

Agenda

7 Lecture: Robot Navigation -> Localization
7 Demo Time: Lab 4 (Kalman Filters)
7 Important: MUST DO LAB SAFETY TRAINING!
7 Upcoming:
$\boldsymbol{\pi}$ Have a Great Spring Break!
$\boldsymbol{\pi}$ Pset 4 will be released Friday lecture after spring break.
7 References:
$\boldsymbol{\pi}$ Kalman Filter Notes, from "Computational Principles of Mobile Robotics", Dudek and Jenkin, 2000; posted on piazza resources.
$\boldsymbol{\pi}$ Also "Introduction to Al Robotics", chapter 11, Robin Murphy, 2000 and "Introduction to Al", chapters 15 and 25, Russell and Norvig, 2009.

Today: Robots Navigating the World

Second Part of CS189: High-level reasoning

From finite state machines to complex representation and memory
7. Path Planning: How to I get to my Goal?

7 Localization: Where am I?
7 Mapping: Where have I been?
7 Exploration: Where haven't I been?

Localization

7. Simple Question: Where am I?

ㄱ Not a simple answer:
λ Do you have a map?
π Yes => a global position in the world
π No => position in reference to other objects? Or your own past?
π What can you sense?
π Can you sense and record your own self-movement?
π Can you sense external things like landmarks?
π How certain are you about what you sense?
7 Localization is a "collection of algorithms"

Today's Localization Techniques

7 Dead-reckoning (motion)
7 Keep track of where you are without a map, by recording the series of actions that you made, using internal proprioceptive sensors. (also called Odometry, Path Integration)

게 Landmarks (sensing)
$\boldsymbol{\lambda}$ Triangulate your position geometrically, by measuring distance to one or more known landmarks E.g. Visual beacons or features, Radio/Cell towers and signal strength, GPS!
7. State Estimation (uncertainty in motion \& sensing) Probabilistic Reasoning
$\boldsymbol{\pi}$ Kalman Filters (combine both motion and sensing)
入 Particle Filters (also known as Monte Carlo Localization)
7 Who are the world's best localizers?

Dead-Reckoning

λ FORWARD KINEMATICS repeated
7 Keep track of initial position and the series of movements/actions that you made.
7 Method: Take a "step", compute new position.
π Also called odometry or path integration.

π Our Motion Model
7. Position at time $t=\left(x_{t}, y_{t}, o_{t}\right)$

ㄱ Linear velocity $=\mathbf{v}_{\mathbf{t}}$; Angular velocity $=\mathbf{w}_{\mathrm{t}}$
7 Then for a small time step $d t$, we can compute the new position
$x_{t+d t}=x_{t}+v_{t} d t \cos o_{t}$
$y_{t+d t}=y_{t}+v_{t} d t \sin o_{t}$
$o_{t+d t}=o_{t}+w_{t} d t$

Example: INS

Inertial navigation systems (INS)

π Complex motion (momentum, external effects)

7 Include accelerometers and gyroscopes to provide better measurements of instantaneous velocity.

제 Expensive systems very good
7 satellites, submarines

7 But, low-cost IMUs
increasingly available

π How it works

त Opposite of dead-reckoning!
π Use measurements to external landmarks of known position
ㅈ Examples: visual landmarks, radio towers, GPS
π Example 1: 3 Landmarks + distance only (e.g. Radio towers)
π Landmark positions: $\left(\mathrm{x}_{\mathrm{L} 1}, \mathrm{y}_{\mathrm{L} 1}\right)\left(\mathrm{x}_{\mathrm{L} 2}, \mathrm{y}_{\mathrm{L} 2}\right)\left(\mathrm{x}_{\mathrm{L} 3}, \mathrm{y}_{\mathrm{L} 3}\right)$
π If you have three non-colinear landmarks,
then you lie at the intersection of three circles! [triangulation]
7 Three equations of the form:
square $\left(\mathrm{d}_{\mathrm{L} 1}\right)=\operatorname{square}\left(\mathrm{x}_{\mathrm{L} 1}-\mathrm{x}_{0}\right)+\operatorname{square}\left(\mathrm{y}_{\mathrm{L} 1}-\mathrm{y}_{0}\right)($ Landmark L1)
π Solve for ($\mathrm{x}_{0}, \mathrm{y}_{0}$)
Or if they don't intersect exactly (noise), minimize sum-of-squared-error
λ Example 2: Single Landmark but known orientation O and distance d
π E.g. Facing the office label MD235 (can't see it from inside the office)

处 $\cos O=\left(x_{1}-x_{0}\right) / d_{L} \quad \sin O=\left(y_{L}-y_{0}\right) / d_{L}$

Example: GPS

7 GPS Satellites are your "landmarks"
λ Continually transmits a message
$\boldsymbol{\lambda}$ Message includes both time of transmission, and satellite position

7 GPS Receiver
7 Compute distance by measuring signal
 transmission time (speed of light)
$\boldsymbol{\lambda}$ 3D: Lie on the intersection of 4 spheres!
7. What are some limitation of GPS?

Today's Localization Techniques

π Dead-reckoning (motion)
$\boldsymbol{\pi}$ Keep track of where you are without a map, by recording the series of actions that you made, using internal proprioceptive sensors. (also called Odometry, Path Integration)
π Landmarks (sensing)
$\boldsymbol{\pi}$ Triangulate your position geometrically, by measuring distance to one or more known landmarks E.g. Visual beacons or features, Radio/Cell towers and signal strength, GPS!
7. State Estimation (uncertainty in motion \& sensing) Probabilistic Reasoning
$\boldsymbol{\pi}$ Kalman Filters (combine both motion and sensing)
$\boldsymbol{\lambda}$ Particle Filters (also known as Monte Carlo Localization)
ㄱ Who are the world's best localizers?

ス Key Idea: Combine Motion and Sensing
ㄱ (Dead-reckoning + uncertainty) + (Landmarks + uncertainty)
7 Each has error, but the error can be complementary

7 Kalman Filters
त Take advantage of mathematics of Gaussians to model uncertainty
7 General method for state estimation (not just localization)
7 Applications: Car + GPS, Lawnmower + beacons, warehouse robots

7 Particle Filters (Monte Carlo Localization)
7 Use a discrete distribution of "Particles" to represent uncertainty (think of sampling or histograms)
त Useful when environment is complex and ambiguous
ㄱ Application: A robot wandering in a building with a map

Kalman Filters

7 How it works
λ Take a motion step: use dead-reckoning to get position (mean) but also keep track of uncertainty in movement
λ Take a sensing step: use landmarks to triangulate position, then combine with previous estimate based on relative confidence.

7 Technique and Limitations
入 Uses Gaussians (bell curves) to capture uncertainty

Kalman Filters

7 How it works
π Take a motion step: use dead-reckoning to get position (mean) but also keep track of uncertainty in movement
$\boldsymbol{\pi}$ Take a sensing step: use landmarks to triangulate position, then combine with previous estimate based on relative confidence.

7 Technique and Limitations
入 Uses Gaussians (bell curves) to capture uncertainty

1D Kalman Filter Example

7. "Belief" of my current state
$\pi \mathrm{x}_{\mathrm{t}-1}$ with variance $\sigma_{\mathrm{t}-1}$

7 "Model" of how I work
$\boldsymbol{\lambda}$ Control u_{t} and its variance r
$\boldsymbol{\pi}$ Measurement z_{t} and its variance q π We are assuming that we can model noise as a Gaussian, with a mean and variance (experimentally determined)

7 Step 1: Take a step, calculate new belief
$\boldsymbol{\lambda} \mathrm{ex}_{\mathrm{t}}=\mathrm{X}_{\mathrm{t}-1}+\mathrm{u}_{\mathrm{t}}$
$\boldsymbol{\lambda} \mathrm{e} \sigma_{\mathrm{t}}=\sigma_{\mathrm{t}-1}+\mathrm{r}$
$\boldsymbol{\pi}$ Note that my uncertainty has increased due to the noise in my control.

1D Kalman Filter Example

ㄱ Step 2: Take a measurement z_{t} Combine to create a calculate new belief
π Simplest idea? take the average $x_{t}=\left(e x_{t}+z_{t}\right) / 2$
7 Better Idea! New estimate is a weighted combination of our old estimate and measurement

(with variance q)

7 $x_{t}=a * e x_{t}+(1-a) z_{t}$
$7 \sigma_{t}=\left(1 / e \sigma_{t}+1 / q\right)^{-1}$
入 The Kalman Gain "a" is determined by our relative confidence in our belief about our old state and our confidence in the current measurement.
$\pi \mathrm{a}=\mathrm{q} /\left(\mathrm{q}+e \sigma_{\mathrm{t}}\right)$
Consider case where $q=0$
then we will go with our noise free landmark measurement

Consider case where e $\sigma_{t}=0$
then we will ignore our measurements and go with prev position

1D Kalman Filter Example

7 Final Form 1D example
$\boldsymbol{\lambda} \mathrm{ex}_{\mathrm{t}}=\mathrm{x}_{\mathrm{t}-1}+\mathrm{u}_{\mathrm{t}}$
$\boldsymbol{\lambda} e \sigma_{t}=\sigma_{t-1}+r$
$\boldsymbol{\pi} \mathrm{x}_{\mathrm{t}}=\sigma_{\mathrm{t}}\left(\mathrm{ex} / \mathrm{e} \sigma_{\mathrm{t}}+\mathrm{z}_{\mathrm{t}} / \mathrm{q}\right)$
入 $\sigma_{t}=\left(1 / e \sigma_{t}+1 / q\right)^{-1}$

Step 1: Motion
Adds uncertainty
Step 2: Measurement
Reduces uncertainty
And Repeat!

7 Caveats
π We assumed that ut and zt were in the same state space as xt (position), often not true.
入 Also still 1D.....

Kalman Filter

7 Final Form 1D example
$\begin{array}{ll}\boldsymbol{\lambda} & e x_{t}=x_{t-1}+u_{t} \\ \boldsymbol{\lambda} & e \sigma_{t}=\sigma_{t-1}+r \\ \boldsymbol{\lambda} & x_{t}=\sigma_{t}\left(e x_{t} / e \sigma_{t}+z_{t} / q\right) \\ \boldsymbol{\lambda} & \sigma_{t}=\left(1 / e \sigma_{t}+1 / q\right)^{-1}\end{array}$
7. Final Form 3D
$\boldsymbol{\lambda} \mathrm{ex}_{\mathrm{t}}=A \mathrm{x}_{\mathrm{t}-1}+B u_{\mathrm{t}}$
$\boldsymbol{\lambda} e \sigma_{t}=A \sigma_{t-1} A^{\top}+R$
$\boldsymbol{\pi} \mathrm{x}_{\mathrm{t}}=\sigma_{\mathrm{t}}\left(\mathrm{ex} / \mathrm{e} \sigma_{\mathrm{t}}+\mathrm{C}^{\top} \mathrm{Q}^{-1} \mathrm{z}_{\mathrm{t}}\right)$
$\boldsymbol{\lambda} \sigma_{\mathrm{t}}=\left(1 / e \sigma_{\mathrm{t}}+\mathrm{C}^{\top} \mathrm{Q}^{-1} \mathrm{C}\right)^{-1}$

Position $x=[x, y$, theta]
A and B and C are matrices that convert old position, control input, and observation into the correct state space (note, A is often identity matrix)
R is a Co-variance Matrix
Q is a Co-variance Matrix
σ is a Co-Variance Matrix
The uncertainty in [x, y, theta] is not all independent of each other.
(you supply R and Q)

Kalman Filter

Final Form 1D example

$$
\begin{array}{ll}
\boldsymbol{\lambda} & e x_{t}=x_{t-1}+u_{t} \\
\boldsymbol{\lambda} & e \sigma_{t}=\sigma_{t-1}+r \\
\boldsymbol{\lambda} & x_{t}=\sigma_{t}\left(e x_{t} / e \sigma_{t}+z_{t} / q\right) \\
\boldsymbol{\lambda} & \sigma_{t}=\left(1 / e \sigma_{t}+1 / q\right)^{-1}
\end{array}
$$

7 Final Form 3D
$\boldsymbol{\pi} e x_{t}=A x_{t-1}+B u_{t}$
入 $e \sigma_{t}=A \sigma_{t-1} A^{\top}+R$
ォ $\mathrm{x}_{\mathrm{t}}=\sigma_{\mathrm{t}}\left(\mathrm{ex} / \mathrm{e} \sigma_{\mathrm{t}^{+}}+\mathrm{C}^{\top} \mathrm{Q}^{-1} \mathrm{z}_{\mathrm{t}}\right)$
入 $\sigma_{t}=\left(1 / e \sigma_{t}+C^{\top} Q^{-1} C\right)^{-1}$

Extensions of the basic idea

7 Multiple sensors！（sensor fusion）
π Just repeat step 2 （sensing）multiple times
$\boldsymbol{\pi}$ This is especially useful if you have＂occasional＂sensors（e．g．landmarks）
7 When is a Kalman Filter good to use？
入 When control and sensor noise are well approximated by a Gaussian
π（e．g．GPS and car／robot controls are usually decently approximated this way）

ス When estimated state（x）can be represented by just a Gaussian．
π Classic bad case：car and two neighboring lanes；
＝expected location is best approximated by two Gaussians

7 Many Applications of Kalman Filters！

入 Object tracking in a video！（opposite of＂self＂localization）

I could be TWO PLACES at once!!
 I could be TWO PLACES at once!!
 Particle Filters

7. What if you are in a building with a map.

7 But you have no idea where you are? (ambiguity) ㄱ You are definitely in a bathroom, but don't know $1^{\text {st }}$ or $2^{\text {nd }}$ floor

7 Problem: Gaussians are not the right model of uncertainty

7 Instead
7 Represent our estimated position and uncertainty (our "belief") using a constant set of "particles" 7 Think of this as a "sampling" from a probability distribution π That is why it is called Monte Carlo Localization

Lets do an Example

Topological Map

Lets do an Example

7 Sensor Model
Pr(zt|xt)
7 Depends on where you are standing And your error in feature sensing
$\pi \operatorname{Pr}($ hallway detection $\mid(1,0))=0.8$
$\boldsymbol{\pi} \operatorname{Pr}($ end detection $\mid(1,0))=0.2$ (error!)
π There is a small chance that you may think you are at the end instead of a hallway....

7 Motion Model
$\operatorname{Pr}(x t+1 \mid x t$, action_t)
π Extremely simple model
入 Move using a Compass (N,S,E,W)
入 $\operatorname{Pr}($ stay $)=0.1$ (fail to move); $\operatorname{Pr}($ succeed $)=0.9$
$\pi \operatorname{Pr}$ (also depends on position)
π E.g. if obstacle (like a wall) then $\operatorname{Pr}($ stay $)=1$
My world consists of hallways, corridor ends And 4 unique offices

Lets do an Example

7 Basic Question: Where am I?
π Instead of a Gaussian we will represent position by a fixed number of particles distributed over space
$\boldsymbol{\lambda}$ But basic ideas same as Kalman filter!

7 At the beginning of time
$\boldsymbol{\lambda}$ I could be anywhere

7 With equal likelihood
7 N particles, then avg d / N particles in each of the d locations.

Take a Sensing Step

7 STEP1: Take a sensor reading and get "evidence"
π Lets say the Sensor => in a hallway
7 STEP2: Weight each location's particles by likelihood of that reading
$\boldsymbol{\pi} \operatorname{Pr}(\mathrm{xt} \mid$ given that you sensed a hallway)
7 STEP3: Resample N particles but from the distribution of weights
$\boldsymbol{\pi}$ Create a new particle distribution that represents your believed location

Take a Motion Step

7 Take a motion step
π Lets say you move west 1 spot
지 STEP4: Use your motion model to predict what will happen
λ E.g. If at $(1,0)$ and take a step west, 90% chance you succeed $(0,0)$ But there's a 10% chance you will not move and end up still in (1,0)
π Roll the dice for each particle and move.
I STEP5: Loop to STEP 1
入 Take a Sensor Reading and reduce your uncertainty!

More Sophisticated Version PseudoCode

function Monte-Carlo-Localization $\left(a, z, N, P\left(X^{\prime} \mid X, v, \omega\right), P\left(z \mid z^{*}\right), m\right)$ returns
a set of samples for the next time step
inputs: a, robot velocities v and a

z range scan $z_{1+\ldots}, z_{M}$

Key Differences:
$P\left(z \mid ₹^{*}\right)$, range sensor noise mode
$m, 2 \mathrm{D}$ map of the environment
persistent: S, a vector of samples of size N
local variables: W, a vector of weights of size N
S^{\prime}, a temporary vector of particles of size N
W^{\prime}, a vector of weights of size N
if S is empty then $\quad / *$ initialization phase */ for $i=1$ to N do
$S[i]$ - sample from $P\left(X_{0}\right)$
for $i=1$ to N do $\quad /$ update cycle ${ }^{-1}$
$S^{\prime}|i|$ - sample from $P\left(X^{\prime} \mid X=S[i \mid, v, \omega)\right.$
[$\mathrm{W}^{\prime}[i]-1$
for $j=1$ to M do
RayCast $\left(j, X=S^{\prime}|t|, m\right)$
$W^{\prime}[i] \leftarrow W^{\prime}[i] . P\left(z, j z^{*}\right)$
Weighted-Sample-With-Replacement $\left(N, S^{\prime}, W^{\prime}\right)$
return S

Figure 25.9 A Monte Carlo localization algorithm using a range-scan sensor model with independent noise.

1. N Positions particles are in continuous space
2. Sensing is a laser scan comparison $\mathrm{P}\left(\mathrm{z} \mid \mathrm{z}^{*}\right)$
3. You have a map (m) that lets you "estimate" what a laserscan should return ("Raycast") and compared to what you actually sensed ("z")

From Russell and Norvig, Chapter 25

What it looks Like

What it looks Like

Today's Localization Techniques

7 Dead-reckoning (motion)
7 Landmarks (sensing)
State Estimation (uncertainty motion \& sensing)
7 Kalman Filters
7 Particle Filters
7 Who are the world's best localizers?

