES AND MEASURES Our prior hypothesis was that an alpha of 2.5% would not
minimize the overall expected harm to current and future patients for the most deadly
cancers, and that a less conservative alpha may be necessary. Our primary study outcomes
involve measuring the potential harm to patients under both null and alternative hypotheses
using NCI and Alliance data, and then computing BDA-optimal type 1 error rates and sample
sizes for oncology RCTs.

RESULTS We computed BDA-optimal parameters for the 23 most common cancer sites using
NCI data, and for the 10 Alliance clinical trials. For RCTs involving therapies for cancers with
short survival times, no existing treatments, and low prevalence, the BDA-optimal type 1 error
rates were much higher than the traditional 2.5%. For cancers with longer survival times,
existing treatments, and high prevalence, the corresponding BDA-optimal error rates were
much lower, in some cases even lower than 2.5%.

CONCLUSIONS AND RELEVANCE Bayesian decision analysis is a systematic, objective,
transparent, and repeatable process for deciding the outcomes of RCTs that explicitly
incorporates burden of disease and patient preferences.
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T here is general agreement in the biomedical commu-
nity that the development of therapies for certain dis-
eases should take priority. This ethic has motivated

legislative initiatives, such as the Orphan Drug Act of
1983, and underpins several important innovations in regu-
latory approval processes, such as the US Food and Drug
Administration’s (FDA) fast-track, breakthrough-therapy,
accelerated-approval, and priority-review designations.1

However, none of these innovations directly address
the critical issue of how to incorporate the patient’s per-
spective in deciding whether a drug candidate should be
approved or not.

The current approach in clinical trial design is to mini-
mize the chance of ineffective treatment caused by a type 1 er-
ror, that is, a false-positive result. However, the arbitrary na-
ture of the threshold for the probability of type 1 error, alpha,
raises an ethical question about its justification. A 2.5% thresh-
old may not be appropriate for terminal illnesses that have no
effective therapies; such patients may prefer to take a bigger
chance on a false-positive result, even if the likelihood of an
effective therapy is small. To quote the noted biostatistician
Donald Berry, “We should also focus on patient values, not just
P values.”2,3

We propose to incorporate patient values and prefer-
ences into clinical trials in an objective, systematic, trans-
parent, and repeatable manner using Bayesian decision
analysis (BDA). This is a well-known quantitative frame-
work for making the tradeoff between type 1 and type 2
errors, balancing the consequences of false-positive and
false-negative errors on patients. While Bayesian methods
have long been used in clinical trial design,4-9 they are less
popular in practice, in part because of the research commu-
nity’s inexperience with unfamiliar methods.10 However,
recently there has been renewed interest in the Bayesian
approach, highlighted by the FDA’s commitment to “facili-
tate the advancement and use of complex adaptive, Bayes-
ian, and other novel clinical trial designs.”11 Motivated by
these developments, we previously proposed a novel frame-
work to calculate the optimal values of the alpha and power
for randomized clinical trials (RCTs) that minimize the
expected harm to patients, given the parameters relevant to
any specific disease.12

Herein we apply this framework specifically to oncology
therapeutics. The appropriate cost parameters and prior
odds ratios13 were first estimated for the 23 most common
cancer sites in the National Cancer Institute’s (NCI’s) Sur-
veillance, Epidemiology, and End Results (SEER) database,
and used to construct hypothetically optimal balanced
2-arm fixed-sample RCTs to minimize the average impact of
both types of errors on patients. We then applied this frame-
work to actual clinical trial data from 10 current phase 3
studies sponsored by the Alliance for Clinical Trials in
Oncology (Alliance), an NCI-funded group that performs
large national phase 2 and 3 clinical trials, and performed a
similar analysis using various patient-appropriate end-
points. We find that the BDA-optimal design is often starkly
different in size, power, and sample size from the traditional
approach.

Methods

We considered a hypothetical new therapy, with a given haz-
ard ratio assuming it is effective, to be tested in a balanced
2-arm fixed-sample RCT, where the endpoint is overall sur-
vival. To specify a fixed-sample RCT, we required 2 para-
meters: the number of participants in each arm of the study,
n, and the probability of type 1 error, alpha, where the null
hypothesis is the case where the drug is ineffective and pos-
sibly toxic (the power can be calculated using the sample size
of the RCT, ie, n, and its alpha). The RCT search space for the
optimal trial consists of all possible combinations of n and
alpha with each pair of values defining a particular fixed-
sample RCT.

To define the potential harm or cost associated with a
given RCT, we considered the 2 possible outcomes for the
therapy: effective or ineffective. If the therapy is effective,
the 2 costs associated with an RCT are: (1) the duration of the
trial, when patients outside of the treatment arm are not
receiving the therapy; and (2) the loss to all patients who
could have benefited if this effective therapy is incorrectly
rejected in the trial. If the therapy is ineffective and possibly
harmful, the costs are: (1) the adverse effects of the therapy
on patients in the treatment arm during the trial; and (2) the
adverse effects on all patients who use this therapy if it is
incorrectly approved. These costs depend on a number of
auxiliary parameters—the degree and duration of health ben-
efits for an effective therapy and the severity of adverse
effects for an ineffective therapy—that can be estimated using
epidemiological and clinical-trial data.

Once these costs have been estimated for each scenario,
they were multiplied by the probability of each scenario and
summed to yield an overall expected cost of the RCT—not to
be confused with the financial costs associated with the RCT—
which is often called “Bayes risk” in decision theory. The ob-
jective of BDA is to compute the optimal sample size (n*) and
type 1 error (alpha*) that jointly minimize the expected cost
of the trial. In other words, we sought to conduct a trial that

Key Points
Question How can patient preferences and burden of disease be
explicitly incorporated into randomized clinical trials (RCTs) in
oncology and what is the impact on statistical thresholds for drug
approval?

Findings In this analysis, Bayesian decision analysis (BDA) was
applied to a data set of 10 clinical trials from the Alliance for Clinical
Trials in Oncology. The BDA-optimal alphas were often much larger
than 2.5% for terminal cancers with short survival times and no
effective therapies (eg, pancreatic cancer) and smaller than 2.5%
for less serious cancers with long survival times, several effective
therapies, and high prevalence.

Meaning Bayesian decision analysis can be applied to RCTs by
choosing a sample size (n) and type 1 error rate (alpha) to minimize
the overall expected harm to current and future patients, where
expected harm is computed under both null and alternative
hypotheses.
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minimizes the average cost to patients—both in the trial and
in the general population—where the average is taken over both
possibilities of effective and ineffective therapies.

BDA-optimal trials can also be interpreted as trials that mini-
mize the expected harm to patients, where harm is either: type
1 harm—an extra burden on patients owing to the adverse ef-
fects of the treatment in the case of a toxic and ineffective drug,
caused by a false-positive result; or type 2 harm—a missed op-
portunity to reduce the burden of disease on patients owing to
the length of the RCT (even if the drug is approved) and/or a re-
jection of an effective treatment in the RCT, caused by a false-
negative result.

Type 2 harm is rarely discussed in medical and lay commu-
nities because it is difficult to quantify the number of missed op-
portunities, especially compared with the highly visible backlash
created by incorrectly approving a toxic drug. However, missed
opportunities to reduce the burden of disease on current and fu-
ture patients, ie, type 2 harm, have real and quantifiable social
costs, just as type 1 harm does. Unless these types of harm are
properly balanced against each other, highly conservative drug
approval processes may not be protecting all patients from harm.
The primary objective of this article is to propose an objective
method for balancing these harms explicitly.

Although the effectiveness and possible adverse effects of
a drug are not precisely known at the time of the RCT design,
it is still possible to list scenarios—both positive and negative—
that the drug might face, along with their implications for pa-
tients. It is also possible to construct plausible estimates of the
likelihood of each scenario using the information that the trial
investigators and sponsors have at their disposal from previ-
ous clinical phases at the time of the RCT design. Therefore,
not only is it practical to design a quantitative framework where
the risks of a treatment are balanced against its benefits, it is
also ethically necessary to ensure that both types of harm
are accounted for when deciding whether a drug should be
approved.

Results
The utility of BDA-optimal RCTs can be illustrated by apply-
ing the methodology to each of the 23 most common cancer
sites based on estimated prevalence counts (prevalence pro-
portions times US population estimates) listed in the NCI’s SEER
database.14 For each cancer site, we determined the optimal
balanced 2-arm fixed-sample RCT for testing a therapy that

Table 1. Assumptions for RCTs

Parameter Assumed Value Comments
Probability that the drug is effective. 35% This is estimated using historical numbers for oncology compounds

and assuming 80% power for historical phase 3 RCTs.
Expected excess burden caused by toxic and
ineffective drug for each patient.

6.3% years of life lost to disability per
patient per year, the estimated average
burden of disease associated with the
adverse effects of medical treatments in the
US Burden of Disease Study,15 2010.

The condition caused by the toxic drug is such that each patient is
indifferent between losing 6.3% of each year of healthy life and
living with this condition each year.
A percentage increase of burden means that each patient
experiencing adverse effects would be indifferent to living each
year with the adverse effects, or to losing 1% of each year if, for the
rest of that year, they could live without the adverse effects.

Expected loss of life caused by toxic effects of
the drug.

2 months per patient We assume the toxic effects of treatment shorten each patient’s life
by 2 months on average. This can be because in 75% of instances it
does not reduce a patient’s life at all, and in the remaining 25%, it
reduces a patient’s life by 8 months.

Expected extended life resulting from
effective treatment.

30% of end-stage patient’s expected time to
death.

If time to death for the distant stage of the cancer is 10 months, we
assume effective treatment extends each patient’s life by 3 months
on average. If 30% of end-stage patient’s expected
time to death is more than 2.5 years, we set this parameter to 2.5
years.

Expected burden of disease in the extended
months of life owing to taking effective
treatment.

The same as the current average burden of
disease (ie, its disability weight,15 which
ranges from 0, no loss of health, to 1,
complete loss of health or death).

We assume the effective treatment only extends life and does not
improve the health state of patients compared with their current
health state.

Time until adverse effects of a toxic drug are
discovered after it is mistakenly approved.

10 years We assume that if a toxic drug is falsely approved, its adverse
effects will be discovered 10 years after the approval and the drug
will be taken off the markets. This is a conservative estimate.

Start-up time before patient enrollment. 1year Time before the RCT starts, needed for paperwork, etc. This
time is not used for patient accrual.

Patient accrual rate. 100 to 800 patients per year In between these 2 limits, the accrual rate varies linearly with the
prevalence of the relevant stage of each cancer, ie, the end-stage
cancer.

Patient enrollment. Uniform We assume to enroll n patients, we need n/[patient accrual
rate] time, and the interval between each 2 consecutive
patients is the same for all pairs.

Follow-up period after enrolling the last
patient.

Equal to the expected control group
survival time.

After the last patient is enrolled, patients are followed up for
this amount of time before any data analysis is conducted. This
follow-up period is capped at 3 years.

Expected time until a new treatment is
discovered for the disease that is at least as
effective as the drug tested in the RCT.

10 years On average, it takes this many years to get a drug, which
is better than an effective treatment that is being tested in the RCT.

Maximum RCT power for the alternative
hypothesis.

90% This is a practical consideration in the design of RCTs.

Abbreviation: RCTs, randomized clinical trials.
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targets the late stage of the cancer, where the endpoint is overall
survival. A complete list of assumptions on the RCT setting is
provided in Table 1. These are clearly hypothetical examples,
because treatment for each cancer site is highly dependent on
the stage and the patient (see the Supplement for the specific
assumptions underlying the cost estimates and probabilities
for types 1 and 2 errors). To allow the reader to verify the im-
pact of specific assumptions, we have provided an easy-to-
use interactive tool in the Supplement that calculates the BDA-
optimal RCT design for various input parameter values. The
results are contained in Table 2.

The entries in this table show that cancers with the worst
prognoses, eg, cancers of the brain and pancreas, have rela-
tively large BDA-optimal type 1 error rates (alpha) of 47.9% and
26.6%, respectively. Patients with terminal disease simply can-
not afford to miss any effective drugs that can extend their lives
by 11 months for brain cancer, and by 5 months for pancreatic
cancer. These values differ greatly from the BDA-optimal type
1 error rates of breast cancer, colorectal cancer, and lympho-
mas—17.6%, 13.1%, and 12.2 to 12.8%, respectively. The prog-
nosis for this set of cancers is considerably more optimistic than
that of the former set, even for patients with late-stage dis-
ease. It is worth noting, however, that in all cases the type 1
error rates recommended by the BDA far exceed the tradi-

tional standard of 1-sided alpha, namely, 2.5%. Finally, al-
though there is, in general, little variation in optimal type 2 er-
ror rates, in cancers with the best prognosis, Hodgkin’s
lymphoma and cancer of the testis, the recommended power
is well below 90%, owing to the need to keep the trial dura-
tion short to avoid exposing too many patients to inferior medi-
cations in the treatment arms of these trials.

A sensitivity analysis is provided in the Supplement to in-
vestigate the robustness of these results to perturbations in our
model’s key parameters. We found that cancers with poor prog-
noses consistently had relatively large BDA-optimal type 1 er-
ror rates and small optimal RCT sample sizes. Our observa-
tion that a patient with a poor prognosis cannot afford to miss
any effective drugs—even in the face of greater risk of false-
positive results—is robust over a wide range of parameters.
Moreover, all the type 1 error rates recommended by the BDA
analysis remain far in excess of the traditional 2.5% 1-sided al-
pha. However, the specific critical value and sample size of each
optimal RCT is sensitive to the underlying assumptions. For
example, a 15% increase in the a priori probability of an inef-
fective therapy from 65% to 80% leads to a more conserva-
tive trial design, reducing the optimal alpha for brain cancer
RCTs from 48% to 19% and increasing the optimal sample size
from 152 to 268. Conversely, decreasing either the patient

Table 2. Distant-Stage Statistics for the 23 Most Common Cancer Sites in the United States and the Characteristics of Their BDA-Optimal RCTs

Cancer Site

%

Stage Prevalence

Months
Accrual Rate
(Patients
per Year)

Sample
Size

%
Burden
of
Disease

5-Year
Survival

Expected
Control OS

Target OS
Difference

Follow-up
Period

1-Sided
Alpha Power

Brain (and other nervous
system)

13.4 20.6 2976 38 11 36 100 152 47.9 89.4

Breast (only female) 4.2 24.6 178 519 43 13 36 341 478 17.6 90.0

Cervix uteri (only
female)

6.2 15.7 32 437 32 10 32 132 204 37.4 88.8

Colon and rectum 9.1 12.4 233 786 29 9 29 420 506 13.1 90.0

Corpus uteri (only
female)

5.1 16.1 49 729 33 10 33 157 262 32.1 90.0

Esophagus 12.2 4.0 13 597 19 6 19 105 218 34.5 90.0

Hodgkin lymphoma 5.1 73.1 73 954 191 30 36 191 1448 12.8 67.0

Kidney and renal pelvis 5.6 11.2 60 148 27 8 27 172 296 27.4 90.0

Larynx 6.5 33.4 16 882 55 16 36 110 220 42.9 89.3

Leukemia 9.0 30.2 47 758 50 15 36 154 318 31.5 90.0

Liver and intrahepatic
bile duct

9.9 2.9 9132 17 5 17 100 212 34.8 90.0

Lung and bronchus 15.6 4.0 233 021 19 6 19 419 548 9.7 90.0

Melanoma of the skin 4.5 15.8 39 863 32 10 32 143 234 35.6 90.0

Myeloma 13.3 43.1 85 175 71 21 36 207 520 22.5 90.0

Non-Hodgkin lymphoma 6.6 59.3 274 813 115 30 36 478 1326 12.2 90.0

Oral cavity and pharynx 7.1 35.8 52 399 58 18 36 161 352 31.1 90.0

Ovary (only female) 9.4 26.9 115 468 46 14 36 251 430 21.1 90.0

Pancreas 21.2 2.3 24 222 16 5 16 120 270 26.6 90.0

Prostate (only male) 3.9 26.8 111 824 46 14 36 245 402 23.3 90.0

Stomach 14.3 4.3 26 890 19 6 19 124 254 29.9 90.0

Testis (only male) 4.8 70.1 28 032 169 30 36 126 788 17.0 63.9

Thyroid 3.9 51.4 24 072 90 27 36 120 316 36.8 87.0

Urinary Bladder 5.9 5.1 23 096 20 6 20 119 218 35.4 90.0

Abbreviations: BDA, Bayesian decision analysis; OS, overall survival; RCTs, randomized clinical trials.
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accrual rate or the toxic effects of an ineffective therapy leads
to less conservative (ie, larger alpha and smaller sample size)
RCT designs. Intuitively, decreasing the patient accrual rate
increases the trial length, and for patients with short life
expectancies, the optimal tradeoff involves maintaining a rela-
tively short trial length.

Similarly, decreasing the toxic effects of an ineffective drug
under the null hypothesis reduces the cost of a more aggres-
sive RCT design. When taken to the limit of no toxic effects—
clearly an unrealistic assumption—the optimal RCT design be-
comes extremely aggressive and the protocol approves the
majority of investigational drugs after minimal clinical trial
study. In this case, there are few benefits gained by rejecting
an ineffective drug, mitigating the tradeoff central to the ex-
pected cost optimization. Note that a nontoxic therapy in this
model is one that is equally as effective as the standard treat-
ment, and therefore should be considered a limiting case. This
example highlights the need for carefully considered assump-
tions and accurately calibrated cost models when implement-
ing the BDA-framework (Supplement).

A practical illustration of the BDA methodology can be
obtained using actual clinical-trial data from the Alliance port-
folio to compute BDA-optimal RCTs for 10 of the phase 3 clini-
cal trials currently actively enrolling or following patients, and
comparing the results with the current designs of the Alli-
ance trials.

The results are presented in Table 3, where the last 3
columns characterize the BDA-optimal RCT for each cancer
site, arranged by rows. The features of BDA-optimal

RCTs are summarized in Figure 1 and Figure 2, which show
substantial departures from the comparable parameters of
the Alliance trials, especially for high-mortality and low-
prevalence cancers.

The differences between traditional and BDA-optimal RCTs
are especially striking in 4 rows of Table 3: glioblastoma (row
1); castration-resistant metastatic prostate cancer (row 4); stage
III colon cancer (row 8); and early-stage prostate cancer (clini-
cal stage ≤T2a, row 10).

For glioblastoma (GBM), there was a stark contrast be-
tween the conventionally designed current RCT and the BDA-
optimal RCT. The sample size for the conventional RCT was
400 patients, while the BDA-optimal sample size was 104, a
74% reduction. Moreover, the type 1 error rate for the BDA-
optimal trial was 47.5%, much larger than the standard 2.5%
1-sided type 1 error rate set in the traditional RCT (in fact, the
Alliance trial used twice the standard 2.5% type 1 error in rec-
ognition of the limited population and poor prognosis of GBM
patients).

The smaller number of patients and larger alpha in the BDA-
optimal trial were more permissive than the comparable
values for traditional RCTs so as to reduce type 2 harm. The
decrease in type 2 harm was large enough to offset the excess
risk resulting from the extra permissiveness in the trial, and
the overall penalty—the expected harm to current and future
patients—was minimized under the BDA-optimal RCT.

For castration-resistant metastatic prostate cancer, we also
observed a clear difference between the traditional and BDA-
optimal RCTs. The sample size of the BDA-optimal RCT was

Table 3. Comparison of Selected RCTs in the Portfolio of National Cancer Institute’s Alliance for Clinical Trials in Oncology
and Their Associated BDA-optimal RCTs

Cancer Site

Primary
End
Point

Control
Group
Outcome

Stage
Prevalence

Target
Hazard
Ratio

Follow-up
Time,
Years

Target
Accrual
Rate

Months

Sample
Size

% BDA

Survival
Time

Additional
Survival

1-Sided
Alpha Power

Sample
Size

1-Sided
Alpha,
%

Power,
%

Glioblastoma OS Median
21 mo

25 299 0.710 2.0 72 15 6 400 5.0 90 104 47.5 90

SCLC OS Median
23 mo

16 255 0.770 2.5 120 44 13 640 2.5 82 266 31.9 90

Bladder OS Median
13.8 mo

23 096 0.740 4.0 168 20 7 500 2.5 87 212 21.1 90

Prostate (CR
met)

OS Median
35 mo

111 824 0.770 1.5 400 46 14 1224 2.5 90 676 20.4 90

NSCLC OS Median
5 y

64 769 0.670 6.0 100 87 72 410 2.5 85 210 19.2 90

CLL PFS Median
34 mo

103 611 0.586 2.0 180 73 30 350 2.5 90 214 12.4 90

Lymphoma EFS Median
42 mo

164 888 0.650 3.0 100 115 30 430 2.5 90 264 11.8 90

Colon DFS 3-y DFS
rate of
72%

319 118 0.790 3.0 800 209 30 2500 2.5 91 2232 2.3 90

Prostate (ES
3-y)

PFS 3-y PFS
rate of
57.7%

2 236 474 0.670 3.0 156 240 30 750 2.5 89 560 1.8 90

Prostate (ES
2-y)

PFS 2-y PFS
rate of
80%

2 236 474 0.472 2.0 180 240 30 464 2.5 80 418 0.9 90

Abbreviations: BDA, Bayesian decision analysis; CLL, chronic lymphocytic
leukemia; CR met, castration-resistant metastatic prostate cancer;
DFS, disease-free survival; EFS, event-free survival; ES 3-y and ES 2-y,
early-stage prostate cancer with 3-year and 2-year follow-up periods; mo,

months; NSCLC, non–small-cell lung cancer; OS, overall survival;
PFS, progression-free survival; RCTs, randomized clinical trials; SCLC, small-cell
lung cancer.
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only 55% of the sample size for the traditional RCT, 676 vs 1224
patients, and the type 1 error rate for the BDA-optimal trial was
almost 8 times higher than that of the traditional RCT, 20.4%
vs 2.5%. This was not surprising, since patients with late-
stage prostate cancer have a median overall survival time as
low as 35 months.

For stage III colon cancer, these patients have a 79% 5-year
survival rate,16 and the traditional and BDA-optimal RCTs were
almost equivalent, with sample sizes of 2500 vs 2232, and type
1 error rates of 2.5% vs 2.3%, respectively.

Finally, for early-stage prostate cancer (clinical stage ≤T2a)
therapies, the BDA-optimal RCT was more conservative than
the current Alliance RCT. The BDA-optimal RCT was slightly
smaller than the traditional RCT, 418 vs 464 patients, while
allowing a much smaller chance for false-positive results—
0.9% vs 2.5% in the conventional RCT. In this case, the harm
from approving an ineffective therapy was considerably more

serious than rejecting an effective one because the burden of
disease was relatively less severe while the adverse effects
of an ineffective therapy would impact a large number
of patients, hence the more conservative BDA-optimal
parameters.

Limitations
Our findings must be qualified in several respects. First, we
have considered only traditional fixed-sample RCTs; in prac-
tice, adaptive trial designs may include an interim analysis for
early signals of efficacy, futility, or toxic effects, or may be adap-
tive in other ways. Any of these possible adaptations in any
given trial may alter the optimal type 1 and 2 error rates and
appropriate modifications to our calculations are required to
determine the optimal designs for these settings.

Second, the trials considered here use the overall survival
endpoint, which is clear and of unambiguous importance.

Figure 2. Scatterplot of Survival Time and Stage Prevalence Against BDA-Optimal Type 1 Errors for Alliance Clinical Trials
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Figure 1. BDA-Optimal Type 1 Errors and Sample Sizes for Alliance Clinical Trials (Alliance Sample Sizes Also
Displayed for Comparison)
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However, for a variety of reasons, many trials use alternative
endpoints, such as progression-free survival, the clinical rel-
evance of which is less clear. Study-specific definitions of type
1 and 2 harm would require greater subtlety in trials with end-
points other than overall survival.

Third, owing to recent advances in cancer biology and a
better understanding of cancer molecular profiles, it is clear
that cancer—even within a single site—refers to a collection of
heterogeneous diseases with different molecular and genetic
profiles. Our framework can be readily adapted to subdis-
eases within each of these cancers, provided that relatively ac-
curate information on the burden of these subdiseases and their
survival statistics, prevalence, incidence, and death rates are
available.

Fourth, even though type 1 errors like 47.5% for GBM may
be optimal for terminal illnesses with no existing treatments,
they could inadvertently encourage the development of mar-
ginal therapies. This adverse incentive can be addressed by ask-
ing the FDA to create a new class of experimental therapeutics
that have fixed terms of contingent approval, contingent on strin-
gent postapproval monitoring where more data will be collected
and analyzed. If the new data confirm the therapy's efficacy, the
contingent approval status can be converted to unconditional
approval, otherwise the contingent approval expires.

Finally, we have confined our attention to patients’ medi-
cal outcomes without considering the cost to patients and their
families, to industry, or to society. New therapeutic agents of-
ten come at a very high financial cost, which, when taken into
account, may raise the bar of success for new agents, thus low-
ering the acceptable type 1 error rate. On the other hand, the
increased type 1 error rates that we have proposed may lower
the cost of clinical trials and reduce the risk to sponsors, which
may encourage drug development, lower drug costs, and fur-
ther accelerate clinical research. To incorporate perspectives
from the entire biomedical ecosystem, as well as the value of
patient input to the drug development process, we have pro-

posed that the FDA form a patient advisory board consisting
of key stakeholder groups—patients, caregivers, physicians,
biopharma executives, regulators, and policymakers—with the
specific charge of formulating explicit cost estimates for type
1 and type 2 errors. These estimates can then be incorporated
into the FDA decision-making process as additional inputs to
their quantitative and qualitative deliberations.12

Conclusions
Traditional RCTs do not necessarily minimize overall harm to
current and future patients, especially for life-threatening can-
cers that currently have no effective therapies. In these cases,
traditional RCTs are too lengthy, too conservative, and fo-
cused too much on rejecting ineffective drugs and avoiding
false-positive results. This single-minded focus can result in
missed opportunities to treat life-threatening conditions, which
can sometimes harm more patients than mistakenly approv-
ing ineffective and possibly toxic drugs.

Conversely, for some less aggressive cancers, such as early-
stage prostate cancer, the current thresholds of statistical sig-
nificance are more permissive than the BDA-optimal thresh-
olds. In these cases, traditional RCTs allow a larger chance of
falsely approving ineffective and possibly toxic drugs, risk-
ing patients’ health even though the potential benefits from
these trials do not necessarily justify the risk.

The ability of the BDA framework to systematically weigh
multifaceted tradeoffs that reflect a variety of perspectives
combined with its flexibility and practicality make it a poten-
tially valuable tool for optimal RCT design. While the frame-
work is robust, we emphasize that careful consideration must
be applied to the assumptions underlying the specific mod-
els in order to produce useful recommendations. If correctly
implemented, the Bayesian perspective has the potential to
benefit all stakeholders.
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