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ì
CS 189: Autonomous Robot Systems
Spring 2019

Agenda

ì Lecture: Robot Navigation -> Localization

ì Demo Time: Lab 4 (Kalman Filters)

ì Important: MUST DO LAB SAFETY TRAINING! 

ì Upcoming:
ì Have  a Great Spring Break!
ì Pset 4 will be released Friday lecture after spring break.

ì References: 
ì Kalman Filter Notes, from “Computational Principles of Mobile Robotics”, Dudek 

and Jenkin, 2000; posted on piazza resources.
ì Also “Introduction to AI Robotics”, chapter 11, Robin Murphy, 2000 and 

“Introduction to AI”, chapters 15 and 25, Russell and Norvig, 2009.
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Today: Robots Navigating the World

Scenarios
• Hospital Helper       

(e.g. Diligent, Tugs)
• Office security or mail-

delivery (e.g. Cobal, 
Savioke)

• Tour Guide robot in a 
museum (Minerva)

• Autonomous Car with 
GPS and Nav system

Biological analogies: 
Humans, bees and ants, 
migrating birds, herds

DILIGENT
(hospitals)

SAVIOKE
(hotels)

GOOGLE CAR

COBALT
(hotels)

Today: Robots Navigating the World

Second Part of CS189: High-level reasoning
From finite state machines to complex 

representation and memory

ì Path Planning: How to I get to my Goal?

ì Localization: Where am I?

ì Mapping: Where have I been?

ì Exploration: Where haven’t I been?
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Localization

ì Simple Question: Where am I?

ì Not a simple answer: 
ì Do you have a map? 

ì Yes => a global position in the world
ì No => position in reference to other objects? Or your own past?

ì What can you sense?
ì Can you sense and record your own self-movement? 
ì Can you sense external things like landmarks? 
ì How certain are you about what you sense?

ì Localization is a “collection of algorithms”

Today’s Localization Techniques

ì Dead-reckoning (motion)
ì Keep track of where you are without a map,

by recording the series of actions that you made, 
using internal proprioceptive sensors. (also called Odometry, Path Integration)

ì Landmarks (sensing)
ì Triangulate your position geometrically, 

by measuring distance to one or more known landmarks
E.g. Visual beacons or features, Radio/Cell towers and signal strength, GPS!

ì State Estimation (uncertainty in motion & sensing)
Probabilistic Reasoning
ì Kalman Filters (combine both motion and sensing)
ì Particle Filters (also known as Monte Carlo Localization)

ì Who are the world’s best localizers?
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Dead-Reckoning

ì FORWARD KINEMATICS repeated
ì Keep track of initial position and the series of 

movements/actions that you made.
ì Method: Take a “step”, compute new position.
ì Also called odometry or path integration.

ì Our Motion Model
ì Position at time t = (xt, yt, ot)
ì Linear velocity = vt; Angular velocity = wt

ì Then for a small time step dt, 
we can compute the new position

xt+dt = xt + vt dt cos ot

yt+dt = yt + vt dt sin ot

ot+dt = ot + wt dt

R

Take two steps forward, 
Take two steps back,

Are you back where you started?

xt yt vt dt cos ot

v
t dtsin o

tot

xt+dt yt+dt

vtdt

R

R

Dead-reckoning is even easier to calculate 
if you only Move or Turn at one time.

Example: INS

Inertial navigation systems (INS)
ì Complex motion (momentum, 

external effects)
ì Include accelerometers and

gyroscopes to provide better 
measurements of 
instantaneous velocity.

ì Expensive systems very good
ì satellites, submarines

ì But, low-cost IMUs 
increasingly available

Bluefin Robotics



3/27/19

5

Landmarks
ì How it works

ì Opposite of dead-reckoning! 
ì Use measurements to external landmarks of known position 
ì Examples: visual landmarks, radio towers, GPS!

ì Example 1: 3 Landmarks + distance only (e.g. Radio towers)
ì Landmark positions: (xL1, yL1) (xL2, yL2) (xL3, yL3)
ì If you have three non-colinear landmarks,

then you lie at the intersection of three circles! [triangulation]
ì Three equations of the form: 

square(dL1) = square(xL1 – x0) + square(yL1 – y0) (Landmark L1)
ì Solve for (x0, y0) 

Or if they don’t intersect exactly (noise), minimize sum-of-squared-error

ì Example 2: Single Landmark but known orientation O and distance d
ì E.g. Facing the office label MD235 (can’t see it from inside the office)

cosO = (x1-x0)/dL sinO = (yL – y0 )/ dL

I can see the CITGO sign to my 
southeast, 15 miles away

Where am I?

L1 (xL1yL1)

xoyo

L2

L3

dL1

x0y0

L1 (xL1yL1)

dL1

0

Example: GPS

ì GPS Satellites are your “landmarks”
ì Continually transmits a message
ì Message includes both time of 

transmission, and satellite  position

ì GPS Receiver
ì Compute distance by measuring signal 

transmission time (speed of light)
ì 3D: Lie on the intersection of 4 spheres!

ì What are some limitation of GPS?
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Today’s Localization Techniques

ì Dead-reckoning (motion)
ì Keep track of where you are without a map,

by recording the series of actions that you made, 
using internal proprioceptive sensors. (also called Odometry, Path Integration)

ì Landmarks (sensing)
ì Triangulate your position geometrically, 

by measuring distance to one or more known landmarks
E.g. Visual beacons or features, Radio/Cell towers and signal strength, GPS!

ì State Estimation (uncertainty in motion & sensing)
Probabilistic Reasoning
ì Kalman Filters (combine both motion and sensing)
ì Particle Filters (also known as Monte Carlo Localization)

ì Who are the world’s best localizers?

Two Techniques

ì Key Idea: Combine Motion and Sensing
ì (Dead-reckoning + uncertainty) + (Landmarks + uncertainty)
ì Each has error, but the error can be complementary

ì Kalman Filters
ì Take advantage of mathematics of Gaussians to model uncertainty
ì General method for state estimation (not just localization)
ì Applications: Car + GPS, Lawnmower + beacons, warehouse robots

ì Particle Filters (Monte Carlo Localization)
ì Use a discrete distribution of “Particles” to represent uncertainty 

(think of sampling or histograms)
ì Useful when environment is complex and ambiguous
ì Application: A robot wandering in a building with a map
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Kalman Filters

ì How it works
ì Take a motion step: use dead-reckoning to get position (mean) but 

also keep track of uncertainty in movement
ì Take a sensing step: use landmarks to triangulate position, then 

combine with previous estimate based on relative confidence.

ì Technique and Limitations
ì Uses Gaussians (bell curves) to capture uncertainty

Dead-reckoning + uncertainty
Landmarks + uncertainty

Kalman Filters

ì How it works
ì Take a motion step: use dead-reckoning to get position (mean) but 

also keep track of uncertainty in movement
ì Take a sensing step: use landmarks to triangulate position, then 

combine with previous estimate based on relative confidence.

ì Technique and Limitations
ì Uses Gaussians (bell curves) to capture uncertainty

R

Dead-reckoning + uncertainty
Landmarks + uncertainty

Landmark

Robot
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1D Kalman Filter Example

ì “Belief” of my current state
ì xt-1 with variance σ t-1 

ì “Model” of how I work
ì Control ut and its variance r
ì Measurement zt and its variance q

ì We are assuming that we can model 
noise as a Gaussian, with a mean and 
variance (experimentally determined)

ì Step 1: Take a step, calculate new belief
ì ext =   xt-1 +   ut

ì eσ t = σ t-1 + r
ì Note that my uncertainty has increased

due to the noise in my control.

σt-1

My original 
position

ext

eσt

My “estimated” position
After I take a motion step

xt-1

1D Kalman Filter Example

ì Step 2: Take a measurement zt
Combine to create a calculate new belief
ì Simplest idea? take the average xt = (ext + zt )/2

ì Better Idea! New estimate is a weighted combination 
of our old estimate and measurement 
ì xt = a*ext + (1-a) zt

ì σt = (1/eσt + 1/q)-1

ì The Kalman Gain “a” is determined by our relative 
confidence in our belief about our old state and our 
confidence in the current measurement.
ì a = q / (q + eσt ) 

Consider case where q=0
then we will go with our noise free landmark measurement
Consider case where eσt=0
then we will ignore our measurements and go with prev position

ext

eσt

zt

(with variance q)

extz xtxt-1

σt
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1D Kalman Filter Example

ì Final Form 1D example
ì ext =   xt-1 +   ut

ì eσt = σ t-1 + r

ì xt = σ t (ext/eσt+  zt/q)

ì σt = (1/eσt + 1/q)-1

ì Caveats
ì We assumed that ut and zt were in the same state 

space as xt (position), often not true.

ì Also still 1D…..

Step 1: Motion  
Adds uncertainty

Step 2: Measurement
Reduces uncertainty

And Repeat!

Kalman Filter

ì Final Form 1D example
ì ext =   xt-1 +   ut

ì eσ t = σ t-1 + r
ì xt = σ t (ext/eσ t+  zt/q)
ì σ t = (1/eσ t + 1/q)-1

ì Final Form 3D
ì ext =   Axt-1 +  But

ì eσ t = Aσ t-1AT + R
ì xt = σ t (ext/eσ t+  CT Q-1 zt)
ì σ t = (1/eσ t + CT Q-1 C)-1

Position x = [x, y, theta]

A and B and C are matrices that 
convert old position, control input, 
and observation into the correct state 
space (note, A is often identity matrix)

R is a Co-variance Matrix 
Q is a Co-variance Matrix
σ is a Co-Variance Matrix 
The uncertainty in [x, y, theta] is not 
all independent of each other.
(you supply R and Q)
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Kalman Filter

ì Final Form 1D example
ì ext =   xt-1 +   ut

ì eσ t = σ t-1 + r
ì xt = σ t (ext/eσ t+  zt/q)
ì σ t = (1/eσ t + 1/q)-1

ì Final Form 3D
ì ext =   Axt-1 +  But

ì eσ t = Aσ t-1AT + R
ì xt = σ t (ext/eσ t+  CT Q-1 zt)
ì σ t = (1/eσ t + CT Q-1 C)-1

Extended Kalman Filter

Lets say that ut = [D, w] (distance, rotation)

xt-1 = [x’,y’,w’]
ext = [x’ + Dcosw’, y’ + Dsinw’, w’+w]

Unfortunately, this is non-linear! 
(can’t express as ext =   Axt-1 +  But)

In EKF, the system is “linearized” 
by computing the Jacobian
of the motion model 
and the measurement model.

See Dudek and Jenkins notes for more details

Extensions of the basic idea

ì Multiple sensors! (sensor fusion)
ì Just repeat step 2 (sensing) multiple times
ì This is especially useful if you have “occasional” sensors (e.g. landmarks) 

ì When is a Kalman Filter good to use?
ì When control and sensor noise are well approximated by a Gaussian 

ì (e.g. GPS and car/robot controls are usually decently approximated this way)

ì When estimated state (x) can be represented by just a Gaussian.
ì Classic bad case: car and two neighboring lanes; 

= expected location is best approximated by two Gaussians

ì Many Applications of Kalman Filters!
ì Object tracking in a video! (opposite of “self” localization)
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Particle Filters
ì What if you are in a building with a map.

ì But you have no idea where you are? (ambiguity)
ì You are definitely in a bathroom, but don’t know 1st or 2nd floor

ì Problem: Gaussians are not the right model of uncertainty

ì Instead
ì Represent our estimated position and uncertainty               

(our “belief”) using a constant set of “particles” 
ì Think of this as a “sampling” from a probability distribution
ì That is why it is called Monte Carlo Localization

I could be TWO PLACES at once!! 

I could be TWO PLACES at once!! 

Particle “density” = Probability
Initially particles everywhere

Observation of corridors narrows the 
possibilities (bimodal distribution)

More movement results in disambiguating 
the two cases (now more Gaussian-like)

What it looks Like
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Lets do an Example

2,0 3,0

4,-1

4,0

4,1

1,0

0,-1

0,1

0,0

My world consists of
hallways, corridor ends
And 4 unique offices

North

East

2 2

4,-1

3

4,1

2

0,-1

0,1

3

11

11

4,00,0

0,-1

0,1

0,0

0,0

0,0

0,0

0,-1

0,1

0,0

0,0

0,0

0,0

4,00,00,0 0,0

Occupancy Matrix Map

Topological Map

Lets do an Example

ì Sensor Model 
Pr(zt | xt)

ì Depends on where you are standing

And your error in feature sensing

ì Pr (hallway detection | (1,0)) = 0.8

ì Pr (end detection | (1,0)) = 0.2  (error!)
ì There is a small chance that you may think 

you are at the end instead of a hallway….

ì Motion Model
Pr (xt+1 | xt, action_t)

ì Extremely simple model

ì Move using a Compass (N,S,E,W)

ì Pr(stay) = 0.1 (fail to move); Pr(succeed) = 0.9

ì Pr (also depends on position)

ì E.g. if obstacle (like a wall) then Pr(stay) = 1

2,0 3,0

4,-1

4,0

4,1

1,0

0,-1

0,1

0,0

My world consists of

hallways, corridor ends

And 4 unique offices

North

East

**I am making lots of simplifications here 

that you wouldn’t do in a real system
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Lets do an Example

ì Basic Question: Where am I?
ì Instead of a Gaussian we will 

represent position by a fixed number 
of particles distributed over space

ì But basic ideas same as Kalman filter!

ì At the beginning of time 
ì I could be anywhere

ì With equal likelihood
ì N particles, then avg d/N  particles in 

each of the d locations.

Take  a Sensing Step

ì STEP1: Take a sensor reading and get “evidence”
ì Lets say the Sensor => in a hallway

ì STEP2: Weight each location’s particles by likelihood of that reading
ì Pr (xt | given that you sensed a hallway)

ì STEP3: Resample N particles but from the distribution of weights
ì Create a new particle distribution that represents your believed location

STEP1 STEP2 STEP3



3/27/19

14

Take  a Motion Step

ì Take a motion step
ì Lets say you move west 1 spot

ì STEP4: Use your motion model to predict what will happen 
ì E.g. If at (1,0) and take a step west, 90% chance you succeed (0,0)

But there’s a  10% chance you will not move and end up still in (1,0)
ì Roll the dice for each particle and move.

ì STEP5: Loop to STEP 1
ì Take a Sensor Reading and reduce your uncertainty!

STEP4STEP3

Take a “noisy” 
step west

Repeat

If Sensor =>
Corridor End 

More Sophisticated Version PseudoCode

From Russell and Norvig, 
Chapter 25

Key Differences:

1. N Positions particles are 
in continuous space

1. Sensing is a laser scan 
comparison P(z|z*)

2. You have a map (m) 
that lets you “estimate” 
what a laserscan should 
return (“Raycast”) and 
compared to what you 
actually sensed (“z”)
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What it looks Like

What it looks Like
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Today’s Localization Techniques

ì Dead-reckoning (motion)

ì Landmarks (sensing)

ì State Estimation (uncertainty motion & sensing)
ì Kalman Filters 
ì Particle Filters

ì Who are the world’s best localizers?

Some TINY but GREAT Localizers

Desert Ant!
Path integration 
and sun compass

Honey Bees!
Optical flow and 
sun compass 

Muller, Wehner, PNAS 1988
Argentine Ant!
Pheromone Trails 
(aka bread crumbs)


