
Quick ROS Intro
CS189 Spring 2019



What is ROS?

● “Robot Operating System”
● Provides a way to communicate with 

robots
● Allows us to write several programs which 

work together
● Multilingual support (Can write programs 

in: C++,Python,LISP, Java, JavaScript, 
MATLAB, Ruby, Haskell, R, Julia,...)



An Example Problem: Self-Driving Car as a Robot!

● What kind of things do we want our cars to be able to do on our commute?
○ Turn on and back out of the garage
○ Wait for us to get into the car
○ Plan a route to follow
○ Adapt route for traffic changes
○ Avoid potholes, roadkill, or bad drivers
○ Place a phone call
○ Play music
○ Go refuel/recharge when needed

● If each is a program, do they need to be constantly running?
● What kind of sensors and signals would we take in?

Take me to work
Get me some coffee

Please don’t hit 
another squirrel



ROS Architecture
● Many programs with specific tasks: NODES

Drive_and_Steer Identify_Obstacles Proccess_LIDAR

Task: Sends 
commands to the car 
to steer, accelerate, 
and brake. Safely 
avoids obstacles if 
present

Info Needed: 
Obstacle position 
and size (if present)

Task: Identifies 
obstacles from 
LIDAR data. 
Determines their size 
and location.

Info Needed: LIDAR 
data

Task: Reads in raw 
LIDAR data and 
processes it into 
usable data



How do Nodes communicate?
● NODES communicate by Publishing(sending) and Subscribing(receiving) 

messages to a TOPIC

Drive_and_Steer Identify_Obstacles Proccess_LIDAR

‘Obstacles’ ‘Depth Map’

Subscribes To: 
‘Obstacles’ topic. 
Receives messages 
with obstacle 
information to 
determine evasive 
maneuvers

Subscribes To: 
‘Depth Map’ topic. 
Uses depth map data 
to identify obstacles
Publishes To:
‘Obstacles’ topic 

Publishes To:
‘Depth Map’ topic. 
Processes raw 
LIDAR data from 
sensor and publishes 
result



More on Publisher/Subscriber
● When a publisher sends a message to a topic, it does not care which node is 

subscribed to it

● Likewise, a subscriber will not care which node published to the topic

● It is possible to have multiple publishers or subscribers to a single topic
○ When could we require multiple subscribers to the same topic?
○ What about multiple publishers?



Publisher Queues
● By default, a publisher in rospy is synchronous; After a message is published, 

the publisher is blocked from sending another message until:
○ The message has been sent to the topic
○ The topic has sent the message to each of the current subscribers

■ Can you think of why this may not be good?

● It is recommended that we use asynchronous publishing, which is defined by 
queue_size. 

● For asynchronous, the publisher is still blocked while it is sending the 
message to the topic, but can publish another message once it is sent

○ A queue of messages can be kept; once it overflows, oldest messages are removed
○ The subscribers can receive the messages from the topic at their own rate

● Choosing a good queue_size (None = synchronous, Zero = infinite,1 = Most Recent)

http://wiki.ros.org/rospy/Overview/Publishers%20and%20Subscribers


What is ‘roscore’?
● Invisible master that manages communication between nodes
● When a node is started up, it connects to roscore to let it know where it will 

publish and subscribe to
● roscore only sets up peer-to-peer connections between nodes

 roscore

Proccess_LIDAR‘Depth Map’



“So, what will I actually be using….”
● Here are some commands we will use in this class:

○ roscore
■ Starts roscore, which is required for nodes to communicate

○ rosrun 
■ Starts a node running

○ roslaunch
■ Starts a collection of specified nodes; if roscore isn’t running, it will 

start up roscore
○ Crtl + C

■ Stops a program while it is running



Starting and stopping our nodes
● We will be writing our nodes using Python with help of ‘rospy’
● Initializing a node

○ rospy.init_node(“my_node_name”)
● Shutdown sequence

○ rospy.on_shutdown(self.shutdown)
■ When the program is shut down, it will run the function described in shutdown
■ For our robot, this may include telling it to stop moving

● Defining a Publisher
○ pub = rospy.Publisher(‘topic_name’,std_msgs.msg.String, queue_size = 10)

■ pub can now publish to the topic ‘topic_name’ messages of type String,only keeping 10 
most recent messages if they aren’t being received as fast as they are published

■ pub.publish(“Hello World”) #Publishes the message using publisher we defined
● Defining a Subscriber

○ rospy.Subscriber(‘topic_name’,std_sg.msg.String, process_topic)
■ When a message is published to ‘topic name’, the information will be processed using 

the function we define as process_topic

http://wiki.ros.org/rospy/Overview


Example Code from Lab 1 (Today):
cmd_vel_pub = rospy.Publisher(‘cmd_vel’,Twist,queue_size=1)

move = Twist() 

move.linear.x = 0.5 #drive straight ahead at 0.5 m/s

rate = rospy.Rate(10) #iterate at 10 Hz

while not rospy.is_shutdown(): 

cmd_vel_pub.publish(move)

rate.sleep()

IF THE PUBLISHER SENDS 
COMMANDS TOO SLOWLY, THE 
TURTLEBOT WILL SHUT DOWN AND 
STOP LISTENING!



bump_sub = rospy.Subscriber(‘bumper’,BumperEvent,bump_callback)

rate = rospy.Rate(10) #iterate at 10 hz

def bump_callback(data):

bump = False

if data.state == BumperEvent.PRESSED:

bump = True

while not rospy.is_shutdown():

if bump:

Move.linear.x = 0 #stop

rate.sleep()



● Any additional questions:
○ Check Canvas for links to documentation resources
○ Ask your peers
○ Ask a question on Piazza
○ Ask your TFs!

Have fun using the Turtlebots and treat them well!

Zieper 2019

https://canvas.harvard.edu/courses/47832/pages/getting-started-2-ros-turtlebot-sensors-and-code
https://piazza.com/class/jr6q43s2y3s3pb

