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We apply Bayesian decision analysis (BDA) to incorporate patient preferences in the regulatory approval

process for new therapies. By assigning weights to type I and type II errors based on patient preferences,

the significance level (a) and power (1 � b) of a randomized clinical trial (RCT) for a new therapy can be

optimized to maximize the value to current and future patients and, consequently, to public health. We

find that for weight-loss devices, potentially effective low-risk treatments have optimal as larger than

the traditional one-sided significance level of 5%, whereas potentially less effective and riskier

treatments have optimal as below 5%. Moreover, the optimal RCT design, including trial size, varies with

the risk aversion and time-to-access preferences and the medical need of the target population.
Introduction
Determining the acceptable level of uncertainty associated with

clinical evidence has been an important and challenging decision

when regulators conduct benefit–risk assessments of novel tech-

nologies, especially for unmet medical needs. Traditional clinical

trial designs typically set the one-sided significance level [i.e., the

maximum allowed value for the rate of type I error (approving a

therapy for which there is not a reasonable assurance of safety and

effectiveness)] at 5% regardless of the context in which the deci-

sion is made or the public health implications of the conse-

quences. However, the context could matter for making rational

and sensible decisions with significant public health impact. In

some circumstances, the consequences of making a type I error can

be less important than those of a type II error (not approving a

therapy for which there is a reasonable assurance of safety and

effectiveness), particularly when the therapy can treat a life-threat-

ening or irreversibly debilitating disease or condition for which

there are no other available treatments. Moreover, the standard
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value of 5% for type I error is, itself, arbitrary and not tied to any

context-specific considerations.

To address this important regulatory science challenge, the

Center for Devices and Radiological Health (CDRH) at the U.S.

Food and Drug Administration (FDA) has used a stepwise strategy.

First, the CDRH has conveyed its approach to making benefit–risk

assessments more robust and systematic through the release of a

guidance document in 2012 (and subsequently updated in 2016)

on benefit–risk determinations for premarket approval and de novo

classification decisions [1]. The guidance document is intended to

explain the FDA’s thinking on the factors to be taken into account

when making benefit–risk determinations for premarket approval

of medical devices and has explicitly listed patient perspectives as

one of the important factors for the CDRH staff to consider. Next,

the CDRH has made a commitment to make its regulatory deci-

sion-making more patient-centered by engaging patient stake-

holders and exploring the use of quantitative methods to elicit

and incorporate patient preferences in a valid scientific manner. In

2013, the CDRH held a public Patient Preference Initiative Work-

shop to engage stakeholders.
 Discov Today (2017), https://doi.org/10.1016/j.drudis.2017.09.016
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BOX 1

FDA Guidance: Patient preference information (p. 6)

This guidance focuses on the specific type of patient input referred
to as patient preference information (PPI), which, for the purposes
of this guidance, is defined as: qualitative or quantitative
assessments of the relative desirability or acceptability to patients
of specified alternatives or choices among outcomes or other
attributes that differ among alternative health interventions . . .
The specific role of quantitative PPI is to provide estimates of how
much different outcomes, endpoints or other attributes are valued
by patients, and the tradeoffs that patients state or demonstrate
they are willing to make among them. Such outcomes or other
attributes of a device include demonstrated or posited measures
of effectiveness, safety and other device characteristics that can
impact benefit–risk considerations, including (but not limited to)
means of implantation, duration of effect, duration and frequency
of use, and utility of the device.
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To explore ways to include patient perspectives in its regulatory

decision-making, the CDRH sponsored a proof-of-concept pilot

study in 2012 to elicit quantitative preferences on benefit–risk

tradeoffs for weight-loss devices [2]. Weight-loss devices were

chosen for the following reasons. First, obesity has a profound

impact on public health owing to its prevalence and associated

serious comorbidities. Second, patients with obesity are facing

difficult benefit–risk tradeoffs when choosing treatments that

are of low risk and low effectiveness versus treatments of higher

risk with higher effectiveness. Third, the effectiveness of treat-

ments has a significant behavioral component. Finally, prelimi-

nary communications with several medical device innovators

enabled the CDRH to anticipate several investigative weight-loss

devices with diverse benefit–risk profiles being developed. A

weight-loss device study that used a scientific method to elicit

quantitative patient preferences with a large sample of subjects

would provide an unprecedented opportunity to inform the

CDRH’s decision-making.

The CDRH recognized the importance of heterogeneity across

the spectrum of patient preferences and chose a method called

discrete choice experiments, which could capture not only the

average but also, more importantly, the distribution of patient

preferences, including its variability among patients of various

genders, ages, body mass indexes and previous experience with

weight-loss surgeries. Moreover, the device attributes and levels

considered in the study, including benefits (amount of weight loss,

weight-loss duration, improvement in comorbidities), risks (side-

effect duration, chance of hospitalization, chance of dying from

getting the device) and other device characteristics (dietary restric-

tions, type of operation), were selected by CDRH regulators based

on a portfolio of devices that were in the development pipeline but

not yet on the market. Each question in the study involved a

choice between two hypothetical weight-loss devices with differ-

ent attribute profiles and each attribute had varying levels. Each

subject in the CDRH study answered eight choice questions, and

the choices made revealed the relative importance of these attri-

butes and their levels to that subject.

Since the study results became available, they have been inform-

ing reviewers at the CDRH when making their approval decisions

across a wide range of weight-loss devices with differing benefit–

risk profiles. After a gap of eight years, since the last class of weight-

loss devices (gastric bands) was approved, the CDRH approved an

electrical stimulation system and two gastric balloon systems in

2015, and a gastric emptying system in 2016. However, with no

objective, explicit and transparent method to directly relate the

specific patient preference evidence developed in the study to the

acceptable level of uncertainty associated with the submitted

clinical evidence, CDRH review staff have had to subjectively

consider the evidence.

In recent years, the CDRH has achieved significant milestones to

facilitate the design and conduct of patient-preference studies by

sponsors and patient groups. In 2015 the Medical Device Innova-

tion Consortium released a patient preference framework report

sponsored by the FDA. It discusses how patient preference infor-

mation can be used at various stages of the total product lifecycle

and includes a catalog of existing methods for eliciting patient

preferences compiled by a panel of experts. In 2016, the FDA

Patient Preference Information guidance document was released,
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containing the mandate quoted in Box 1 [3]. However, there is a

missing quantitative link between specific patient preferences and

acceptable levels of uncertainty. Furthermore, methodologies that

objectively, transparently and reproducibly determine these quan-

titative links are elusive. The CDRH is working with scientists to

create a solution to this regulatory science question.

In this paper, we use a Bayesian method proposed by Lo et al.

[4,5] and quantitative patient preference data from the CDRH

patient preference obesity study to calculate acceptable levels of

uncertainty (significance level and power) when designing pivotal

clinical trials for clinical evidence required by regulatory decision-

making. The Bayesian approach has long been applied to clinical

trial design and analysis [6–12]. Bayesian decision analysis (BDA),

the particular method presented in this article, aims to optimize

the balance between type I and type II error rates and the severity

of the consequences of making these errors based on patient

preferences. The appropriate patient preference scores are scientif-

ically elicited and estimated across safety and effectiveness, and

used to construct hypothetically optimal balanced two-arm fixed-

sample randomized clinical trials (RCTs) to maximize the expected

value for patients.

We take into account the fact that lengthy clinical trials provide

more power but can negatively impact public health because they

delay access of effective treatments to patients. In addition, we

weigh the consequences of approving an ineffective treatment

versus rejecting an effective intervention. If we set the significance

level to be smaller and consequently more stringent, we not only

reduce the chance of approving an ineffective treatment but also

increase the chance of rejecting an effective treatment.

We find that the BDA optimal design is often substantially

different in significance level, power and sample size from the

conventional approach using a fixed one-sided significance level

of 5%. Of course, the BDA optimal design depends on several key

assumptions. Although this framework provides a systematic and

quantitative method of incorporating multifaceted tradeoffs into

RCT design, the usefulness of its recommendations relies on the

appropriateness of these assumptions and on accurately calibrated

model parameters. Although we apply BDA to a specific medical

device in this study, the framework applies more broadly to other

therapeutic devices and drugs; and this application is meant to

serve as a proof-of-concept for a more general and systematic
 Discov Today (2017), https://doi.org/10.1016/j.drudis.2017.09.016
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approach to incorporating clinical context, including patient

preferences, into the medical device and drug approval processes.

BDA optimal clinical trial design
Here, we propose a quantitative framework to explicitly take into

account patient preferences across multiple device attributes when

determining the optimal sample size and critical value of a bal-

anced two-arm fixed-sample RCT. We first define a patient-cen-

tered value model associated with given medical device attributes.

We then assign prior probabilities to each possible combination of

these attributes, and formulate the expected value of the trial. The

optimal trial size (2n, where there are n patients in each arm of the

study) and the one-sided significance level (a or critical value la)
are then jointly determined to maximize the expected value of the

trial. Note that maximizing the value of the trial means providing

access to a safe and effective treatment to patients as soon as

possible, or concluding that the treatment has not demonstrated a

reasonable assurance of safety and effectiveness as soon as possi-

ble. It is equivalent to minimizing its losses, which include the

consequences of incorrect decisions for all current and future

patients, and the inefficiency of delaying access of a potentially

safe and effective treatment to patients. Although the value model

we now introduce is based on preference data for a specific device,

our methods are similar to a previous oncology analysis [4,5] and

are applicable to other therapeutics for which patient-preference

data are available.

Patient-centered value model
The CDRH weight-loss device study elicited and quantified the

importance of safety, effectiveness and other attributes of weight-

loss devices into patient preference scores [2]. eTable 1 (see Sup-

plementary material online) shows the preference scores estimated

from the survey data for total body weight loss as a percentage of

initial weight (%TBWL) and mortality risk. The scores are on a

scale from �10 (least preferred) to +10 (most preferred), where �10

is the estimated value of a 5% mortality risk to patients. %TBWL

and mortality risk were modeled as continuous variables, and their

preference weights were linearly interpolated between observa-

tions.

Patient preference scores for each attribute were then mapped

directly to relative values. For example, the change in value of an

increase in mortality risk from 0 to 1% can be quantified by the

preference score difference between these two levels. The change

in value of this increase from the patient’s perspective is therefore

�3.5. Similarly, the change in value of an increase in %TBWL from

0 to 30% is +4.3. Given both these changes, and holding other

attributes constant, the net change in value would then be +0.8,

implying the additional weight loss would more than compensate

for the increased mortality risk according to the patient preference

information. The relative loss of value per patient, L, of using one

intervention with a lower overall preference score over another is

then defined in terms of this net change in value. The number of

patients affected can be used to scale L to estimate a collective loss

of value.

The value associated with a clinical trial for a superiority claim

can be categorized into in-trial and post-trial value. In-trial value

depends on the number of subjects in each arm of the trial, and is

independent of the outcome of the trial if both arms have the same
Please cite this article in press as: Chaudhuri, S.E. et al. Patient-centered clinical trials, Drug
number of subjects. In contrast, post-trial value is completely

dependent on the outcome of the trial and affects patients beyond

the scope of the trial. In particular, we assume there is no post-trial

loss in value with a correct decision [i.e., rejecting (approving) a

device that is less (more) preferred relative to the control] except

for the wait time during the regulatory review process. We further

define the relative loss in value per person of using the investiga-

tional device under the null hypothesis (H = 0) as L0, and the

relative loss in value per person of forgoing the use of the investi-

gational device under the alternative hypothesis (H = 1) as L1. If

the size of the target population is N, then the aggregate loss in

value of a type I or II error will be DFt�N�L0 and N�L1, respectively,

where DFt is a discount factor that decreases from 1 to 0 and

accounts for the wait time, t, caused by the regulatory review

process. In other words, patients place a lower value on an effective

treatment if it is not accessible immediately. Therefore, the aggre-

gate loss in value caused by the length of the regulatory review

process under the alternative hypothesis is 1 � DFt½ ��N�L1
.

Finally, if the investigational device is less preferred to the

control, then the n subjects in the investigational arm collectively

experience a loss of value of n�L0. However, if the investigational

device is preferred to the control treatment, then the n subjects in

the control arm forgo a better treatment and experience a collec-

tive loss of value of n�L1. The potential losses in value associated

with a fixed sample trial are shown in eTable 2 (see Supplementary

material online). Note that there is no loss in value (i.e., there is

maximum value) in the hypothetically optimal scenario where the

correct approval decision is made immediately and without run-

ning a trial.

We additionally assume time-consistent (i.e., exponential) dis-

counting, and suggest that time-horizon preferences, which mea-

sure the capacity of patients to tolerate waiting, be elicited directly

in future patient survey experiments. If the annual discount rate is

r, then the discount factor is given by DFt = e�rt, where t is length of

the regulatory-approval process. This proposed discount factor

ensures that patient preferences do not change over time in such

a way that they become inconsistent with one another. The

duration of the regulatory review process is assumed to be deter-

mined by the size of the study (2n), the patient accrual rate for the

study (h), the time required to setup the study (s), the follow-up

time of the final patient to complete the study (f) and the FDA

review time (t) such that t = s + 2n/h + f + t.

Bayesian decision analysis
A quantitative primary endpoint based on %TBWL is assumed for

the trial. We further assume that subjects in the treatment arm

receive the investigational device and each subject’s response is

independent of all other responses. Diet and exercise are assumed

to be administered to patients in the control arm. The response

variables in the treatment arm, denoted by T1; . . . ; Tnf g, are as-

sumed to be independent and identically distributed, where

Ti � N mt ; s2
t

� �
. Similarly, the control arm responses, represented

by P1; . . . ; Pnf g, are assumed to be independently and identically

distributed as Pi � N mp; s2
p

� �
. We further confine ourselves to

superiority trials where the device is likely to have either a positive

effect (mt > mp) or no effect (mt = mp). In such cases, the treatment

effect of the device, d, is defined as the difference between the

response means in the two arms (i.e., d � mt � mp). In a fixed-
 Discov Today (2017), https://doi.org/10.1016/j.drudis.2017.09.016
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sample trial with n subjects in each arm, we collect observations

from the treatment and control arms, and form the following t-

statistic (Eq. (1)).

T ¼ m̂t � m̂pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ

2

t

n þ ŝ
2

p

n

r ð1Þ

where m̂ and ŝ represent the sample mean and standard deviation,

respectively, and T has a noncentral t-distribution with noncen-

trality parameter d� ffiffiffiffiffiffiffiffiffiffiffi
n

s2
t þs2

p

q
. Under the assumption that the two

variances are equal, this distribution has 2 n � 1ð Þ degrees of free-

dom. The t-statistic, T, is then compared to the critical value, la.
Finding that T > la supports rejection of the null hypothesis (i.e.,

that the device has no effect). The probability of failing to reject

the null hypothesis, for a device that provides a treatment effect d
with response variances s2

t and s2
p , is therefore P T � lað Þ.

Assuming prior probabilities p0 and p1 (where p0 + p1 = 1) for the

cases where the investigational device is equally effective (H = 0)

and more effective (H = 1) to the control treatment, respectively,

and letting V0 and V1 be the value created in the hypothetically

optimal scenarios where the correct approval decision is made

immediately and without running a trial, it is straightforward to

calculate the expected value associated with an RCT design with
Please cite this article in press as: Chaudhuri, S.E. et al. Patient-centered clinical trials, Drug
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FIGURE 1

Possible device characteristics: low-risk with high weight loss (top left), low-risk wit
high-risk with low weight loss (bottom right). Circles and triangles represent the
alternative hypothesis (H = 1), respectively.
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parameters n; laf g (Eqs. (2)–(4)).

E Value; n; la½ � ¼ p0 V0 � E½Loss j H0ð �Þ þ p1 V1 � E½Loss j H1ð �Þ ð2Þ
where

E½Loss j H0� ¼ L0� a�DFt �N þ n½ �; ð3Þ

E½ Loss j H1� ¼ L1� N � ð1 � bÞ�DFt �N þ n½ �; ð4Þ
a is the significance level and 1 � b is the power of the trial. The

optimal sample size (n*) and critical value (l	
a) are jointly deter-

mined such that the expected value of the trial is maximized

subject to an upper bound, Powermax, for the power level, which

we set to 80% in our simulations. This power constraint is

intended to represent the practical considerations of the medical

device industry. In solving the constrained optimization problem,

we observe that the expected value of the trial is maximized when

the expected loss, E Loss; n; la½ � ¼ p0E½Loss j H0� þ p1E½Loss j H1�, is

minimized.

Weight-loss device case study
Using BDA and the estimated preference scores, we can now

formulate the BDA optimal fixed-sample test for weight-loss

devices. We assume an annual discount rate of 10%, a %TBWL
 Discov Today (2017), https://doi.org/10.1016/j.drudis.2017.09.016
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TABLE 1

BDA-optimal RCTs for weight loss devices.

Device characteristics under H = 1 Trial size (2n) Critical Value (la) Significance (a) Power (1�b)

Low risk, high %TBWL 44 1.54 6.5% 80%
Low risk, low %TBWL 278 1.83 3.5% 80%
High risk, high %TBWL 78 2.33 1.1% 80%
High risk, low %TBWL 0 – – –
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standard deviation of 25% for both arms of the study, a patient

accrual rate of 100 patients per year (and a fixed study startup time

of 6 months, final observation period of 1 year and FDA review

time of 9 months) and a target population of 100,000 patients. We

also consider two separate categories of interventions: low risk and

high risk, which represent devices that require noninvasive and

invasive surgeries, and have mortality risks of 0.1% and 0.3%,

respectively. In each case, we assume the device is either ineffec-

tive (mt = mp) or effective (mt > mp), with equal prior probability.

This is consistent with the equipoise principle of two-arm clinical

trials, which states that it is only ethical to assign the same number

of patients to both arms if there is no prior information in the

medical profession that favors one arm over the other [13]. We

further subcategorize effective weight loss into low effectiveness

(mt = 10%) and high effectiveness (mt = 20%). Figure 1 summarizes

the multiple categories of investigational devices considered. Fi-

nally, the control treatment (e.g., diet and exercise) is assumed to

provide moderate weight loss (mp = 2%) and have no additional

mortality risk. The authors with domain-specific expertise have

calibrated the parameters in these hypothetical examples based on

multiple years of first-hand knowledge and participation in regu-

latory review. In the Supplementary material we show sensitivity

analyses to investigate the robustness of our analysis to perturba-

tions in our model’s key assumed parameter values (see eTables 3–

5). Table 1 lists the optimal RCTs for the devices described above.

As can be seen, the device that is assumed to be low risk but is

potentially highly effective has a relatively large BDA optimal

significance level (a) of 6.5%. This value is greater than the

traditional 5% level, reflecting the fact that patients are willing

to bear increased uncertainty of receiving an ineffective device

because (i) the device is thought to be safer and/or (ii) they value

the weight loss benefit and do not want to miss the opportunity of

receiving an effective weight-loss device and/or (iii) they want to

access a potentially effective weight-loss device sooner. The pref-
Please cite this article in press as: Chaudhuri, S.E. et al. Patient-centered clinical trials, Drug

TABLE 2

BDA-optimal RCTs for weight loss devices for three risk-tolerance g

Device characteristics under H = 1 Risk aversion (g) Trial size (

Low risk, high %TBWL 1 44 

2/3 34 

1/3 20 

Low risk, low %TBWL 1 278 

2/3 190 

1/3 94 

High risk, high %TBWL 1 78 

2/3 62 

1/3 44 

High risk, low %TBWL 1 0 

2/3 0 

1/3 278 
erence and ability to shorten the regulatory approval process is

especially apparent because the trial size is set to 44 patients (22 in

each arm), which is approximately six-times smaller than the trial

size recommended for the low-risk, low potential weight-loss

device.

By contrast, the optimal significance level for the device that is

assumed to have a high mortality risk is 1.1%. The additional

mortality risk causes the preference score of this device to be

relatively low, and hence patients require greater evidence of

clinical effectiveness. To achieve this goal, the trial size is set to

78 patients, almost twice the size of the trial recommended for the

low-risk device with an equivalent potential effectiveness. How-

ever, the preference to keep the trial size small remains evident,

especially when compared with the 278-patient trial size recom-

mended for the low-risk, low potential weight-loss device. Finally,

note that, because the high-risk, low potential weight-loss device is

not preferred to the standard treatment under the alternative

hypothesis (Fig. 1), the BDA framework recommends this device

be rejected without conducting a trial.

Although the previous analysis studied the benefit–risk prefer-

ences of the average patient, we can also calculate BDA optimal

trial designs for more-risk-tolerant early adopters. In this analysis,

we derive counterpart BDA optimal RCTs for a subset of patients

who have a fraction (g) of the risk aversion of the average survey

respondent. For example, if g = 2/3 a patient’s risk aversion is one-

third smaller in magnitude when compared to the average

patient’s risk preferences seen in eTable 1 (see Supplementary

material online). We use this coefficient for illustrative purposes

only and recommend that preference scores from population

subsets, including categorization by disease severity and

other demographics, be elicited directly from survey responses.

Table 2 compares the BDA optimal designs for patients who are

one-third (g = 2/3) and two-thirds (g = 1/3) less risk averse than

the average patient.
 Discov Today (2017), https://doi.org/10.1016/j.drudis.2017.09.016

roups.

2n) Critical value (la) Significance (a) Power (1�b)

1.54 6.5% 80%
1.26 10.9% 80%
0.77 22.5% 80%

1.83 3.5% 80%
1.36 8.7% 80%
0.71 24.0% 80%

2.33 1.1% 80%
1.99 2.6% 80%
1.54 6.5% 80%

– – –

– – –

1.83 3.5% 80%
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The BDA optimal RCT designs vary substantially across risk-

tolerance groups. With a one-third decrease in risk aversion, the

sample size decreases by a factor of 21%–32% and the significance

level increases in magnitude by 1.5%–5.2%, such that the recom-

mended as for low- and high-risk devices are on the order of 10%

and 2.5%, respectively. The small number of patients and large as
for the risk-tolerant subgroups relative to the average population

are observed because the BDA optimal RCT, by being less conser-

vative, aims to grant faster access to these ‘early adopters’. The

decrease in the length of the regulatory approval process is a

consideration to offset the excess risk from the extra permissive-

ness in the trial, and the overall penalty—the expected harm to

current and future risk-tolerant patients—can be minimized. Fi-

nally, note that, if effective, the high-risk, low potential weight-

loss device is preferred to the standard treatment by the most-risk-

tolerant subgroup (in fact they view the device similarly to how the

average population views the low-risk, low potential weight-loss

device), and the BDA framework recommends conducting a con-

servative trial.

Concluding remarks
We present a quantitative framework in which patient preferences

are the center of RCT design. We quantify the loss in value to

public health associated with different actions in any fixed-sample

RCT, use a BDA framework to aggregate the value of the trial and

then determine an optimal RCT in which the expected value is

maximized. We tailor this framework to weight-loss devices, using

quantitative preference evidence elicited from patients through

conjoint analysis, and assumptions for RCT statistics to design

BDA optimal RCTs for average and more-risk-tolerant patient

populations.

Our results demonstrate that the traditional RCT design with a

fixed statistical significance level does not necessarily maximize

overall value (or equivalently minimize harm) to current and

future patients of an investigational treatment. For low-risk

devices and risk-tolerant populations, the inefficiency is mainly

caused by lengthy RCTs that are too conservative and overprotec-

tive of the type I error rate (i.e., too focused on rejecting ineffective

treatments and on avoiding the harm caused by false-positives).

Missed treatment opportunities do indeed harm patients, and

should be considered along with the risk of approving ineffective

or risky treatments.

Conversely, for some high-risk devices, such as those that

require open surgery, traditional one-sided significance levels of

5% are more permissive than the BDA optimal thresholds. These

RCTs enable a larger chance of approving ineffective or riskier

treatments, such that the expected benefits are not justified by the

risk to patient health. We believe that the more nuanced consid-

eration of significance level and power described here is instructive

to the design of future clinical trials. Although we made strong

assumptions here for illustrative purposes, these assumptions can

be readily relaxed in future work. For example, although we have

used point prevalence for simplicity in this article, period preva-

lence, incidence rates and other epidemiological measures can be

used to estimate the total population affected by the outcome of

the trial. Moreover, other factors (including the time until the

adverse effects of a type I error are discovered after a device is

inadvertently approved, measures of disease burden and the
Please cite this article in press as: Chaudhuri, S.E. et al. Patient-centered clinical trials, Drug
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expected time until a new treatment is discovered that is at least

as safe and effective as the investigational device) can easily be

incorporated into the model [5].

Our findings must therefore be qualified in several respects.

First, many clinical trials are noninferiority trials instead of the

superiority trials we have considered. Second, we have considered

fixed sample clinical trials, when in reality clinical trials for

regulatory purposes could be adaptive and might include interim

analyses for early signals of effectiveness, futility or lack of safety.

Any of these possible adaptations in any given trial could alter the

optimal significance level and power and appropriate modifica-

tions to our calculations are required to determine the optimal

designs in these situations. Third, the trials considered here use the

percent of total bodyweight loss as the primary endpoint, and

mortality risk as the only safety concern. For weight-loss devices,

these attributes are clear and of unambiguous importance. More-

over, total bodyweight loss is a surrogate endpoint for morbidity

and mortality; hence, this trial resembles those of many other

devices and drugs. Other attributes can also be included, such as

weight-loss duration, co-morbidities, side-effect duration, among

others, which are more difficult to gauge. Study-specific defini-

tions of type I error and type II error loss would require more

nuanced treatment in these trials, but can easily be included in our

BDA framework. Fourth, we acknowledge that hypothetical pa-

tient choices such as the ones obtained in a discrete choice

experiment do not have the same clinical and emotional conse-

quences as actual choices. However, advances in patient prefer-

ence elicitation methods and best practices have helped increase

the reliability of such results by ensuring that respondents are well

informed, and that hypothetical biases are minimized. Despite

these limitations, the estimated preference scores allow us to

develop quantitative models to compare benefit–risk tradeoffs

across device attributes. This information is required for making

patient-centered, evidence-based regulatory decisions. Finally, we

have constrained our attention to patient medical outcomes with-

out considering the financial cost to patients and their families,

industry or society. New therapies often come at a very high

financial cost, which, when taken into account, can raise the

bar of success for new agents, thus lowering the acceptable signifi-

cance level. By contrast, the larger the target population, the more-

robust the results will be to the accuracy of N and the more

palatable higher financial costs might be for developing beneficial

therapies. Although other decision makers (insurance companies,

etc.) might integrate financial costs into consideration, these

concerns would not be included in regulatory decisions. The

increased significance levels that we have proposed could lower

the cost of clinical trials, which has grown to an average of US$36

500 per patient as of 2013 [14], and reduce the risk to sponsors,

which might encourage device development, lower device costs

and further accelerate clinical research.

To incorporate perspectives from the entire biomedical ecosys-

tem and realize the value of patient input to the device develop-

ment process, the CDRH has developed a patient engagement

advisory committee consisting of key stakeholder groups: patient

advocates, caregivers, physicians, medical device and biopharma

executives, regulators and policymakers. It is possible this com-

mittee would be an appropriate forum to consider in formulating

explicit cost estimates for type I and type II errors. These estimates
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can then be incorporated into the FDA decision-making process as

additional inputs to their quantitative and qualitative delibera-

tions. This ability of the BDA framework to systematically weigh

multifaceted tradeoffs that reflect a variety of perspectives com-

bined with its flexibility and practicality make it a potentially

valuable tool for optimal RCT design. Although the framework is

robust, we emphasize that careful consideration must be applied to

the assumptions underlying the specific models to produce useful

recommendations. If correctly implemented, a Bayesian perspec-

tive has the potential to benefit all stakeholders.
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