
3/27/19

1

ì
CS 189: Autonomous Robot Systems
Spring 2019

Agenda

ì Lecture: Robot Navigation -> MAPPING!

ì Demo Time:

ì Visit B127 and Talk about Pset 4 and Final project

ì Upcoming:

ì Pset 4a: Autonomous Mapper due next week (map B127, start ASAP!)
ì Lecture next week: Automation Ethics

ì Meet in Pierce 301 at 9am (after will go to B127 for Pset4a)
ì Videos to watch ahead of time (posted on Piazza)

ì References:

ì This lecture is partially based on “Introduction to AI Robotics”, chapter 11, Robin

Murphy, 2000. For SLAM, see online theory tutorial paper “SLAM: Part 1 The

Essential Algorithms”, by Durrant-Whyte et al, 2006 and online practical tutorial

paper “SLAM for Dummies” S. Riisgaard, and M. Blas. (2005)

3/27/19

2

Today: Robots Navigating the World

Scenarios
• Hospital Helper

(e.g. Diligent, Tugs)
• Office security or mail-

delivery (e.g. Cobal,
Savioke)

• Tour Guide robot in a
museum (Minerva)

• Autonomous Car with
GPS and Nav system

Biological analogies:
Humans, bees and ants,
migrating birds, herds

DILIGENT
(hospitals)

SAVIOKE
(hotels)

GOOGLE CAR

COBALT
(hotels)

Today: Robots Navigating the World

Second Part of CS189: High-level reasoning
From finite state machines to complex

representation and memory

ì Path Planning: How to I get to my Goal?

ì Localization: Where am I?

ì Mapping: Where have I been?

ì Exploration: Where haven’t I been?

3/27/19

3

Mapping and Exploration

ì Question:
You are roaming around in an unknown space, what can you learn about it?

ì Two parts of the problem:
ì Mapping: As you roam around the world, how do you build a memory of the

shape of the space you have moved through?
ì Exploration: Given that you don’t know the shape or size of the environment,

how do make sure you covered all of it?

ì Both have many uses:
ì Returning back to home/charger after some task.
ì Cleaning a new room efficiently; Systematic search for survivors
ì Mapping a collapsed mine or building.

ì Mapping and Exploration are also “collections of algorithms”
ì E.g. Many representations of a “map”; random walks are exploration
ì We will focus on “Occupancy Grid” algorithms

Today’s topics

ì Mapping and Exploration Algorithms
ì Occupancy Grids and Sensor Models
ì A First-cut Simple Mapping Algorithm

ì Three Improvements
ì Exploration strategies

ì Frontier based exploration (guaranteed coverage)
ì Managing sensor uncertainty

ì Probabilistic algorithms for Occupancy Grid Mapping (Bayes Rule)
ì Managing motion uncertainty

ì Briefly: Simultaneous Localization and Mapping (SLAM)

ì Pset 4: Your Autonomous OG Mapper!*
* uses material from all 3 navigation lectures

3/27/19

4

What is an Occupancy Grid?

ì A way of representing a map as a gridded world where
each cell is either “occupied” or “empty” or “unknown”.

Grid generated by a Robot => boundary shape

Your World

Examples

3/27/19

5

What is a Sensor Model?

ì Step1: Constructing a Sensor Model
ì A sensor measures raw values in an environment
ì You have to map that into a Grid Cell Value.
ì Robots can have very different sensors and configurations
ì Examples:

ì Think about LIDAR/Depth Camera
ì Vs. a 360 degree vision/ranging system

Example: Depth Sensor Model
R = maximum range, B = maximum angle
Let say the sensor at point p returns distance = “r”

Region 1 (dist < r, grid cell probably empty)
Region 2 (dist = r, grid cell probably obstacle)
Region 3 (dist > r, grid cell unknown/obscured)

Constructing a Sensor Model

Depth = r

3/27/19

6

Example: Depth Sensor Model
R = maximum range, B = maximum angle
Let say the sensor at point p returns distance = “r”

Region 1 (dist < r, grid cell probably empty)
Region 2 (dist = r, grid cell probably obstacle)
Region 3 (dist > r, grid cell unknown/obscured)

Constructing a Sensor Model

Depth = r

Simplest Sensor Model
Where I stand is Empty (white)

Example: Depth Sensor Model
R = maximum range, B = maximum angle
Let say the sensor at point p returns distance = “r”

Region 1 (dist < r, grid cell probably empty)
Region 2 (dist = r, grid cell probably obstacle)
Region 3 (dist > r, grid cell unknown/obscured)

Constructing a Sensor Model

Depth = r

Simplest Sensor Model
Where I stand is Empty (white)

A Better Model
Set Region 1 cells as Empty (white)
Set Region 2 cells as Occupied (black).
Pick a max range/angle where data is reliable
Rest is still Unknown (gray)

3/27/19

7

A Simple OG Mapping Algorithm

1. Initialize a Grid
ì Set all locations as “unknown”, pick a start location and orientation

2. Update the Grid
ì Mark your current grid position as “empty”
ì Using your better sensor model,

Mark all visible grid locations as “empty” or “occupied”

3. Pick a Next Move
ì Look at neighboring grid positions in your map
ì Pick a neighboring grid location that is empty (randomly)
ì Move to it and update your current position in the Grid

4. Loop forever
Keep moving and updating the grid (unless you are “done”)

R

3/27/19

8

R

R

3/27/19

9

R

A Simple Mapping Algorithm

1. Initialize Grid

2. Update the Grid
ì Mark your current position as “empty”
ì Mark sensed nearby grid locations

As “empty” or “occupied”

3. Pick a Next Move
ì Look at neighboring grid positions
ì Choose a random empty direction
ì Move and update your position in the Grid

4. Loop forever

Improvement 1:
Exploration

Strategy

Better to systematically
and (hopefully)

efficiently cover the
space.

Also would be good to
know when you are

done.

3/27/19

10

Exploration

ì Basic Concept in Math: Random Walks in bounded 2D
ì With Probability=1 you will eventually visit every spot

ì Basic Concept in CS: Systematic Graph Coverage
ì You are given a “graph” with V nodes

Write an algorithm that visits all of the nodes
Breath-First Search and Depth-First Search; Time Complexity: O(V+E)

ì Basic Concept in Robotics: Traversing a GRID Graph is different
ì DFS works, but will still make a robot retrace steps
ì Better choice: Frontier Based Exploration

Exploration in Grid Worlds

ì Frontier Based Exploration
ì A common technique for building maps
ì Key Idea:

ì Identify the “frontiers” between known and unknown
Frontier cell = a unknown cell with at least one empty cell nbr

ì Pick a frontier cell (e.g. the closest)
ì Plan a path to go explore it.

ì Done Condition:
ì No more frontier nodes left => your map is Complete!
If finite world, then any algorithm that systematically explores frontier
nodes is guaranteed to cover the whole world.

3/27/19

11

R

A Frontier Node is a
Gray node (Unknown)
next to a
White node (Empty)

R

A Frontier Node is a
Gray node (Unknown)
next to a
White node (Empty)

3/27/19

12

A Less Simple Mapping Algorithm

1. Initialize Grid

2. Update the Grid
ì Mark your current position as “empty”
ì Mark sensed nearby grid locations

As “empty” or “occupied”

3. Pick a Next Move
ì Identify frontier cells
ì Pick one (e.g. maybe the closest)
ì Plan a path* to the nbr empty cell.
ì Go to that location using this path

(and keep track of your position as you move)

4. Loop until no frontier nodes are left

* We covered path planning two lectures ago

Pset 4: The Autonomous OG Mapper

Digression ---- Mapping A Fake Office! (B127)

ì Part 4a
ì Setup an Occupancy Grid Map (dimensions given)
ì Use Lab4 EKF package to keep track of where you are (aka localization)
ì Use a very simple wandering strategy (aka exploration)
ì Use a very simple sensor model to mark OGMap
ì Display your OGMap (display code provided)

ì Part 4b
ì Modify above to use Better Sensor Model
ì Modify above to use Frontier Exploration

Part a is due
next Friday!
Start early!

3/27/19

13

Today’s topics

ì Mapping and Exploration Algorithms
ì Occupancy Grids and Sensor Models
ì A First-cut Simple Mapping Algorithm

ì Three Improvements
ì Exploration strategies

ì Frontier based exploration (guaranteed coverage)
ì Managing sensor uncertainty

ì Probabilistic algorithms for Occupancy Grid Mapping (Bayes Rule)
ì Managing motion uncertainty

ì Briefly: Simultaneous Localization and Mapping (SLAM)

ì Pset 4: Your Autonomous OG Mapper!*
* uses material from all 3 navigation lectures

A Less Simple Mapping Algorithm

1. Initialize Grid

2. Update the Grid
ì Mark your current position as “empty”
ì Mark sensed nearby grid locations

As “empty” or “occupied”

3. Pick a Next Move
ì Identify frontier cells
ì Pick one (e.g. maybe the closest)
ì Plan a path to the nbring empty cell.
ì Go to that location using this path

(and keep track of your position as you move)

4. Loop until no frontier nodes are left

Improvement 2:
Sensors aren’t perfect

Take advantage of the
fact that you are often

retracing steps

And taking
measurements

multiple times of the
same location

3/27/19

14

Example: Depth Sensor Model
R = maximum range, B = maximum angle

Let say the sensor at point p returns distance = “r”

Region 1 (dist < r, grid cell probably empty)

Region 2 (dist = r, grid cell probably obstacle)
Region 3 (dist > r, grid cell unknown/obscured)

A Probabilistic Sensor Model

Depth = r

A More Complex Sensor Model: Probabilistic

For a cell at distance r and angle a

P(“correctness”) = [(R-r/R) + (B-a/B)]/2

i.e. Uncertainty in my assessment grows
with distance and angle from the centerline

Intuition: Build confidence!

The more times I independently visit/sense a grid cell,

the more certain I am about my conclusion.

Bayesian Mapping
For every grid location (i,j), store a probability value

P(Occupied) = Probability this grid location is Occupied 0 <= P(Occupied) <=1

P(Empty) = 1 - P(Occupied)

A More Complex Sensor Model
P(s|Occupied)
Probability that you sense value s
given that a grid location is occupied.
Your sensor error model

Mapping
P(Occupied|s)
Probability that a grid location is occupied
given that you sensed value s
We can compute this!

Bayes Rule
P(Occupied|s) = P(s|Occupied) P(Occupied)

P(s|Occupied)P(Occupied) + P(s|Empty) P(Empty)

Bayes Update Rule
P(Occupied|sn) = P(sn|Occupied) P(Occupied|sn-1)

P(sn|Occupied)P(Occupied|sn-1) + P(sn|Empty) P(Empty|sn-1)

3/27/19

15

Bayesian Mapping

ì In the beginning of time,
ì P(Occupied)

= P(Empty) = 0.5

ì For grid(i,j), lets say s=6 (depth sensor value)
ì P(s=6|Occupied) = 0.62

P(s=6|Empty)=0.38
P(Occupied)=P(Empty)=0.5

ì P(Occupied|s=6) = (0.62*0.5) / (0.62*0.5) + (0.38*0.5) = 0.62
Which is what you’d expect because we have no better knowledge

ì Later if we observe location grid (i,j) again, we have prior knowledge
ì We now think P(Occupied)=0.62 P(empty)=0.38
ì New sensor reading P(s=2|Occupied) = .80
ì P(Occupied|s=2) = (0.8*0.62) / (0.8*0.62)+(0.2*0.38) = 0. 87

(my new confidence is higher, that this grid cell is occupied)

Bayes Update Rule:
P(Occupied|sn)

P(sn|Occupied) P(Occupied|sn-1)
P(sn|Occupied) P(Occupied|sn-1) + P(sn|Empty) P(Empty|sn-1)

Probabilistic Mapping

ì Overarching idea
ì Store probabilities of occupancy rather than binary values.

ì But you periodically must turn probability into Occupied/Empty!
ì Otherwise, how do you move?

ì Use some threshold to decide
ì P(occupied) > 0.7 and P(empty) < 0.3, rest is “unknown”.

ì Then do frontier exploration and path planning on your deterministic
map.

3/27/19

16

A Probabilistic OG Mapping Algorithm

1. Initialize Grid to 0.5

2. Update the Grid

ì Mark your current position as high probability “empty”

ì Use your sensor model and Bayes rule to update grid

3. Pick a Next Move

ì Threshold your map into empty, occupied, unknown

ì Identify frontier nodes, and pick one

ì Plan a path to the clear node nearest frontier

ì Go to that location and update position

4. Loop until no frontier nodes are left

Improvement 3:

Motion isn’t perfect

either!

Maybe you are not

where you think you

are!

And you are just

messing up your grid

over time due to drift

Probabilistic Localization and Mapping

ì Probablistic Localization
ì P(xt | Z0-t U0-t map)
ì Where am I? Given that I took the

noisy actions U and noisy observations Z of
things in my perfect map.

ì Probablistic Mapping
ì P(map I Z0-t, U0-t)
ì What is my map like? Given that I made

noisy observations Z as I walked along my
perfect path dictated by U

1 lecture ago:
Kalman Filters
Particle Filters

Kalman Filter
(observed known landmarks)

ext

eσt

zt
(with variance q)

Particle Filter
(match with known map)

3/27/19

17

Probabilistic Localization and Mapping

ì Probablistic Localization
ì P(xt | Z0-t U0-t map)
ì Where am I? Given that I took the

noisy actions U and noisy observations Z of
things in my perfect map.

ì Probablistic Mapping
ì P(map I Z0-t, U0-t)
ì What is my map like? Given that I made

noisy observations Z as I walked along my
perfect path dictated by U.

1 lecture ago:
Kalman Filters
Particle Filters

Today:
Bayesian
Occupancy Grids

Probabilistic Localization and Mapping

ì Probablistic Localization
ì P(xt | Z0-t U0-t map)
ì Where am I? Given that I took the

noisy actions U and noisy observations Z of
things in my perfect map.

ì Probablistic Mapping
ì P(map I Z0-t, U0-t)
ì What is my map like? Given that I made

noisy observations Z as I walked along my
perfect path dictated by U.

My autonomous mini-rover
keeps track of its position
using its wheel encoders,
IMU, and occasionally gets
GPS signals

Its goal is to construct a
map of the disaster area
obstructions, so that other
vehicles can find safe paths

3/27/19

18

Probabilistic Localization and Mapping

ì You took a time series of Actions U and Observations Z
ì Probablistic Localization: P(xt | Z0-t U0-t map)
ì Probablistic Mapping: P(map I Z0-t U0-t)

ì Probablistic SLAM (“Simultaneous”)
ì P(xt, map| Z0-t U0-t)
ì Where am I and what is my map?
ì Given noisy actions U and made noisy observations Z
ì Distribution of a huge space! (all possible positions and maps)

ì Many Methods
ì EKF-SLAM (Kalman Filter) and Fast-SLAM (Particle Filters/OG)

Extended Kalman Filter SLAM

ì In original EKF,

ì State == robot position, represented as a Gaussian (xt σt)

ì In EKF-SLAM,

ì State = [robot and all landmark] positions as Gaussians

ì Position Xt = {xt, m1, m2, m3 … mn} (number of landmarks grows!)

ì Co-variance σt = (n+1)x(n+1) matrix (uncertainty is correlated!)

ì Supply a motion model and observation model as before (Gaussian)

ì Interesting factors

ì Number of landmarks (n) grows with time (i.e. you build a map).

ì But good news: Landmark correlations can help you converge faster and
better.

3/27/19

19

Extended Kalman Filter SLAM
ì Lets say EKF-SLAM State at time t is

ì Position X = {x, m1, m2, m3, m4} (robot + landmarks-so-far)

ì Co-variance σ = 5x5 matrix (uncertainty and correlations)

ì Basic Procedure: Three Steps (Repeat)

1. Motion Step: Update P(xt, map | Z0-(t-1) U0-t) based on action Ut

2. Observation Step: Update P(xt, map | Z 0-t U0-t) based on Zt

Data Association: Determine which landmarks are re-observed* (lets say m2 m3)

Your motion state estimate = xt, m2’ m3’ (where you expect to see these landmarks)

Your observation estimate = xt’’ m2’’ m3’’ (where you see landmarks & think you are)

Kalman Gain = Compute relative confidence and combine estimates
NOTE: The whole map gets updated! (m1-m4), thanks to co-variance matrix

3. Add Landmarks: Add New landmarks to the State (say m5)

ì Important – implementing Data Association and landmark choice!

More About SLAM

ì Data Association and Loop Closure
ì We don’t really have perfect landmarks

ì Instead we have laserscan “features” (e.g. major corners)
ì Tradeoff: Uniqueness and frequency
ì Local matching is easier than long term matching
ì Can do loop closure with human assistance.

ì Practical Implementations
ì These algorithms are theoretically well-grounded
ì But practical implementation still requires significant work

(e.g. constructing sensor/motion models, choosing landmarks.)

ì References (online)
ì SLAM Part 1: The Essential Algorithms, Durrant et al, 2006 (theory)
ì SLAM for Dummies, Riisgaard et al 2005 (practice)
ì Gmapping in ROS! (PRR chapter 9 = offline map making)

3/27/19

20

Conclude: Robots Navigating the World

Second Part of CS189: High-level reasoning

From finite state machines to complex
representation and memory

ì PathPlanning: How to I get there?

ì Localization: Where am I?

ì Mapping: Where have I been?

ì Exploration: Where haven’t I been?

Brief Preview of Rest of Term

Pset4
Mapping (2 phases)
Final Project
Robot Candy Store (“Warehouse”)
[Lecture in Pierce 301; rest in B127]

Upcoming “Applications“ lectures
Robot Ethics about Automation
Humanoid Robots & Darpa Challenge
Human Robot Interaction
Multi-Robot systems

