
3/8/19

1

ì
CS 189: Autonomous Robot Systems
Spring 2019, 

Agenda

ì Lecture: Navigation I: Path Planning

ì Demo Time: Pset 3b Follower

ì Upcoming:
ì ROOM CHANGE: March 15 in Pierce 213 (Brooks room)
ì We will do EKF lab, very important! 
ì Also please complete online lab safety 
ì Pset 4 starts week after spring break (yay spring break)

ì References: 
ì “Intro to AI Robotics”, chapter 9 and 10, Robin Murphy, 2000.
ì “Intro to Autonomous Mobile Robots”, chapter 5.5 , 6.1-2, Seigwart et al, 2004
ì “Robot Motion Planning”, Lecture Notes, Choset and others (CMU 16-735)



3/8/19

2

PERCEPTION

PHYSICS OF 
THE WORLD

ACTION

COGNITION

What Does it Mean to be Autonomous?

Today: Robots Navigating the World

Scenarios
• Hospital Helper       

(e.g. Diligent, Tugs)
• Office security or mail-

delivery (e.g. Cobal, 
Savioke)

• Tour Guide robot in a 
museum (Minerva)

• Autonomous Car with 
GPS and Nav system

Biological analogies: 
Humans, bees and ants, 
migrating birds, herds

DILIGENT
(hospitals)

SAVIOKE
(hotels)

GOOGLE CAR

COBALT
(office)



3/8/19

3

Today: Robots Navigating the World

Second Part of CS189: High-level reasoning
From finite state machines to complex 

representation and memory

ì Path Planning: How to I get to my Goal?

ì Localization: Where am I?

ì Mapping: Where have I been?

ì Exploration: Where haven’t I been?

What is Path Planning?

ì Simple Question: How do I get to my Goal?

ì Not a simple answer!
ì Can you see your goal? 

Do you have a map?
Are obstacles unknown or dynamic?

ì Does it matter how fast you get there? 
Does it matter how smooth the path is ? 

ì How much compute power do you have?
How precise is your motion control?

ì Path Planning is best thought of as a Collection of Algorithms
ì You have to match the method to the “ecological niche”

ì 3 Things: Environment, Success metrics, Robot capability.



3/8/19

4

Types of Path Planning Approaches

ì Reminder of the Basics 
ì Visual homing (Purely local sensing and feedback control)
ì Inverse Kinematics (Turn-move-turn to get from A to B)

ì Bug-based Path Planning (mostly-local without a map)
ì Robots can see the Goal (direction and distance)
ì But there are unknown obstacles in the way (No map)

ì Metric (A*) Path Planning (global with a map)
ì Assumes that you have a map (distance or graph) and you know 

where you and the goal are located in it.
ì Path is represented as a of series of waypoints (directions)

Basics: Visual Homing 

ì Purely Reactive Navigation
ì Measure Visual (x,y) Position of Goal
ì Move to bring goal to Visual Center
ì Proportional Control (if you see the goal), Random walk (if you don’t)



3/8/19

5

Basics: Inverse Kinematics

Path Planned is: Turn A then Move D

Turn A = atan2 (x/y) = W x duration
Move D = sqrt (x^2 + y^2) = L x duration
(Turn again, to end in new orientation)

(0,0,0)

D

(x,y,A)

A

x

y
Thinking in  the 
“Robot Frame”
(ego-centric)

ì Getting from Here to Point B
ì Popular Option: Turn-Move-Turn [Lecture: Autonomy 1]
ì No obstacles (like in visual homing example)

Example:
Line up
Ball & Goal

Bug-based Path Planning

ì What if the Robot has obstacles in the way?
ì Always have Goal direction and/or distance (Global)

But No Map: Only local knowledge of environment (Local)
ì Example Scenario: 

ì Outdoor robot knows GPS location of goal, but building in the way.
ì Indoor robot see goal location, but furniture in the way.

ì “Bug” Algorithms depend on simple but provable behaviors!
ì Don’t need to build a map
ì Simple Computation: Visual Homing + Wall-following + Odometry

ì Very intuitive class of algorithms – but surprisingly powerful



3/8/19

6

Basic Idea: Bug 0 

ì Robot 
ì Known direction to goal
ì Wall-following

ì Bug 0 Algorithm
ì Head towards goal
ì If obstructed, follow 

obstacle wall until you 
can head towards goal 
again.

ì Continue

Adapted from Choset 16-735

Basic Idea: Bug 0 

ì Robot 
ì Known direction to goal
ì Wall-following

ì Bug 0 Algorithm
ì Head towards goal
ì If obstructed, follow 

obstacle wall until you 
can head towards goal 
again.

ì Continue

Adapted from Choset 16-735



3/8/19

7

What map will foil Bug 0? 

ì Robot 
ì Known direction to goal
ì Wall-following

ì Bug 0 Algorithm
ì Head towards goal
ì If obstructed, follow 

obstacle wall until you 
can head towards goal 
again.

ì Continue
*

Start

Goal
*

Adapted from Choset 16-735

What map will foil Bug 0? 

ì Robot 
ì Known direction to goal
ì Wall-following

ì Bug 0 Algorithm
ì Head towards goal
ì If obstructed, follow 

obstacle wall until you 
can head towards goal 
again.

ì Continue
*

Start

Goal
*

Adapted from Choset 16-735



3/8/19

8

What map will foil Bug 0? 

ì Robot 
ì Known direction to goal
ì Wall-following

ì Bug 0 Algorithm
ì Head towards goal
ì If obstructed, follow 

obstacle wall until you 
can head towards goal 
again.

ì Continue

Adapted from Choset 16-735

What map will foil Bug 0? 

ì Robot 
ì Known direction to goal
ì Wall-following

ì Bug 0 Algorithm
ì Head towards goal
ì If obstructed, follow 

obstacle wall until you 
can head towards goal 
again.

ì Continue

Adapted from Choset 16-735



3/8/19

9

A Better Bug: Bug 1

ì Robot 
ì Known direction to goal
ì Wall-following 
ì Measure distance to goal
ì Odometry with encoders

ì Bug 1 Algorithm
ì Head towards goal
ì If obstructed, 

circumnavigate the 
obstacle and remember 
the point P on the 
perimeter that is closest to 
the goal 

ì Return to that closest 
point and continue.

Adapted from Choset 16-735

GOAL

START

A Better Bug: Bug 1

ì Robot 
ì Known direction to goal
ì Wall-following 
ì Measure distance to goal
ì Odometry with encoders

ì Bug 1 Algorithm
ì Head towards goal
ì If obstructed, 

circumnavigate the 
obstacle and remember 
the point P on the 
perimeter that is closest to 
the goal 

ì Return to that closest 
point and continue.

Adapted from Choset 16-735

GOAL

START



3/8/19

10

What map will foil Bug 1?

ì None! 
ì Any reasonable world (finite number of obstacles with finite perimeter) 
ì Analysis: It is possible to bound worst and best case trajectories
ì Discussion: What do you think are the pros and cons of this approach?

Adapted from Choset 16-735

An Alternative: Bug 2

ì Robot 
ì Known direction to goal
ì Wall-following 
ì Measure distance to goal
ì Odometry with encoders

or orientation to goal

ì M-line
ì Line from the start to goal

ì Bug 2 Algorithm
ì Head toward goal on the m-line 
ì If an obstacle is in the way, follow it 

until you encounter the m-line again 
and you are closer to the goal. 

ì Leave the obstacle and continue 
toward the goal 



3/8/19

11

Some Fun Examples: Bug2

Adapted from Choset 16-735

Many Types of Bug Algorithms!

ì Recent Variant: i-Bug  (intensity-Bug, Lavalle etc al)  
ì Proved that you can exit an obstacle at the first point “closer” to 

the goal (don’t need to keep track of m-line)

ì Attractive for many reasons
ì Simplicity of implementation and robot assumptions, 

ability to deal with unknown and dynamic environments, 
and the analogy to ant behavior.

Open question: Do ants (bugs) use the bug algorithms?



3/8/19

12

Many Types of Bug Algorithms!

Types of Path Planning Approaches

ì Reminder of the Basics 
ì Visual homing (Purely local sensing and feedback control)
ì Inverse Kinematics (Turn-move-turn to get from A to B)

ì Bug-based Path Planning (mostly-local without a map)
ì Robots can see the Goal (direction and distance)
ì But there are unknown obstacles in the way (No map)

ì Metric (A*) Path Planning (global with a map)
ì Assumes that you have a map (distance or graph) and you know 

where you and the goal are located in it.
ì Path is represented as a of series of waypoints



3/8/19

13

Metric/Global Path Planning

ì What if the Robot has Full Knowledge
ì A map of the environment and robot + goal’s locations
ì Goal: Find a “optimal” path (typically distance but other possibilities)
ì We will focus on robots, but it’s a general problem (think Google maps)

ì Two Components
ì Map Representation (“graph”):

ì Feature based maps (office numbers, landmarks)
ì Grid based maps (cartesian, quadtrees)
ì Polygonal maps (geometric decompositions)

ì Path Finding Algorithms:
ì Shortest-Path Graph Algorithms (Breadth-First-Search, A* Algorithm)

Map Representation: Feature based

ì Also known as a Topological or Landmark-based Map
ì Features your robot can recognize: 

ì Includes both natural landmarks (corner, doorway, hallways)                                    
and artificial ones (office door numbers; or robot-friendly tags) 

ì Gateways are landmarks that represent decisions (e.g. intersection)
ì Distinguishable places are unique landmarks

ì World is a graph that connects landmarks
ì Edges represent actual motion: how to get from landmark A to landmark B

Usually visual/reactive navigation is possible along an edge
ì Edges can also keep extra attributes: distance, time it takes, etc.

ì Google Maps are topological maps for humans (e.g. turn at intersection)
ì Caveat: Much less easy to construct topological maps for robots!



3/8/19

14

Example: Maxwell-Dworkin

MD235

MD234MD236

MD238

…….

MD253

EDGE: Follow-hall 
until see office door 
on right and left
(weight = distance)

Layered Representation
= Landmarks (names, types)
= Topological connectivity
= Edge local control strategy

Map Representation: Grid based

ì Ignore any notion of Features

ì Instead, Convert the map into a grid-graph
ì Step 1: Grow the boundaries (by robot size)
ì Step 2: Overlay a grid

Adapted from Murphy 2000



3/8/19

15

Map Representation: Grid based

ì Basic: An Occupancy Matrix 
ì Problem: 

ì How do you choose the 
“resolution” of the grid?

ì Too small – computationally 
expensive, jagged paths

ì Too big – might miss paths

ì Quadtree
ì Create a grid recursively!
ì Start with very coarse grid; then 

for each grid section if there are 
obstacles, then refine grid 
further. 

ì Captures large open spaces as a  
single big grid point

(Try writing the pseudocode)

Note: Occupancy Grids will be more useful 
later, when the robot is responsible for 
making the map!

Map Representation: Grid based

ì Basic: An Occupancy Matrix 
ì Problem: 

ì How do you choose the 
“resolution” of the grid?

ì Too small – computationally 
expensive, jagged paths

ì Too big – might miss paths

ì Quadtree
ì Create a grid recursively!
ì Start with very coarse grid; 
ì Then for each grid section, if 

there is an obstacles, refine.
ì Outcome: Captures large open 

spaces as a  single big grid point



3/8/19

16

Map Representation: Grid based

ì Basic: An Occupancy Matrix 
ì Problem: 

ì How do you choose the 
“resolution” of the grid?

ì Too small – computationally 
expensive, jagged paths

ì Too big – might miss paths

ì Quadtree
ì Create a grid recursively!
ì Start with very coarse grid; 
ì Then for each grid section, if 

there is an obstacles, refine.
ì Outcome: Captures large open 

spaces as a  single big grid point

Murphy 2000

More Map Representations
From “Introduction to Autonomous Mobile Robots”,  

Chapter 5 and 6, Seigwart and Nourbaksh,  2004.

Visibility Graph

Voronoi Graph

Cell Decomposition Map



3/8/19

17

Metric/Global Path Planning

ì What if the Robot has Full Knowledge
ì A map of the environment and robot + goal’s locations
ì Goal: Find a “optimal” path (typically distance but other possibilities)
ì We will focus on robots, but it’s a general problem (think Google maps)

ì Two Components
ì Map Representation (“graph”):

ì Feature based maps (office numbers, landmarks)
ì Grid based maps (cartesian, quadtrees)
ì Polygonal maps (geometric decompositions)

ì Path Finding Algorithms:
ì Shortest-Path Graph Algorithms (Breadth-First-Search, A* Algorithm)

Path Finding Algorithms

ì All Map Representations are a weighted “graph”
ì Nice part is that you only need to do this once (amortize 

computation)

ì Algorithm: Compute shortest paths in the graph
ì Path is represented by a series of waypoints
ì Single Path Search Algorithms: Find shortest path A to B 

ì Breadth-First-Search (simple graphs); Dijkstra’s (weighted)
ì A* search for large graphs (BFS + Heuristic)

ì Gradient Path Algorithms:  Find all paths towards B
ì E.g. Fixed Basestation: BFS, Dijkstra’s, Wavefront algorithms, etc



3/8/19

18

Breadth-First Search

Breadth-First Search



3/8/19

19

Breadth-First Search
Side Note: Here bug 2 (“m-line”) would have worked well too! 

If few obstacles, then bug is good enough 

A* Algorithm

A* Algorithm
Similar to BFS but choose next node to 
expand based on two things
1. Distance from start (like BFS)
2. Expected distance from goal (H)

“H” is the heuristic. The theory shows that 
so long as the heuristic is “optimistic” then 
A* returns the best path.

Key point: 
Average behavior can be awesome!

For maps,  
H = straight-line distance is a good heuristic

Start Goal



3/8/19

20

How A* works
5

5 4 5
5 4 3

5 4 3 2
5 4 3 2 1

5 3 2 1 0

4 5
3 4 5
2 3 4 5
1 2 3 4 54

5 4 3 2 1
5 4 3 2

5 4 3
5 4

2 3 4 5
3 4 5
4 5
5

5

7
7 6

8 7 6 5

6 5 4
5 4 3 2
4 3 2 1 0

7 6
7

5 4 3 2
6 5 4

How BFS would
Explore the space

Manhattan distance to Green
(easy to compute directly)
(no obstacles considered)

A* criteria = BFS+Manhattan

5
7

7
7

How A* works
5

5 4 5
5 4 3

5 4 3 2
5 4 3 2 1

5 3 2 1 0

4 5
3 4 5
2 3 4 5
1 2 3 4 54

5 4 3 2 1
5 4 3 2

5 4 3
5 4

2 3 4 5
3 4 5
4 5
5

5

7
7 6

8 7 6 5

6 5 4
5 4 3 2
4 3 2 1 0

7 6
7

5 4 3 2
6 5 4

How BFS would
Explore the space

Manhattan distance to Green
(easy to compute directly)
(no obstacles considered)

A* criteria = BFS+Manhattan

5
7

7
7

7
5

7



3/8/19

21

How A* works
5

5 4 5
5 4 3

5 4 3 2
5 4 3 2 1

5 3 2 1 0

4 5
3 4 5
2 3 4 5
1 2 3 4 54

5 4 3 2 1
5 4 3 2

5 4 3
5 4

2 3 4 5
3 4 5
4 5
5

5

7
7 6

8 7 6 5

6 5 4
5 4 3 2
4 3 2 1 0

7 6
7

5 4 3 2
6 5 4

e
e 9

e 9 7
9 7 5

e e
9 9 9
7 7 7 7
5 5 5 5 5

e 9 7
e 9

e

7 7 7 7
9 9 9
e e

e

How BFS would
Explore the space

Manhattan distance to Green
(easy to compute directly)
(no obstacles considered)

A* criteria = BFS+Manhattan

A* Algorithm

A* Algorithm
Similar to BFS but choose next node to 
expand based on two things
1. Distance from start (like BFS)
2. Expected distance from goal (H)

“H” is the heuristic. The theory shows that 
so long as the heuristic is “optimistic” then 
A* returns the best path.

Key point: 
Average behavior can be awesome!

For maps,  
H= straight-line distance is a good heuristic

A* is a “general” graph search (AI, game tree, orbitz, etc); see Murphy 2000 chapter 10 for more details



3/8/19

22

Case Studies and AAAI Competitions

Given a “map” of the 
environment with some 
landmarks.

Given initial position (not 
pose) and final goal

Unknown obstacles 
might be introduced

AAAI 1992 and 1994 Mobile robot competitions [Murphy 2000]

DARPA Urban Challenge (2007)



3/8/19

23

Final Thoughts

ì Robot systems must combine many ideas
ì Interleave bug like navigation with serious path planning
ì High-level maps and low-level primitives 

ì e.g. collision avoidance, feature recognition, etc
ì Ecological niche matters!

ì E.g. Robot soccer is very different from a mail-delivery robot.

ì Cool New Methods
ì RRT: Rapidly exploring Random Trees
ì Combining with Probabilistic localization

RRT solves hard problems
High-dimensional Spaces
Complex movement constraints

(Parallel parking is hard, but now 
imagine parking a car with three 
hitched trailers!)



3/8/19

24

RRT

ì Sample
ì Pick some random points 
ì Based on voronoi areas

ì Bias towards open spaces)
ì Bias towards goal, if one exists

ì Extend
ì Connect the new point to your 

old path by seeing how close 
your robot can get to that point 
ì extend using actual (complex) 

dynamics model of the robot


