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1 Introduction

Behavioral economics has documented a wide variety of deviations from perfect rationality

among consumers and workers. For example, in the product market, prices are more

frequently observed to end in 99 cents than can be explained by chance, and a literature

has emerged to document and explain this (e.g Levy et al. 2011), generally relying on

well-documented heuristics such as left-digit bias. However, it is typically assumed that

deviations from firm optimization are unlikely to survive, as competition among firms

drives firms that fail to maximize profits out of business. Therefore, explanations for

pricing and wage anomalies typically rely on human behavioral biases. In this paper, we

show that when it comes to an important anomaly in wage setting–bunching at round

numbers—it is driven by behavioral biases of firms and not workers. We also show that

round number bunching survives because of monopsony power in the labor market, which

reduces the cost of mispricing. A moderate amount of monopsony power is sufficient to

explain the substantial bunching we document in this paper.

Like in product markets, there is bunching in the hourly wage distribution, though

at “round” numbers. For example, in the Current Population Survey (CPS) data for 2016,

a wage of $10.00 is about 50 times more likely to be observed than either $9.90 or $10.10.

Figure 1 shows that the hourly wage distribution from the CPS outgoing rotation group

(ORG) data between 2010 and 2016 has a visually striking modal spike at $10.00 (top panel).

The middle panel of the figure shows that the share of wages ending in round numbers

is remarkably stable over the past 35 years, between 30-40% of observations. The bottom

panel of the figure also shows that since 2002, the modal wage has been exactly $10.00 in

at least 30 states, reaching a peak of 48 in 2008. This is remarkable given the considerable

variation in the level and dispersion of wages across these states. It seems highly unlikely

that such bunching at $10.00 is present in the distribution of underlying marginal products

of workers.

We use data from both administrative sources and an online labor market to confirm
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that there is true bunching of wages at round numbers, and it is not simply an artifact of

survey reporting. We begin by providing the first (to our knowledge) credible evidence on

the extent to which wages are bunched at round numbers in high quality, representative

data on hourly wages from Unemployment Insurance records from the two largest U.S.

states (Minnesota and Washington) that collect information on hours. We compare the size

of the bunches in the administrative data to those in the CPS, and also use a unique CPS

supplement which matches respondents’ wage information with those from the employers

to correct for reporting error in the CPS. We further assess the extent of bunching in online

labor markets, using a near universe of posted rewards on the online platform Amazon

Mechanical Turk (MTurk).

To explain bunching, we provide an imperfectly competitive model with both workers’

left-digit bias, and imperfect firm optimization in the form of employer preferences for

round wages.1 Left-digit bias is the widely documented phenomena of agents ignoring

lower-order digits in price.We show that, in general, bunching at round-numbered wages

is a function of worker left-digit bias, the percent of profits employers are willing to forgo

to pay a round number wage, and the elasticity of labor supply facing the firm.

The two explanations—worker versus firm biases—have very different predictions

about the the origin of the missing mass corresponding to bunching at the round number.

Worker left-digit bias implies an asymmetry in the distribution of missing mass as em-

ployers who would otherwise pay a wage slightly below a salient round number have a

stronger incentive to bunch than those above. In contrast, employer optimization frictions

imply that jobs from both above and below the round number will offer the round number

wage, implying symmetry in the missing mass. Our estimates using administrative data do

not indicate an asymmetry in the missing mass distribution, suggesting that left-digit bias

1While other configurations are logically possible, they do not easily explain why wages are bunched at
round numbers. For example, if employers had a left-digit bias, any heaping would likely occur at $9.99 and
not at $10.00, which is not true in reality. Similarly, if workers tended to round off wages to the nearest dollar,
this would not encourage employers to set pay exactly at $10.00. In contrast, both workers’ left-digit bias
and employers’ tendency to round off wages provide possible explanations for a bunching at $10.00/hour.
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is less important than employer mis-optimization as an explanation for bunching at round

numbers. Without left-digit bias, any given quantity of bunching can be explained by a

combination of how much profits fall as wages deviate from the firm’s optimum—which

is given by the extent of labor market competition—and how much profit employers are

willing to give up to pay a round number.2 We estimate the former by bounding the latter.

We conclude that if employers are assumed to not give up more than, say, 1% in profits

by picking a round number wage, the implied competition in the labor market is quite

low, with firm-specific labor supply elasticities of around 1; even allowing a 10% loss in

profits, the implied labor supply elasticities are around 5. We show these results are robust

to allowing very general forms of heterogeneity in both labor supply elasticities facing

firms as well as heterogeneity in the extent of firm mis-optimization. We also show that

the findings are very similar when we use a “difference in bunching” approach which

exploits the fact that the nominal $10 mode is located in very different parts of the real

wage distribution in different years.

As an added validation, we design and implement an experiment (N=5,017) on an

online platform (MTurk). We randomly vary rewards above and below 10 cents for the

same task to estimate the labor supply function facing an online employer. Like offline labor

markets, the task reward distribution on MTurk exhibits considerable bunching. However,

our experimentally estimated labor supply function shows no evidence of a discontinuity

as would be predicted by worker left-digit bias. The experimental evidence further

suggests that employer-side optimization frictions are the most plausible explanation for

bunching.In the MTurk data we also obtain a separate experimental estimate of the market

power of employers, and we use this together with the missing mass estimate to compute

the size of optimization frictions. Calibrating our model with the experimental evidence,

we further find that employers on Mechanical Turk seem to exhibit only a small degree of

2As in Chetty (2012), we deliberately abstract from the details of the employer optimization frictions,
which may reflect administrative costs, inattention, limits on manager cognition, or norms that constrain
wage setting behavior.
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optimization friction, less than 1% of profits worth.

In our account of wage-bunching, it is also important to assume that firms have some

labor market power. In this we follow work in behavioral industrial organization that

explores how firms choose prices when facing behavioral consumers.3 A recent literature

has argued that, far from requiring explicit collusion (as in professional sports) or restrictive

non-compete contracts (Starr, Bishara and Prescott 2016, Krueger and Ashenfelter 2017) or

being confined to particular institutional environments (e.g. Naidu 2010, Naidu, Nyarko

and Wang 2016), a degree of monopsony is in fact pervasive in modern labor markets

(Manning 2011). 4 We show that moderate amounts of monopsony in the labor market

can provide a parsimonious explanation of anomalies in the wage distribution, such as

patterns of wage-bunching at arbitrary numbers.5

Our paper is also related to a small but growing literature on behavioral firms (rather

than consumers or workers), which documents a number of ways firms fail to maximize

profits (DellaVigna and Gentzkow 2017, Goldfarb and Xiao 2011, Hortacsu and Puller

2008, Bloom and Van Reenen 2007, Cho and Rust 2010). A large literature has discussed

cognitive biases in processing price information, but little of this has discussed applications

to wage determination. Behavioral labor economics has extensively documented other

deviations from the standard model (e.g. time-inconsistency and fairness, see Babcock et al.

(2012) for an overview), so it is not the case that workers are simply sophisticated agents

with respect to the wage. Behavioral phenomena have been replicated even in online spot

labor markets (Chen and Horton (2016) , Della Vigna and Pope (2016)).

3See Heidhues and Kőszegi (2018) for a survey and Gabaix and Laibson 2006 for an early example.
Theoretical models to explain bunching in prices also assume firms have some market power: e.g., Basu
(1997) has a single monopolist supplying each good, Basu (2006) has oligopolistic competition, and Heidhues
and Kőszegi (2008) use a Salop differentiated products model.

4See Naidu et al. (2018) for a more recent survey.
5Hall and Krueger (2012) show that wage posting is much more frequent in low wage labor markets than

bargaining. Their data shows that more than 75% of jobs paying an hourly wage of around $10 were ones
where employers made take-it-or-leave-it offers without any scope for bargaining. We also find that the
bunching at the $10/hour wage in the Hall and Krueger data is almost entirely driven by jobs with such
take-it-or-leave-it offers. Along with our evidence from MTurk, where there is no scope for bargaining, this
makes it unlikely that employers offer round number wages as a signal for bargaining.
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The plan of the paper is as follows. In section 2, we briefly review the literature on

left-digit bias, bunching, and wage-setting power in the labor market. In section 2, we

provide evidence on bunching at round numbers using administrative data as well as data

from the CPS corrected for measurement error, and benchmark these against the raw CPS

results. We recover the source of the bunched observations by comparing the observed

distribution to an estimated smooth latent wage distribution. In section 3, we develop

a model of bunching that nests worker left-digit bias and firm optimization frictions as

special cases. Section 4 recovers the degree of mis-optimization and monopsony from

the bunching estimates under a variety of assumptions about the degree of heterogeneity

in both, and recovers labor supply elasticities consistent with alternative degrees of opti-

mization frictions. Section 5 reports findings from the online experiment, combining them

with bunching estimates from the observed online labor market to estimate the extent of

optimization friction for employers in the online platform. Section 6 concludes.

2 Bunching of wages at round numbers

There is little existing evidence on bunching of wages. One possible reason is that hourly

wage data in the Current Population Survey comes from self-reported wage data, where it

is impossible to distinguish the rounding of wages by respondents from true bunching of

wages at round numbers. Documenting the existence of wage-bunching requires the use

of other higher-quality data.

2.1 Administrative hourly wage data from select states

Earnings data from administrative sources such as the Social Security Administration

or Unemployment Insurance (UI) payroll tax records is high quality, but most do not

contain information about hours. However, 4 states (Minnesota, Washington, Oregon, and

Rhode Island) have UI systems that collect detailed information on hours, allowing us
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to estimate hourly wages, and we have obtained data from the largest two (Minnesota

and Washington). We have micro-aggregated hourly wage data from Unemployment

Insurance payroll records for Minnesota and Washington between 2003q1 and 2007q4. The

UI payroll records cover over 95% of all wage and salary civilian employment. Hourly

wages are constructed by dividing quarterly earnings by total hours worked in the total

number of hours worked in the quarter. The micro-aggregated data are state-wide counts

of employment (and hours) by nominal $0.05 bins between $0.05 and $35.00, along with a

count of employment (and hours) above $35.00. The counts exclude NAICS 6241 and 814,

home-health and household sectors, which were identified by the state data administrators

as having substantial reporting errors.

Figure 2 shows the distribution of hourly wages (we report the distributions separately

in the Appendix). The histogram reports normalized counts in $0.10 (nominal) wage bins,

averaged over 2003q1 to 2007q4. The counts in each bin are normalized by dividing by total

employment. The wages are clearly bunched at round numbers, with the modal wage at

the $10.00 bin representing more than 0.015 of overall employment. This suggests that

observed wage bunching is not solely an artifact of measurement error, and is a feature

of the “true” wage distribution. Further, the histogram reveals spikes at the MN and WA

minimum wages in this period, suggesting that the hourly wage measure is accurate.

In Appendix Online Appendix B we show very similar degree of bunching in a

measurement-error corrected CPS, using the 1977 CPS Supplement that recorded wages

from firms as well as workers. While the degree of bunching in the raw CPS falls with

the measurement error correction, it remains significant, and indeed comparable to the

administrative data.

7



2.2 Task rewards in an online market: Amazon Mechanical Turk

Amazon MTurk is an online task market, where “requesters” (employers) post small online

Human Intelligence Tasks (HITs) to be completed by “Turkers” (workers).6 Psychologists,

political scientists, and economists have used MTurk to implement surveys and survey

experiments (e.g. Kuziemko et al. (2015)). Labor economists have used MTurk and other

online labor markets to test theories of labor markets, and have managed to reproduce

many behavioral properties in lab experiments on MTurk (Shaw et al. 2011).

We obtained the universe of MTurk requesters from Panos Ipeirotis at NYU. We then

used the Application Programming Interface developed by Ipeirotis to download the near

universe of HITs from MTurk from May 2014 to February 2016, resulting in a sample of

over 350,000 HIT batches. We have data on reward, time allotted, description, requester

ID, first time seen and last time seen (which we use to estimate duration of the HIT request

before it is taken by a worker). The data are described more fully in Appendix A.

Figure 3 shows that there is considerable bunching at round numbers in the MTurk

reward distribution. The modal wage is 30 cents, with the next modes at 5 cents, 50 cents,

10 cents, 40 cents, and at $1.00. This is remarkable, as this is a spot labor market that has

almost no regulations, suggesting the analogous bunching in offline labor markets is not

driven by unobserved institutional constraints, including long-term implicit or explicit

contracts.

2.3 Estimating the origin of the missing mass

The excess mass in the wage distribution at a bunch that has been documented in the

previous sections must come from somewhere in the latent wage distribution that would

result from the “nominal model” without any bunching (in the terminology of Chetty

6The sub header of MTurk is “Artificial Artificial Intelligence", and it owes its name to a 19th century
“automated" chess playing machine that actually contained a “Turk” person in it.
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(2012)). .7 This section describes how we estimate the origin of this “missing mass”. To do

so, we follow the now standard approach in the bunching literature of fitting a flexible

polynomial to the observed distribution, excluding a range around the threshold, and

using the fitted values to form the counterfactual at the threshold (see Kleven 2016 for a

discussion).

We focus on the bunching at the most round number ($10.00 in the wage data, $1.00

in the MTurk rewards data). We ignore the secondary bunches; this will attenuate our

estimate of the extent of bunching, as we will ignore the attraction that other round

numbers exert on the distribution.

We use bin-level counts of wages cw in, say, $0.10 bins, and define pw = cw
∑∞

j=0 cj
as the

normalized count or probability mass for each bin. We then estimate:

pw =
w0+∆w

∑
j=w0−∆w

β j1w=j +
K

∑
i=0

αiwi + εw (1)

In this expression j sums over 10 cent wage bins (we use 1 cent bins in the MTurk

data), and the ∑K
i=0 αiwi terms are a Kthorder polynomial, while β j terms are coefficients

on dummies for bins in the excluded range around w0, between wL = w0 − ∆w and

wH = w0 + ∆w. βw0 is the excess bunching (EB) at w0. In addition, ∑w0−10
j=w0−∆w β j is the

missing mass strictly below w0 (MMB), while ∑w0+∆w
j=w0+10 β j is the missing mass strictly

above w0 (MMA).

Since ∆w is unknown, we use an iterative procedure similar to Kleven and Waseem

7Following the literature, our procedure assumes that the missing mass is originating entirely from
the surrounding basin. In principle, it is possible that the missing mass is originating from latent non-
employment—i.e., jobs that would not exist under the nominal model in the absence of bunching. However,
the extent to which some of the excess jobs at $10 is coming from latent non-employment, one would need to
assume either that (1) these jobs have latent productivity exactly at $10.00 so that employers are indifferent
between entering and not entering, or (2) they have productivity greater than $10 but have a fixed cost of
not paying exactly $10 that is independent of the size of the profits from paying different wages under the
nominal model. Both of these assumptions strike us as implausible. As an empirical matter, if some of the
excess mass at $10 are originating from latent non-employment, the estimated missing mass around $10
would be smaller in magnitude than the excess mass at $10. However, our estimated missing mass from
the surrounding basin is, indeed, able to account for the size of the excess mass—which suggests that latent
non-employment is unlikely to be an important contributor to the excess mass in our case.
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(2013). Starting with ∆w = 10, we estimate equation 1 and calculate the excess bunching EB

and compare it with the missing mass MM = MMA + MMB. If the missing mass is smaller

in magnitude than the excess mass, we increase ∆w and re-estimate equation 1. We do

this until we find a ∆w such that the excess and missing masses are equalized. Since ∆w is

itself estimated, we estimate its standard error using a bootstrapping procedure suggested

by Chetty (2012) and Kleven (2016). In particular, we resample (with replacement) the

errors ε̂w from equation 1 and add these back to the fitted p̂w to form a new distribution

p̃w, and estimate regression (1) using this new outcome. We repeat this 500 times to derive

the standard error for ∆w. The estimate of ∆w and its standard error will be useful later

for the estimation of other parameters of interest.

In Figure 4 we show the estimates for the administrative data from MN and WA, using

polynomial order K = 6. For visual ease, we plot the kernel-smoothed β̂ j for the missing

mass. Even leaving out the prominent spike at $10.00, the wage distribution is not smooth,

and has relatively more mass at multiples of 5, 10 and 25 cents. For this reason, it is easier

to detect the shape of the missing mass by looking at the kernel-smoothed β̂ j. Moreover,

we show the excess and missing mass relative to the counterfactual p̂C
w = ∑6

i=0 αiwi. There

is clear bunching at $10.00 in the administrative data, consistent with evidence from the

histogram above. We find that the excess bunching can be accounted for by missing

mass spanning ∆w = $0.80; we can also divide ∆w by w0 and normalize the width as

ω = wH−w0
w0

= 0.08. Visually, the missing mass is coming from both below and above $10.00,

which is relevant when considering alternative explanations.

These estimates are also reported in Table 1, column 1. The bunch at $10.00 is statistically

significant, with a coefficient of 0.010 and standard error of 0.002. In addition, the size of

the missing mass from above and below w0 are quantitatively very close, at -0.006 and

-0.007 respectively; the t-statistic for the null hypothesis that they are equal is 0.030. This

provides strong evidence against worker left-digit bias, which would have implied an

asymmetry in the missing masses. The width of the missing mass interval is ω = 0.08,
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with a standard error of 0.023. In other words, employers who are bunching appear to be

paying as much as 8% above or below the wage that maximizes profits under the nominal

model.

In column 2, we use the CPS data limited to MN and WA only. We find a substantially

larger estimate for the excess mass, around 0.032. In column 3, we report estimates using

the re-weighted CPS counts for MN and WA adjusted for rounding due to reporting

error using the 1977 supplement (CPS-MEC). The CPS estimate of bunching adjusted for

measurement error is much closer to the administrative data, with an estimated magnitude

of 0.016; while it is still somewhat larger, we note that the estimate from the administrative

data is within the 95 percent confidence interval of the CPS-MEC estimate. In column 4,

we use the raw CPS data for all states and find the excess mass estimate of 0.041. Therefore,

while some of the gap between the all-state CPS and the MN-WA administrative data

estimates is due to the differences in samples (MN and WA versus all states), most of

it is due to rounding error of respondents in the CPS. The use of the CPS supplement

substantially reduces the discrepancy, which is re-assuring. At the same time, we note

that the estimates for ω using the CPS (0.07) are remarkably close to those using the

administrative data (0.08). The graphical analogue of column 2 is in Figure 5.

Since the counterfactual involves fitting a smooth distribution using a polynomial in

the estimation range, in Table 2 we assess the robustness of our estimates to alternative

polynomial orders between 2 and 6. Both the size of the bunch, and the width of the

interval with missing mass, ω, are highly robust to the choice of polynomials. For example,

using the pooled administrative data, the bunching β0 is always 0.01, and ω is always 0.08

for all polynomial orders K.

One concern with bunching methods in cross sectional data is that the estimation of

missing mass requires parametric extrapolation of the wage distribution around $10. In

our case, however, the bunching is at a nominal number ($10) that sits on a different part

of the real wage distribution in each of the 20 quarters of our sample. As an alternative,

11



instead of collapsing the data into a single cross section, we use quarterly cross sectional

data and fit a polynomial in the real wage wr = w/Pt where Pt is the price index in year t

relative to 2003.

pwr =
w0+∆w

∑
j=w0−∆w

β j1wr×Pt=j +
K

∑
i=0

αiwi
r + εwr (2)

We again iterate estimating this equation until MM = MMA + MMB to recover ∆w. If

the real wage distribution is assumed to be stable during this period (i.e. the αiare constant

over time), then in principle the latent wage distribution within the bunching interval

can be identified non-parametrically, because each wr bin falls outside of the bunching

interval in at least some periods. More precisely, suppose there were only two periods,

and (w0 − ∆w)/PT1 ≥ (w0 + ∆w)/PT0 , for some T1 and T0. In this case β j is identified from

the mass at wr × PT1 controlling for a flexible function of wr which is effectively identified

from the real wage distribution in T0 as well as the mass at wr × PT0 conditional on the real

wage density in T1. This specification is an example of a “difference in bunching” approach

that compares the same part of the real wage distribution across years (Kleven (2016)), and

addresses criticisms of bunching estimators being dependent on parametric assumptions

about the shape of the latent distribution (Blomquist and Newey, 2017). To show that this

assumption of non-overlapping bunching intervals is satisfied for at least some portion

of our data, Appendix Figure A.2 shows that the bunching interval around the nominal

$10.00 mode in 2007 does not overlap with that from the 2003 real wage distribution,

allowing for estimation of the latent (real) density around the nominal $10.00 mode using

variation in the price level over time . In column (8) we show that estimates with the

repeated cross section and real wage polynomials are virtually identical to our baseline

estimates, providing reassurance that our estimates are not being driven by parametric

assumptions about the latent distribution within the bunching interval.

The main conclusions from this section are that the missing mass seems to be drawn

symmetrically from around the bunch and from quite a broad range. As the next section
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shows, these facts are informative about possible explanations for bunching and the nature

of labor markets.

3 A model of round-number bunching in the labor market

This section presents a model of bunching in the labor market which builds on features

in the price-bunching literature (e.g. Basu 1997, Basu 2006) and the optimization friction

literature (e.g. Chetty 2012).

Suppose there are many workers differing in their marginal product p assumed to

have density k(p) and CDF K(p)—assume labor is supplied inelastically to the market as a

whole. We assume there is only one “round number” wage in the vicinity of the part of

the productivity distribution we consider—denote this by w0. We do not here attempt to

micro-found w0. There are various functions of wj that could deliver w0, for example we

could set w0 = wj − mod (wj, 10h), where mod (w, 10h) denotes the remainder when w

is divided by 10h and h is the highest digit of w. Or we could impose the formulation in

Basu (1997), where agents form expectations about the non-leftmost digits. In contrast to

Basu (1997), which delivers a strict step function, the discrete choice formulation allows

supply to be increasing even at non-round numbers, as well as relaxing the assumption

that each good is provided by a single monopolist (Basu (2006) considers a Bertrand variant

of a similar model, showing that .99 cents can be supported as a Bertrand equilibrium

with a number of homogeneous firms). We also extend the formulation of digit bias from

Lacetera, Pope and Sydnor (2012) by allowing utility to depend on the true wage w as well

as the leading digit.8 We consider two reasons why w0 might be chosen—left-digit bias on

the part of workers, and mis-optimization on the part of employers in the form of paying

round numbered wages.

We model the left-digit bias of workers in the following way. Assume that, for workers

8However we do not parameterize the extent of “left-digitness” as Lacetera, Pope and Sydnor (2012) do.
We are implicitly assuming “full inattention” to non-leading digits.

13



with marginal product, p, the supply of workers to a firm that pays wage w is given by:

l(w, p) =

[
weγ1w≥w0

]η

C
k (p) (3)

where C ≡ ∑M
j=1

[
wje

γ1wj≥w0
]η

. We assume that there are a sufficiently large number

of firms that C is treated as exogenous by each individual firm. If γ > 0 then there is

a discontinuity at w0: γ is the percentage increase in labor supply that comes from the

left-digit bias of workers so the size of γ is a natural measure of the extent of left-digit

bias. Left digit bias has been documented in a wide variety of markets, used to explain

prevalence of product prices that end in 9 or 99, and is a natural candidate explanation for

bunching in the wage distribution.9 Our model of labor supply to individual firms can be

micro-founded using a multinomial logit model—see Card et al. (2016) for an application

to the labor market.10 Our baseline model assumes some imperfect competition in the labor

market but perfect competition is a special case as η → ∞. Denote by l∗(w, p) = wη

C k (p)

the “nominal” labor supply curve facing the firm, without any worker left-digit bias.

The other possible explanation for bunching that we consider is employer mis-optimization.

We now extend the model to allow employers to “benefit” by paying a round number,

despite lowered profits.11 While consistent with employers preferring to pay round num-

bers, it could reflect internal fairness constraints or administrative costs internal to the
9For example, Levy et al. (2011) show that 65% of prices in their sample of supermarket prices end in 9

(33.4% of internet prices), and prices ending in 9 are 24% less likely to change than prices ending in other
numbers. Snir et al. (2012) also document asymmetries in price increases vs. price decreases in supermarket
scanner data, consistent with consumer left-digit bias. A number of field and lab experiments document that
randomizing prices ending in 9 results in higher product demand (Anderson and Simester 2003, Thomas
and Morwitz 2005, Manning and Sprott 2009). Pope, Pope and Sydnor (2015) show that final negotiated
housing prices exhibit significant bunching at numbers divisible by $50,000, suggesting that round number
focal points can matter even in high stakes environments. Lacetera, Pope and Sydnor (2012) show that car
prices discontinuously fall when odometers go through round numbers such as 10,000. Allen et al. (2016)
document bunching at round numbers in marathon times, and interpret this as reference-dependent utility.
Backus, Blake and Tadelis (2015) show that posted prices ending in round numbers on eBay are also a signal
of willingness to bargain down.

10Matejka and McKay (2015) provide foundations for discrete choice that incorporates inattention, and see
Gabaix (2017) for applications of inattention to a wide variety of behavioral phenomena, including left-digit
bias.

11It would be equivalent to assume that firms suffer an effective loss from not paying a round number.
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firm. These could be transactions costs involved in dealing with round numbers, cognitive

costs of managers, or administrative costs facing a bureaucracy. δ is a simple way to

capture satisficing behavior by firms willing to use a simple heuristic (choose nearest

round number) instead of bearing the costs of locating at the exact profit-maximizing wage.

These costs may be substantial, as evidenced by the pervasive use of round-numbers in

publicly stated wage-policies of large firms.12

The presence of δ results in a profit function that looks like:

π(w, p) = (p− w)l(w, p)eδ1w=w0 (4)

where δ is the percentage “gain” in profits from paying the round number.13 This specifi-

cation parallels that in Chetty (2012), who restricts optimization frictions to be constant

fractions of optimal consumer expenditure (in the nominal model), except applied to the

employer’s choice of wage for a job rather than a consumer’s choice of a consumption-

leisure bundle. In the taxable income model, optimization frictions parameterize the lack

of responsiveness to tax incentives, while in our model they parameterize the willingness

to forgo profits in order to pay a round number.

Given (3) and (4), profits from paying a wage w to a workers with marginal product p

can be written as:

π(w, p) = (p− w)
wη

C
eηγ1w≥w0 eδ1w=w0 k (p) = (p− w)l∗(w, p)eηγ1w≥w0 eδ1w=w0 (5)

Define ρ (w, p) = (p− w)l∗(w, p). Here ρ (w, p) is, in the language of Chetty (2012), the

12The National Employment Law Project (2016) documents a large number of voluntary wage policies by
employers. McDonald’s, T.J. Maxx, The Gap, and Walmart all voluntarily adopted a $10.00 base wage in
2015/2016, and many other firms have company wage policies that mandate round numbers from $9.00
(Target) to $18.00 (Hello Alfred).

13While we do not microfound why employers may have preferences for paying a particular round
number, this may reflect inattention among wage-setters. For example, Matějka (2015) shows that rationally
inattentive monopoly sellers will choose a discrete number of prices even when the profit-maximizing price
is continous.
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“nominal model” that parameterizes profits in the absence of left-digit bias or optimization

errors. Optimizing wages in the nominal model would yield a smooth “primitive” profit

function of productivity given by π(pj) = (
pj

1+η )1+η, but the presence of worker and firm

biases induces discontinuities in true profits at round numbers. In deciding on the optimal

wage for employers one simply needs to compare the profits to be made by maximizing

the nominal model and paying the round number. Consider the wage that maximizes the

nominal model. Given the isoelastic form of the labor supply curve to the individual firm,

this can simply be shown to be:

w∗(p) =
ηp

1 + η
(6)

which reflects a mark-down on the marginal product with the size of the mark-down

determined by the extent of imperfect competition in the labor market. If the labor market

is perfectly competitive, η = ∞, wages are equal to marginal product. We will refer to the

wage that maximizes the nominal model as the latent wage. The firm will pay the round

number wage as opposed to the latent wage if:

π(w0, p) > π(w∗(p), p) (7)

which can be written as:

eηγ1w∗(p)<w0 eδ >
ρ (w∗ (p) , p)

ρ (w0, p)
(8)

Taking logs, we obtain that a firm will pay the round number if

δ + ηγ1w∗(p)<w0
> ln ρ (w ∗ (p) , p)− ln ρ (w0, p) (9)

This shows that bunching is more likely the greater is the left-digit bias of workers

and the optimization cost for employers. The optimization bias is symmetric whether the
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latent wage is above or below the round number. But left-digit bias is asymmetric because

it only has an impact if the latent wage is below the round number. The right-hand side

of (9) can be approximated using the following second-order Taylor series expansion of

ρ (w0, p) about w∗ (p)14:

ln ρ (w0, p) ' ln ρ (w∗, p) +
∂ ln ρ (w∗, p)

∂w
[w0 − w∗] +

1
2

∂2 ln ρ (w∗, p)
∂w2 [w0 − w∗]2 (10)

The first-order term is zero by the definition of the latent wage (Akerlof and Yellen

(1985) use this idea to explain price and wage rigidity). Using the definition of the nominal

model, the second derivative can be written as:

∂2 ln ρ (w, p)
∂w2 = − 1

(p− w)2 −
η

w2 (11)

Using (6) this can be written as:

∂2 ln ρ (w∗, p)
∂w2 = −η (1 + η)

w∗2
(12)

where it is convenient to invert (6) and express in terms of the latent wage because

wages are observed but marginal products are not. Substituting (12) into (10) and then

into (9) leads to the following expression for whether a firm pays the round number:

1
2

[
w0 − w∗

w∗

]2

≡ ω2

2
≤ δ + ηγ1w∗<w0

η (1 + η)
(13)

The left-hand side of (13) implies that the size of the loss in nominal profits from

bunching is increasing in the square of the proportional distance of the latent wage from

the round number (ω). The right-hand side tells us that, for a given latent wage, whether a

firm will bunch depends on the extent of left-digit bias as measured by γ (only relevant

14One can use the actual profit function, instead of the approximation, but the difference is small for the
parameters we use, and the approximation has a clearer intuition.
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for wages below the round number), the extent of optimization frictions as measured by δ

and the degree of competition in the labor market as measured by η. The extent of labor

market competition matters because the loss in profits from a sub-optimal wage are greater

the more competitive is the labor market. Define:

z0 =
δ + ηγ

η (1 + η)
, z1 =

δ

η (1 + η)
(14)

Assume, for the moment, that there is some potential variation in (δ, γ, η) across firms

which is independent of the latent wage and leads to a CDF for z0 of Λz
0 (z) and a CDF

for z1 of Λz
1 (z). From (14) it must be the case that Λz

0 (z) ≤ Λz
1 (z) with equality if there is

no left-digit bias. The way in which we use this is the following—suppose the fraction of

firms with a latent wage, w∗who bunch is denoted by φ (ω∗) = φ
(

w0−w∗
w∗

)
, where ω∗ is

the proportionate gap between the optimal wage under the nominal model (w∗) and the

round number w0, with φ(ω∗) defined similarly as φ( w∗−w
w∗ ). Then (13) implies that we will

have for ω < 0, :

φ (ω∗) = 1−Λz
0

[
ω2
∗

2

]
(15)

and for w > w0, :

φ (ω∗) = 1−Λz
1

[
ω∗2

2

]
(16)

The left-hand side of (15) and (16) have been estimated in the earlier section on the

origin of the missing mass. So, (15) and (16) imply that data on the source of the missing

mass in the wage distribution can be used to identify, non-parametrically, the distributions

of z0 and z1, Λ0 and Λ1. This does not allow us to identify the distribution of (δ, γ, η), the

underlying economic parameters of interest.
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4 Recovering left-digit bias, monopsony, and optimization

frictions from bunching estimates

The first result of our framework above is that worker left-digit bias implies that the degree

of bunching is asymmetric, in that missing mass will come more from below the round

number than above. Thus, finding symmetry in the origin of the missing mass implies

that we can approximate ω∗ and ω∗ with the harmonic mean of the two, which we denote

ω ≡ w−w0
w0

, and is exactly the proportional with of the basin of attraction in Table 2. This

further implies that Λ0 = Λ1 and allows us to accept the hypothesis that γ = 0. The

intuition for this is that left-digit bias implies that firms with a latent wage 5 cents below

the round number have a higher incentive to bunch than those with a latent wage 5 cents

above. We fail to reject symmetry of the missing mass in Table 1 and so we proceed holding

γ = 0.

Note that the presence of missing mass greater than w0 also rules out many imperfect

competition stories that do not require monopsony in the labor market. If the labor market

were perfectly competitive, then no worker could be underpaid, even though misoptimizing

firms could still overpay workers. Explanations involving product market rents or other

sources of profit for firms cannot explain why firms systematically can pay below the

marginal product of workers; only labor market power can account for this. Similarly,

however, the presence of missing mass below w0 rules out pure employer collusion around

a focal wage of w0, as the pure collusion case would imply that all the missing mass was

coming from above w0.

Taking γ = 0 as given, our estimates of the proportion of firms who bunch for each latent

wage identifies the CDF of z1 = δ
η(1+η)

, but does not allow us to identify the distributions

of δ and η separately. This section describes how one can make further assumptions

to identify these separate components. First, note that if there is perfect competition

in labor markets (η = ∞) or no optimization frictions (δ = 0), we have that z1 = 0 in
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which case there would be no bunches in the wage distribution. The existence of bunches

implies that we can reject the joint hypothesis of perfect competition for all firms and no

optimization frictions for all firms. But there is a trade-off between the extent of labor

market competition and optimization friction that can be used to rationalize the data on

bunches. To see this note that if the labor market is more competitive i.e. η is higher, a

higher degree of optimization friction is required to explain a given level of bunching.

Similarly, if optimization frictions are higher i.e. a higher δ, then a higher degree of labor

market competition is required to explain a given level of bunching.

To estimate η and δ separately from φ(ω), we need to make assumptions about the joint

distribution. A natural first place to start is to assume a single value of η and a single value

of δ. In this case, the missing mass takes the form of a flat basin of attraction around the

whole number bunch with all latent wages inside the basin bunching and none outside. If

there is no left-digit bias (γ = 0) (because of the symmetry in the missing mass), then ω , η

and δ must satisfy:

2δ

η (1 + η)
= ω2 (17)

This expression shows that, armed with an empirical estimate of ω, we can draw a locus in

δ-η, showing the values of δ and η that can together rationalize a given ω. For a given size

of the basin, a higher value of optimization frictions (higher δ) implies a more competitive

labor market (a higher η). 15

But our estimates of the “missing mass” do not suggest a basin with this shape. At

all latent wages, there seem to be some employers who bunch and others who do not. To

rationalize this requires a non-degenerate distribution of δ and/or η . We make a variety

of different assumptions on these distributions in order to investigate the robustness of

our results.
15Andrews, Gentzkow and Shapiro (2017) make a similar point in a different context, arguing that differing

percentages of people with optimization frictions can substantively affect other parameter estimates using
the example of DellaVigna, List and Malmendier (2012).
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We always assume that the distributions of η and δ are independent with cumulative

distributions H(η) and G(δ). At least one of these distributions must be non-degenerate

because, by the argument above, if they both have a single value for all firms one would

observe an area around the bunch where all firms bunch so the missing mass would be

100% - this is not what the data look like. Our estimates imply that there are always some

firms who do not bunch, however close is their latent wage to the bunch. We rationalize

this as being some fraction of employers who are always optimizers i.e. have δ = 0.

We first make the simplest parametric assumptions that are consistent with the data:

we assume that η is constant, and δ has a 2-point distribution with δ=0 with probability

G and δ = δ∗ with probability 1− G, so that E[δ|δ > 0] = δ∗. Below, we will extend this

formulation to consider other possible shapes for the distribution G(δ|δ > 0), keeping a

mass point at G(0) = G.

This then implies the missing mass at w is given by:

φ(ω) = [1− G] I
[

ω2 <
2δ∗

η (1 + η)

]

In this model, the share of jobs with a latent wage close to the bunch that continue to pay

a non-round w identifies G, and the width of the basin of attraction in the distribution

identifies δ∗

η(1+η)
. The width of the basin was estimated, together with its standard error,

in the estimation of the missing mass where, relative to the bunch, it was denoted by ∆w
w0

.

Under assumptions about δ∗ we can recover a corresponding estimate of η and vice versa.

What do plausible values of optimization error imply about the likely labor supply

elasticities for bunchers? To answer this question, we report bounds using “economic

standard errors” similar to Chetty (2012). We calculate estimates of η assuming δ∗ equal

to 0.01, 0.05 or 0.1 in rows A, B, and C of Table 3 respectively. The implied labor supply

elasticity η varies between 1.337 and 5.112 when we vary δ∗ between 0.01 and 0.1. Even

assuming a substantial amount of mis-optimization (around 10% of profits) suggests a

21



labor supply elasticity facing a firm of less than 5.5, and we can rule out markdowns

smaller than 6 percent. If we assume, instead, a 1% loss in profits due to optimization

friction, the 90 percent confidence bounds rule out η > 3.1 and markdowns smaller than

25 percent. While our estimate for the labor supply elasticity are not highly precise, the

extent of bunching at $10.00 suggests considerable wage setting power on firms’ part even

for a sizable amount of optimization frictions, δ.

The admissible values of δ, η can also be seen in Figure 6. Here we plot the δ∗, η locus

for the sample mean of estimated bunching, ω, as well as for the 90 percent confidence

interval around it. We can see visually that as we consider higher values of δ∗, the range of

admissible η′s increases and becomes larger in value. However, even for sizable δ∗’s the

implied values of the labor supply elasticity are often modest, implying at least a moderate

amount of monopsony power. Our estimates are plausible given the recent literature:

Kline et al. (2017) estimate a labor-supply elasticity facing the firm of 2.7, using patent

decisions as an instrument for firm productivity, which would be well within the range of

η implied by our estimates together with a δ∗ less than 0.05.

We examine robustness of the estimates to alternative specifications of the latent dis-

tribution of wages in Table 4. Columns 1 and 2 add indicator variables for “secondary”

modes, to capture the bunching induced at 50 cent and 25 cent bins. Columns 3 and 4

specify the latent distribution as a Fourier polynomial, in order to allow the specification

to pick up periodicity in the latent distribution that even a high-dimensional polynomial

may miss. Columns 5 and 6 of Table 4 explore changing the degree of the polynomial used

to fit the main estimates in Table 3. Column 5 uses a quadratic and column 6 uses a quartic,

and our results stay very similar to our main estimates in Table 3.

4.1 Alternative assumptions on heterogeneity

While assuming a single value of non-zero δ and a constant elasticity η may seem restrictive,

it is a restriction partially made for empirical reasons as our estimate of the missing mass at
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each latent wage is not very precise and we will also be unable to distinguish heterogeneous

elasticities in our experimental design. Nonetheless, there is a concern that different

assumptions about the distribution of δ and η might be observationally indistinguishable

but have very different implications for the extent of optimization frictions and monopsony

power in the data. This section investigates whether that is the case.

While it is not possible to identify arbitrary nonparametric distributions of δ and η, as

robustness checks we consider polar cases allowing each to be unrestricted one at a time,

and then finally a semi-parametric deconvolution approach that allows for an unrestricted,

non-parametric distribution H(η), along with a flexible, parametric distribution G(δ).

First, we continue to assume a constant η but allow δ to be have an arbitrary distribution

G(δ|δ > 0) while continuing to fix the probability that δ = 0 at G. In this case, for a given

value of η the non-missing mass at ω would equal:

φ (ω) = 1− Ĝ(η(1 + η)
ω2

2
)

This expression implicitly defines a distribution Ĝ(δ):

Ĝ(δ) = 1− φ

(√
2δ

η(1 + η)

)
(18)

Note that this implies that δ ∈ [0, δmax] where δmax = ω2

2 η(1 + η) where ω is the radius of

the basin of attraction. We then fix E(δ|δ > 0) at a particular value, similar to what we do

with δ∗, and then can identify both an arbitrary shape of Ĝ(δ) as well as η. Figure 7 shows

the distribution along with values of η from equation (18) in the MN-WA administrative

data. As can be seen, a higher η implies a first-order stochastic dominating distribution of

δ; thus average δ is higher for higher η.

A natural question is how our estimates could differ if, instead of a constant η and

flexibly heterogeneous δ, we assume a heterogeneous η with an arbitrary distribution H(η),

along with some specified distribution G(δ). The simplest variant of this is to consider
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a two-point distribution (where δ is either 0 or δ∗) as in our baseline case above. In this

variant of the model each firm is allowed to have its own labor supply elasticity, and each

firm either mis-optimizes profits by a fixed fraction δ∗ or not at all. In this case, solving for

the positive value of η, the missing mass at ω should be equal to:

φ (ω) = [1− G] H

(
1
2

(√
1 +

8δ∗

ω2 − 1

))

Since we can identify G = G(0) = 1− limω→0+ φ̂(ω), for a particular δ∗ we can empiri-

cally estimate the distribution of labor supply elasticities as follows:

Ĥ(η) =

φ̂

(√(
8δ∗

(2η+1)2−1

))
1− G

(19)

We can use Ĥ(η) to estimate the mean ˆE(η) for a given value of δ∗:

ˆE(η) =
∫ ∞

0
ηdĤ(η)

Note that under these assumptions, η is bounded from below at ηmin = 1
2

√
1 + 8δ∗

ω2 − 1.

In other words, the lower bound of η from the third method is equal to the constant estimate

of η from our baseline, both of which come from the marginal bunching condition at the

boundary of the interval ω. While we can only recover the distribution of η conditional on

δ > 0 (i.e. those that choose to bunch), we can make some additional observations about

the parameters for non-bunchers. In particular, we can rule out the possibility that some

of the the non-bunchers have δ > 0 while being in a perfectly competive labor market

with η = ∞. This is because in our model those firms would be unable to attract workers

from those firms with δ = 0 and η = ∞. The gradual reduction in the missing mass φ (ω)

that occurs from moving away from ω = 0 is entirely due to heterogeneity in η′s. It rules

out, for instance, that such a gradual reduction is generated by heterogeneity in δ′s in

contrast to the second method. As a result, the third method is likely to provide the largest
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estimates of the labor supply elasticity.

In parallel fashion to the previous case, we graphically show the implied distribution

of η with a 2-point distribution for δ in Figure 8. This figure shows the distribution of η

implied by different values of δ from the MN-WA administrative data. As can be seen, a

higher η implies a first-order stochastic dominating distribution of η, thus average η is

higher for higher δ.16

Finally, we can extend this framework to allow for G(δ) to have a more flexible para-

metric form (with known parameters) than the 2-point distribution. We rely on recently

developed methods in non-parametric deconvolution of densities to estimate the implicit

H(η). If we condition on δ > 0,we can take logs of equation 13 (again maintaining that

γ = 0) we get

2 ln(ω) = ln(2)− ln(η(1 + η)) + ln(δ) = ln(2)− ln(η(1 + η)) + E[ln (δ) |δ > 0] + ln(δres) (20)

Here ln(δres) ∼ N(0, σ2
δ ), and we fix E[ln (δ) |δ > 0] = ln (E(δ|δ > 0)) + 1

2 σ2
δ . We

can use the fact that the cumulative distribution function of 2 ln(ω) is given by 1 −

φ
(

1
2 exp(2 ln(ω)

)
) to numerically obtain a density for 2 ln(ω). This then becomes a well-

known deconvolution problem, as the density of − ln(η(1 + η)) is the deconvolution of the

density of 2 ln(ω) by the Normal density we have imposed on ln(δres). We can then recover

the distribution of η,H(η), from the estimated density of − ln(η(1 + η)) + E[ln (δ) |δ > 0].

Details on using Fourier transforms to recover the distribution H(η) are in the Appendix.

We use the Stefanski and Carroll (1990) deconvolution kernel estimator. We choose the

bandwidth using a bootstrap procedure proposed by Delaigle and Gijbels (2004), taking

the bandwidth that minimizes the mean-squared error over 1,000 bootstrap samples.

16This exercise is in the spirit of Saez (2010) who estimates taxable income elasticities using bunching in
income at kinks and thresholds in the tax code (Kleven 2016). Kleven and Waseem (2013) use incomplete
bunching to estimate optimization frictions, similar to our exercise in this paper; however, in our case
optimization frictions produce bunching while in Kleven and Waseem (2013) they prevent it. This has been
applied to estimating the implicit welfare losses due to various non-tax kinks, such as gender norms of
relative male earnings (Bertrand, Kamenica and Pan 2015) as well as biases due to behavioral constraints
(Allen et al. 2016).

25



In Figure 9, we show the distribution of η using the deconvolution estimator, assuming

a lognormal distribution of δ. In the first panel, we estimate H(η) assuming the standard

deviation σln(δ) = 0.1, which is highly concentrated around the mean. In the second

panel, we instead assume σln(δ) = 1. This is quite dispersed: among those with a non-zero

optimization friction, δ around 16% have a value of δ exceeding 1, and around 31% have

a value exceeding 0.5. As a result, we think the range between 0.1 and 1 to represent a

plausible bound for the dispersion in δ. As before, we see a higher E[δ|δ > 0] leads to

first-order stochastic dominance of H(η). For both cases with high- and low-dispersion

of δ, the distribution H(η) is fairly similar, though increase in σln(δ) tends to shift H(η) up

somewhat, producing a smaller E(η).

We quantitatively show robustness of our main estimates to alternate specifications

in Table 5. Column 1 shows the implied E[δ|δ > 0] and δ̄ when an arbitrary distribution

of δ is allowed. The implied η for E[δ|δ > 0] = 0.01 is 1.77 instead of 1.33 in the baseline

estimates from Table 3. Similarly, in column 2 we see the estimates under the 2-point

distribution for δ and an arbitrary distribution for η. The mean η of 1.81 in this case is quite

close to column 1. The implied bounds are somewhat larger, with a 1% loss in profits for

those bunching (i.e., E(δ|δ > 0) = 0.01) generating 95% confidence intervals that rule out

estimates of 5.7 or greater. Under 5% loss in profits, we get elasticities in columns 1 and 2

that are close to 4.5 , somewhat larger than the comparable baseline estimate of 3.5, but

with similarly close to 20 percent wage markdown. Therefore, allowing for heterogeneity

in either δ or η only modestly increases the estimated mean η as compared to our baseline

estimates.

In columns 3 and 4 we report our estimates using the deconvolution estimator, allowing

for an arbitrary distribution for η, along with a lognormal conditional distribution for δ.

As in columns 1 and 2, we consider the case where E(δ|δ > 0) = 0.01 or 0.05, but now

allow the standard deviation σδ to vary. In column 3 we take the case where δ is fairly

concentrated around the mean with σδ = 0.1. Here the estimated E(η) is equal to 2.6,
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which is larger than the analogous baseline estimates in columns 1 and 2 allowing for

an arbitrary distributions for δ and η, respectively. In column 4, we allow δ to be much

more dispersed, with σδ = 1. In this case the estimated E(η) falls somewhat to 2. With

E(δ|δ > 0) = 0.05, we get E[η] = 6.4 and 4.9 under σδ = 0.1 and σδ = 1, respectively, and we

are able to rule out markdowns less than 5 percent easily. Encouragingly, for a given mean

value of optimization friction, E[δ|δ > 0], allowing for heterogeneity in δ and η together

only modestly affects the estimated mean η as compared to our baseline estimates. Our

conclusion from this investigation is that our qualitative finding of significant monopsony

power remains robust to a wide range of assumptions made about the distribution of δ

and η.

4.2 Heterogeneous effects by groups

In Table 6 we estimate the implied η for different δ∗ under our baseline 2-point model

across subgroups of the measurement corrected CPS data, as we do not have worker-level

covariates for the administrative data. We examine young and old workers, as well as male

and female separately. Consistent with other work suggesting that women are less mobile

than men (Manning 2011webber), the estimated η for women is somewhat lower than that

for men. We do not find any differences between older and younger workers. However,

the extent of bunching is substantially larger for new hires consistent with bunching being

a feature of initial wages posted, while workers with some degree of tenure are likelier

to have heterogeneous raises that reduce the likelihood of being paid a round number.

We find that among new hires the estimated η is somewhat higher than non-new hires.

However, even for new hires—who arguably correspond most closely to the wage posting

model—the implied η is only 1.58 if employers who are bunching are assumed to be losing

1% of profits from doing so, increasing to 4 when firms are allowed to lose up to 5% in

profits.
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5 Experimental evidence on nominal wage labor supply

elasticity and left-digit bias

Observational data has the advantage that it relates to the labor market as a whole but the

disadvantage that it does not offer direct estimates of the economic parameters of interest.

This section reports an analysis of an online labor market which offers the advantage of

being able to estimate parameters of interest directly, though the disadvantage that one

is inevitably unsure about the external validity of the estimates. For example, one might

expect that these “gig economy" labor markets are very competitive because they are

lightly regulated and there are large numbers of workers and employers with little long-

term contracting. However, we show that a standard measure of monopsony, the inverse

labor supply elasticity facing the firm, is quite high, implying considerable inefficiencies

in these types of “crowdsourcing” labor markets, which are finding increased use by

large employers (for example Google, AOL, Netflix, and Unilever all subcontract with

crowdsourcing platforms akin to MTurk) around the world (Kingsley, Gray and Suri 2015).

The use of Amazon Turk by researchers in computer science (particularly the subfield of

human computation), psychology, political science and economics has increased in recent

years. However, little of this research has considered the market structure of Amazon Turk

(although see Kingsley, Gray and Suri (2015) for complementary evidence of requester

market power on MTurk) or indeed any online labor market. Indeed, in their original paper

on labor economics on Amazon Turk, Horton, Rand and Zeckhauser (2011) implement a

variant of the experiment we conduct below, making take it or leave it offers to workers

with random wages in order to trace out the labor supply curve. However, while they label

this an estimate of labor supply to the market, it is in fact a labor supply to the requester

that they are tracing out, as the MTurk worker has the full list of alternative MTurk jobs

to choose from. While the previous section provided indirect evidence on left-digit bias

as an explanation for observed bunching, we can take advantage of the Amazon MTurk
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labor market to run experiments.17 We designed an experiment to test our model.18 We

randomize wages for a census image classification task to estimate discontinuous labor

supply elasticities at round numbers (in particular at 10 cents, to test for left-digit bias).

We choose 10 cents because it is the lowest round number, allowing us to maximize the

power of the experiment to detect left-digit bias. We also aim to replicate the upward

sloping labor supply functions to a given task estimated in Horton, Rand and Zeckhauser

(2011). We posted a total of 5,500 unique HITS on MTurk tasks for $0.10 that includes a

brief survey and a screening task, where respondents view a digital image of a historical

slave census schedule from 1850 or 1860, and answer whether they see markings in the

“fugitives” column (for details on the 1850 slave census, see Dittmar and Naidu (2016)).

This is close to the maximum number of unique respondents obtainable on MTurk within

a month-long experiment. Respondents are offered a choice of completing an additional

set of classification tasks for a specific wage. Appendix Figure D.1 shows the screens

as seen by participants with (1) the consent form, (2) the initial screening questions and

demographic information sheet, and (3) the coding task content.

We refer to the initial screening part as stage-1. Those who complete stage-1 and indicate

that the primary reason for participation is "money" or "skills" (as opposed to "fun") are

then offered an additional task of completing either 6 or 12 such image classifications

(chosen randomly) for a specific (randomized) wage, w, which we refer to as the stage-2

offer. If they accept the stage-2 offer, they are provided either 6 images (task type A) or 12

images (task type B) to classify, and are paid the wage w. These 5,500 HITs will remain

posted until completed, or for 3 months, which ever is shorter. Any single individual on

MTurk (identified by their MTurk ID) will be allowed to only do one of the HITs. We aim

to assess the left-digit bias in wage perceptions experimentally by randomizing the offered

17In a companion paper, Dube, Jacobs, Naidu and Suri (2018) compile labor supply elasticities implicit in
the results from a number of previous crowdsourcing compensation experiments on MTurk and find they
are uniformly small, generally below 0.5, and show a similarly low non-experimental labor supply elasticity
( < 0.1) estimated using a double ML procedure on the scraped MTurk data.

18Pre-registered as AEA RCT ID AEARCTR-0001349.

29



wages for HITs on MTurk to vary between $0.05 and $0.15, and assessing whether there is

a jump in the acceptance probability between $0.09 and $0.10 as would be predicted by a

left-digit bias.19

5.1 Specifications

While our model entails a sharp discontinuity in the level of labor supplied at a round

number (a “notch”) we do not impose this in all our specifications, and allow for either

a kink or a notch, and also control for the overall shape of the labor supply curve in a

variety of ways. We estimate the following 3 specifications, all of which were included in

the pre-analysis plan. We deviate slightly from our pre-analysis plan by including controls

and using logit rather than linear probability to better match our model. We show the

exact specifications from the pre-analysis plan in Online Appendix D.

First, we estimate a logit regression of an indicator for accepting a task on log wages,

essentially following the specification entailed by our model:

Pr(Accepti) = β0 + η1log(wi) + β1Ti + β2Xi + εi (21)

Here T is a dummy indicating the size of the task. We add individual covariates Xi

for precision; point estimates remain unchanged when controls are excluded (shown in

Online Appendix D). Our main test from this specification is that the slope (semi-elasticity)

η1 > 0: labor supply curves (to the requester) are upward sloping. We will also report the

19There are a few anomalies in the data relative to our design. The first was that a small number (17) of
individuals were able to get around our javascript mechanism for preventing the same person from doing
multiple HITs. In the worst cases, one worker was able to do 118 HITs, while 3 others were able to do more
than 10. The second is that 9 individuals were entering responses to images they had not been assigned. We
drop these HITs from the sample, which costs us 316 observations. None of the substantive results change,
although the nominal labor supply effect is slightly more precise when those observations are included.
We also drop 3 observations where participants were below the age of 16 or did not give the number of
hours they spent on MTurk. Finally, we underestimated the time it would take for all of our HITs to be
completed, and thus some (roughly 11%) of our observations occur after the Pre-registration plan specified
data collection would be complete. We construct an indicator variable for these observations and include
it in all specifications discussed in the text (the additional specifications in Online Appendix D omit this
variable).
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elasticity η = η1
E[Accept] in every specification where we estimate it.

Our first test for left-digit bias is based on a logit regression allowing for a jump in the

labor supply at $0.10, but constraining the slope to the the same on both sides:

Pr(Accepti) = β0A + η1Alog(wi) + γ1A1 {wi ≥ 0.1}i + β1ATi + β2Xi + εi (22)

Here left-digit bias is rejected if γA2 = 0. This specification corresponds closely to

the theoretical model with constant labor supply semi-elasticity η1A, and with γ = eγ1A

measuring the extent of left-digit bias.

Our second specification allows for heterogeneous slopes in labor supply above and

below $0.10 using a knotted spline, where the knots are at $0.09 and $0.10:

Pr(Accepti) = β0B + η1Blog(wi) + γ2B × (log(wi)− log(0.09))× 1 {wi ≥ 0.09}i

+γ3B × (log(wi)− log(0.10))× 1 {wi ≥ 0.1}i + β2BTi + β2Xi + εi (23)

Our main test here is that the slope between $0.09 and $0.10 (i.e., η1B + γ2B) is greater

than the average of the slopes below $0.09 and above $0.10
(

1
2 × η1B + 1

2 × (η1B + γ2B + γ3B)
)

;

or equivalently to test: γ2B > γ3B.

Finally, our most flexible specification estimates:

Pr(Accepti) = ∑
k∈S

δk1 {wi = k}i + γβ3BT + β2Xi + εi (24)

And then calculates the following statistics:

δjump = (δ0.1 − δ0.09)

βlocal = (δ0.1 − δ0.09)−

(
∑0.12

k=.08,k 6=0.1 δk − δk−0.01

)
4
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βglobal = (δ0.1 − δ0.09)− 1
10

(δ0.15 − δ0.05)

The βlocal estimate provides us with a comparison of the jump between $0.09 and $0.10

to other localized changes in acceptance probability from $0.01 increases. In contrast, βglobal

provides us with a comparison of the jump with the full global (linear) average labor supply

response from varying the wage between $0.05 and $0.15. The object 1
10 (β0.15 − β0.05) will

also be used to estimate the overall labor supply response and elasticity facing the person

posting a task on MTurk.

A left-digit bias might not only affect willingness to accept a task, but also may affect

a worker’s performance. For example, if workers are driven by reputational concerns

or exhibit reciprocity, and they perceive $0.10 to be discontinuously more attractive than

$0.09, we may expect a jump in performance at that threshold. To assess this, we will also

estimate the same statistics, but with the error rate for the two known images (i.e., equal to

0, 0.5, or 1) as the outcome instead of Accepti.

5.2 Experimental results

Our distribution of wages was chosen to generate power for detecting a discontinuity at

10 cents, as can be seen in the wage distribution in Figure 10. The binned scatterplot in

Figure 10 shows the basic pattern of a shallow slope (in levels) with no discontinuity at 10.

Table 7 below shows the key experimental results from the specifications above, which

uses log wages as the main independent variable. Column 1 reports the estimates using a

log wage term only; the elasticity, η, is 0.083. The elasticity is statistically distinguishable

from zero at the 1 percent level, consistent with an upward sloping labor supply function

facing requesters on MTurk. However, the magnitude is quite small, suggesting a sizable

amount of monopsony power in online labor markets. When we restrict attention only to

“sophisticated” MTurkers (column 5), the elasticity is only somewhat larger at 0.132, still
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surprisingly small.

While we find a considerable degree of wage-setting power in online labor markets,

we do not find any evidence of left-digit bias for workers. Column 2 estimates equation 22

and tests for a jump at $0.10 assuming common slopes above and below $0.10. Column 3

corresponds to equation 23 and allows for slopes to vary on both sides of $0.10. Finally,

column 4, following the flexible specification in equation 24, estimates coefficients for each

1-cent dummy in the regression and compares the change between $0.09 and $0.10 to either

local or global changes. In all of these cases, the estimates are close to zero in magnitude,

and not statistically significant. We can rule out even small differences in the probability of

acceptance between $0.09 and $0.10. When we limit our sample to sophisticated MTurkers,

we do not find any left-digit bias either. None of the estimates for discontinuity in the

labor supply function are statistically significant or sizable in columns 6, 7 or 8.

Column 2’s specification corresponds closely to the theoretical model, where we can

recover γ by exponentiating the coefficient on the dummy for a reward greater than or

equal to $0.10. The point estimate for γ is 0.99, while the 95 percent confidence interval of

(0.972, 1.029) is concentrated around one.

We also estimate parallel logit regressions using task quality as the outcome, which is

defined as the probability of getting at least 1 out of two pre-tagged images correct. In

Appendix Table D.3, we find that no evidence that task performance rises discontinuously

at the $0.10 threshold. We also find little impact of the reward on task performance for

the range of rewards offered; the most localized comparison yields estimates very close to

zero.

We interpret the evidence as strongly pointing away from any left-digit bias on the work-

ers’ side. Moreover, it also suggests that locally, there is not very much impact of rewards

on task performance: therefore, the primary benefit of providing a slightly higher reward

is occurring through increased labor supply and not through performance.Summarizing

to this point, while there is considerable bunching at round numbers in the MTurk reward
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distribution, including at $0.10, there is no indication of worker-side left-digit bias in labor

supply or in performance quality. This finding is counter to the analogous explanation for

the product market, where a number of experiments have found that demand for products

increases when prices ending in 9 are posted (e.g. Anderson and Simester 2003). At the

same time, we find considerable amount of wage-setting power in this online labor market:

labor is fairly inelastically supplied to online employers, with an estimated elasticity η

generally between 0.1 and 0.2.

In Online Appendix C, we present complementary evidence from scraped MTurk data

for the $0.51 to $1.49 range, to show that similar patterns obtain at the even more salient

round number of $1.00. By estimating how long a job stays posted before being filled, as

a function of the reward posted (and controlling for hour of first posting, requester and

task keyword fixed effects) we can recover another estimate of the labor supply curve

facing an employer. In the fixed-effects estimator, the implied labor-supply elasticity

under a constant offer arrival rate assumption (so that variation in durations are reflecting

heterogeneity in tastes for the job rather than heterogeneity in search outcomes) is quite

small, between .5 and 1, although larger than our experimental estimates. We also show

that tasks with rewards greater than $1.00 do not discontinuously fall in the time to

fulfillment, consistent with our experimental findings at $0.10. Together, the observational

and experimental evidence suggest that, at least on Amazon Turk, there is plenty of

monopsony, and little left-digit bias, at both the $0.10 and $1.00 thresholds.

5.3 Estimates of online optimization frictions

To quantify the extent of implied optimization frictions for MTurk requesters, we first

estimate the extent of bunching using scraped reward data from MTurk, using the same

methodology as Section 3 with a threshold w0 = $1.00. The results are reported in Table

8. Here we use 1 cent bins, estimating the regression between $0.55 and $1.55. Again, we

find a very clear bunching; the width of the interval for the missing mass is wider here
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than in the offline labor market data, with ω = 0.17 and a standard error of 0.06. For the

online MTurk data, β0 is again invariant to K at 0.027, while ω varies between 0.17 and

0.24 depending on K. Figure 11 shows the excess and missing mass along with the latent

reward distribution in the MTurk data.

Since our estimates for γ were highly concentrated around 1, we impose γ = 1 which

implies symmetric bunching, consistent also with our evidence of symmetry of missing

mass above and below $1.00 in Table 8. This implies we can use estimates for the extent

of bunching ω (0.17) and the labor supply elasticity η (0.082) that allow us to recover an

estimate for the optimization friction, δ, using equation 17.

This derivation is represented graphically in Figure 12. The solid and dashed lines

in red show the η − δ loci consistent with the point estimate of ω and the associated 90

percent confidence interval. For a given value of bunching, ω, the locus is defined by

equation 13 with γ = 1, which implies that a higher labor supply elasticity requires more

optimization frictions to rationalize the bunching. Higher values of ω tilt the locus upward:

for a given labor supply elasticity, a higher bunching implies greater optimization frictions.

The black vertical lines represent the estimated labor supply elasticity and the associated

90 percent confidence intervals. The distribution of δ is derived from sampling on each

of these estimates of ω and η. Inverting the point estimate of η = 0.082 produces an

estimate of δ∗ = 0.003, well below the 1% threshold we imposed in the offline labor market

analysis above. Even if we instead take the much larger point estimate (0.63) from our

non-experimental estimates reported in Online Appendix C, it implies a δ∗ less than 0.05.

These estimates are also reported in Table 8. Since there is sampling error of estimating

bothω and η, we use bootstrapping (with 500 replicates) to derive the 90 percent confidence

interval δ∗, which is estimated as (0.000, 0.007). Even though there is extensive bunching

at $1.00 rewards, the small labor supply elasticity implies a small optimization error.
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6 Conclusion

Significantly more U.S. workers are paid exactly round numbers than would be predicted

by a smooth distribution of marginal productivity. This fact is documented in admin-

istrative data, mitigating any issues due to measurement error, and is present even in

Amazon MTurk, an online spot labor market, where there are no regulatory constraints

nor long-term contracts. We integrate imperfect labor market competition with left-digit

bias by workers and a general employer preference for round-number wages to evaluate

the source of left-digit bias. Using administrative wage data, we reject a role for worker

left-digit bias using the symmetry of the missing mass around round numbers. We also

reject the left-digit bias hypothesis using a high-powered, preregistered experiment con-

ducted on MTurk: despite considerable monopsony power (in a putatively thick market),

there is no discontinuity in labor supply or quality of work at 10 cents relative to 9.

This evidence shows that the extent of round-number bunching can be explained

by a combination of a plausible degree of monopsony together with a small degree of

employer mis-optimization. We show that when there is sizable market power, it requires

only a modest extent of optimization error to rationalize substantial bunching in wages.

With optimization error less than 5% of profits, the observed degree of bunching in

administrative data can be rationalized with a firm-specific labor supply elasticity less

than 2.5; at 1% of profits lost from round-number bias of employers, the implied labor-

supply elasticity is between .8 and 1.5, depending on the extent and shape of heterogeneity

assumed.

This research suggests that bunching in the wage distribution may not be merely a

curiosity. Spikes at arbitrary wages suggest a failure of labor-market arbitrage due to

employer mis-optimization and market power. Given the prevalence of round numbers in

the wage distribution, it suggests that market power may be ubiquitous in labor markets

as well as product markets. Moreover, our evidence suggests that when there is market

power, we can expect employers to exhibit a variety of deviations from optimizing behavior,
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including adoption of heuristics such as paying round number wages.
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Figure 1: Prevalence of Round Nominal Wages in the CPS
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Notes. The top figure shows the CPS hourly nominal wage distribution, pooled between 2010 and
2016, in 10 cent bins. The middle figure shows the fraction of hourly wages in the CPS that end
in .00 from 2003 through 2016. The bottom figure shows the fraction of states with $10.00 modal
wages in the CPS. We exclude imputed wages.
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Figure 2: Histogram of Hourly Wages In Pooled Administrative Payroll Data from Min-
nesota and Washington, 2003-2007
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Notes. The figure shows a histogram of hourly wages in $0.10 (nominal) wage bins, averaged over
2003q1 to 2007q4, using pooled administrative Unemployment Insurance payroll records from
the states of Minnesota and Washington. Hourly wages are constructed by dividing quarterly
earnings by the total number of hours worked in the quarter. The counts in each bin are normalized
by dividing by total employment in that state, averaged over the sample period. The UI payroll
records cover over 95% of all wage and salary civilian employment in the states. The counts here
exclude NAICS 6241 and 814, home-health and household sectors, which were identified by the
state data administrators as having substantial reporting errors.
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Figure 3: Bunching in Task Rewards in Online Labor Markets - MTurk
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Notes. The figure shows a histogram of posted rewards by $0.01 (nominal) bins scraped from
MTurk. The sample represents all posted rewards on MTurk between May 01, 2014 and September
3, 2016.
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Figure 4: Excess Bunching and Missing Mass Around $10.00 Using Administrative Data
on Hourly Wages (MN, WA)
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Notes. The reported estimates of excess bunching at $10.00, and missing mass in the interval around
$10.00 as compared to the smoothed predicted probability density function, using administrative
hourly wage counts from MN and WA, aggregated by $0.10 bins, over the 2003q1-2007q4 period.
The darker shaded blue bar at $10.00 represents the excess mass, while the lighter red shaded
region represents the missing mass. The dotted lines represent the estimated interval from which
the missing mass is drawn. The predicted PDF is estimated using a sixth order polynomial, with
dummies for each $0.10 bin in the interval from which the missing mass is drawn. The width of
the interval is chosen by iteratively expanding the interval until the missing and excess masses are
equal, as described in the text.
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Figure 5: Excess Bunching and Missing Mass Around $10.00 Using Measurement Error
Corrected CPS Data
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Notes. The reported estimates of excess bunching at $10.00, and missing mass in the interval
around $10.00 as compared to the smoothed predicted probability density function, using CPS data
corrected for measurement error using the 1977 administrative supplement. The darker shaded
blue bar at $10.00 represents the excess mass, while the lighter red shaded region represents the
missing mass. The dotted lines represent the estimated interval from which the missing mass is
drawn. The predicted PDF is estimated using a sixth order polynomial, with dummies for each
$0.10 bin in the interval from which the missing mass is drawn. The width of the interval is chosen
by iteratively expanding the interval until the missing and excess masses are equal, as described in
the text.
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Figure 6: Relationship Between Labor Supply Elasticity (η) , Optimization Frictions (δ)
and Size of Bunching (ω): Administrative Hourly Wage Data from MN and WA
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Notes. The solid, red, upward sloping line shows the locus of the labor supply elasticity η and optimization
frictions δ∗ = E[δ|δ > 0] consistent with the extent of bunching ω estimated using the administrative hourly
wage data from MN and WA between 2003q1-2007q4, as described in equation 17 in the paper. The dashed
lines are the 95 percent confidence intervals estimated using 500 bootstrap replicates.
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Figure 7: Implied Distribution of δ Under Constant η
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Notes. The figure plots the cumulative distributions G(δ) based on equation 18, for alternative values of
E(δ|δ > 0). The elasticity η is assumed to be a constant. The estimates use administrative hourly wage data
from MN and WA.
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Figure 8: Implied Distribution of η with a 2-point Distribution of δ
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Notes. The figure plots the cumulative distributions H(η) based on equation 19, for alternative values of
δ∗ = E(δ|δ > 0). δ is assumed to follow a 2-point distribution with δ = 0 with probability G and δ = δ∗ with
probability 1− G. The estimates use administrative hourly wage data from MN and WA.
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Figure 9: Implied Distribution of η using a Deconvolution Estimator where δ has a
Conditional Lognormal Distribution
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Notes. The figure plots the cumulative distributions H(η) using a deconvolution estimator based on equation
20, for alternative values of E(δ|δ > 0). The procedure allows for an arbitrary smooth distribution of η, while
assuming δ is lognormally distributed (conditional on being non-zero) with a standard deviation σδ. The top
panel assumes a relatively concentrated distribution of δ with σδ = 0.1; in contrast, the bottom panel assumes
a rather dispersed distribution with σδ = 1. The estimates use administrative hourly wage data from MN
and WA.
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Figure 10: Distribution of Randomized Rewards in the MTurk Experiment, and Result-
ing Probability of Task Acceptance
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Notes. The left panel shows the density of randomized rewards in the online experiment on MTurk. The
right panel shows the acceptance probabilities associated with each value of the reward.
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Figure 11: Excess Bunching and Missing Mass Around $1.00 Using Administrative Data
on Rewards from Amazon Mechanical Turk
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Notes. The reported estimates of excess bunching at $1.00, and missing mass in the interval around
$1.00 as compared to the smoothed predicted probability density function, using the universe of
rewards from Amazon Mechanical Turk. The darker shaded blue bar at $1.00 represents the excess
mass, while the lighter red shaded region represents the missing mass. The dotted lines represent
the estimated interval from which the missing mass is drawn. The predicted PDF is estimated
using a sixth order polynomial, with dummies for each $0.01 bin in the interval from which the
missing mass is drawn. The width of the interval is chosen by iteratively expanding the interval
until the missing and excess masses are equal, as described in the text.
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Figure 12: Relationship Between Labor Supply Elasticity (η) and Optimization Fric-
tions (δ) and Size of Bunching (ω): MTurk Data
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Notes. The solid, red, upward sloping line shows the locus of the labor supply elasticity η and optimization
frictions δ consistent with the extent of bunching ω estimated using the MTurk data, as described in equation
17 in the paper. The dashed lines are the 90 percent confidence interval estimated using 500 bootstrap
replicates. The vertical line shows the experimentally estimated labor supply elasticity η and the dotted
vertical lines are the 95 percent confidence intervals for η.
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Table 1: Estimates for Excess Bunching, Missing Mass, and Interval around Threshold

(1) (2) (3) (4)
Value of w0 $10.00 $10.00 $10.00 $10.00

Excess mass at w0 0.010 0.032 0.013 0.041
(0.002) (0.007) (0.003) (0.007)

Total missing mass -0.013 -0.044 -0.018 -0.033
(0.005) (0.014) (0.006) (0.017)

Missing mass below -0.006 -0.025 -0.009 -0.019
(0.005) (0.015) (0.007) (0.021)

Missing mass above -0.007 -0.019 -0.009 -0.014
(0.004) (0.015) (0.006) (0.017)

Test of equality of missing
mass below and above w0:

t-statistic 0.030 -0.156 -0.042 -0.159

Bunching = Actual mass
Latent density 2.596 6.229 3.942 8.394

(0.293) (4.386) (1.332) (4.689)

wL $9.20 $9.30 $9.30 $9.30
wH $10.80 $10.70 $10.70 $10.70

ω =(wH–w0)
w0

0.080 0.070 0.070 0.070
(0.023) (0.027) (0.030) (0.029)

Data:
Admin

MN & WA
CPS-Raw

MN & WA
CPS-MEC
MN & WA

CPS-Raw

Notes. The table reports estimates of excess bunching at threshold w0, missing
mass in the interval around w0 as compared to the smoothed predicted proba-
bility density function, and the interval (ωL, ωH) from which the missing mass
is drawn. It also reports the t-statistic for the null hypothesis that the size of
the missing mass to the left of w0 is equal to the size of the missing mass to
the right. The predicted PDF is estimated using a sixth order polynomial, with
dummies for each bin in the interval from which the missing mass is drawn.
The width of the interval is chosen by iteratively expanding the interval until
the missing and excess masses are equal, as described in the text. In columns
1-3, estimates are shown for bunching at $10.00 from pooled MN and WA using
the administrative hourly wage counts, the raw CPS data, and measurement
error corrected CPS (CPS-MEC) over the 2003q1-2007q4 period. In column 4,
estimates are shown for all states using the raw CPS data. Bootstrap standard
errors based on 500 draws are in parentheses.
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Table 3: Bounds for Labor Supply Elasticity in Offline Labor Market

δ∗ = 0.01
(1)

δ∗ = 0.05
(2)

δ∗ = 0.1
(3)

δ 0.001 0.005 0.011

η 1.337 3.484 5.112
95% CI [0.697, 4.240] [1.983, 10.053] [2.976, 14.416]

Markdown 0.428 0.223 0.164
95% CI [0.191, 0.589] [0.090, 0.335] [0.065, 0.251]

G(0)= G 0.894 0.894 0.894

Notes. The table reports point estimates and associated 95
percent confidence intervals for labor supply elasticities, η,
and markdown values associated with different values of op-
timization friction δ for the offline labor market. All columns
use the pooled MN and WA administrative hourly wage
data. In columns 1, 2 and 3, we use hypothesized values of δ
of 0.01, 0.05 and 0.1 respectively. The labor supply elasticity,
η, and the markdown are estimated using the estimated ex-
tent of bunching, ω, and the hypothesized δ, using equations
17 and 6 in the paper. The 95 percent confidence intervals in
square brackets are estimated using 500 boostrap draws.
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Table 5: Bounds for Labor Supply Elasticity in Offline Labor Market - Heterogeneous δ
and η

Heterogeneous δ Heterogeneous η
Heterogeneous δ & η,

σδ = 0.1
Heterogeneous δ & η,

σδ = 1
A. E(δ|δ > 0)= 0.01
δ 0.001 0.001 0.001 0.001
η 1.769 1.811 2.670 2.004
95% CI [0.887, 5.303] [0.860, 5.705] [0.969, 7.385] [0.693, 5.670]

Markdown 0.361 0.356 0.272 0.333
95% CI [0.159, 0.530] [0.149, 0.538] [0.119, 0.508] [0.150, 0.591]

B. E(δ|δ > 0)= 0.05
δ 0.006 0.006 0.006 0.006
η 4.474 4.560 6.481 4.964
95% CI [2.436, 12.438] [2.364, 13.328] [2.615, 17.072] [1.954, 13.225]

Markdown 0.183 0.180 0.134 0.168
95% CI [0.074, 0.291] [0.070, 0.297] [0.055, 0.277] [0.070, 0.339]

G(0)= G 0.875 0.875 0.875 0.875

Notes. The table reports point estimates and associated 95 percent confidence intervals for labor supply
elasticities, η, and markdown values associated with hypothesized δ=0.01 and δ=0.05 for the offline labor
market. All columns use the pooled MN and WA administrative hourly wage counts. Heterogeneous δ and
η are allowed in columns 1 and 2, using equations 18 and 19, respectively. Columns 3 and 4 allow heteroge-
neous δ and η, and assume a conditional lognormal distribution of δ, using a deconvolution estimator based
on equation 20. The third column assumes a relatively concentrated distribution of δ (σδ = 0.1); whereas the
fourth column assumes a rather dispersed distribution (σδ = 1). In row A, we hypothesize δ = 0.01; whereas
it is δ = 0.05 in row B. The 90 and 95 percent confidence intervals in square brackets in columns 1 and 2 (3
and 4) are estimated using 500 (1000) boostrap draws.
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Table 7: Task Acceptance Probability by Offered Task Reward on MTurk

(1) (2) (3) (4) (5) (6) (7) (8)
Log Wage 0.068*** 0.081** 0.094** 0.111*** 0.137** 0.194***

(0.025) (0.036) (0.042) (0.040) (0.059) (0.063)

Jump at 10 -0.008 -0.017
(0.016) (0.027)

Spline -0.066 -0.104
(0.157) (0.261)

Local 0.002 0.036
(0.022) (0.044)

Global -0.005 -0.010
(0.015) (0.025)

η 0.083*** 0.098** 0.114** 0.132*** 0.162** 0.230***
(0.030) (0.044) (0.051) (0.048) (0.070) (0.075)

Sample Pooled Pooled Pooled Pooled Sophist. Sophist. Sophist. Sophist.
Sample Size 5017 5017 5017 5017 1618 1618 1618 1618

Notes. The reported estimates are logit regressions of task acceptance probabilties on log wages,
controlling for number of images done in the task (6 or 12), age, gender, weekly hours worked
on MTurk, country (India/US/other), reason for MTurk work, and an indicator for HIT ac-
cepted after pre-registered close date. Column 1 reports specification 1 that estimates the
labor-supply elasticity, without a discontinuity. Column 2 estimates specification 2, which tests
for a jump in the probability of acceptance at 10 cents. Column 3 estimates a knotted spline in
log wages, with a knot at 10 cents, and reports the difference in elasticities above and below 10
cents. Column 4 estimates specification 4, including indicator variables for every wage and
testing whether the different in acceptance probabilities between 10 and 9 cents is different
from the average difference between 12 and 8 (local) or the average difference between 5 and
15 (global). Columns 5-8 repeat 1-4, but restrict the sample to "sophisticates": Turkers who
respond that they work more than 10 hours a week and their primary motivation is money.
Robust standard errors in parentheses.
* p < 0.10, ** p < 0.5, *** p < 0.01
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Table 8: Estimates for Round Number Bunching, Labor Supply Elasticity and Optimiza-
tion Frictions: MTurk Data

Value of w0 $1.00

Excess mass at w0 0.027
(0.003)

Total missing mass -0.023
(0.010)

Missing mass below -0.014
(0.013)

Missing mass above -0.009
(0.013)

Test of equality of missing
mass below and above w0:

t-statistic -0.212

Bunching = Actual mass
Latent density 22.104

(16.040)

wL $0.83
wH $1.17

ω =(wH–w0)
w0

0.170
(0.064)

η 0.082
(0.026)

δ∗ 0.001
95% CI [0.000, 0.004]

G 0.748

Notes. The table reports estimates of excess bunching at threshold w0, missing mass in the interval around w0
as compared to the smoothed predicted probability density function, and the interval (wL, wH) from which
the missing mass is drawn. It also reports the bunching, andω, both estimated using observational MTurk
data, along with the experimentally estimated labor supply elasticity, η. Finally, the extent of optimization
frictions and markdown are estimated using η and ω using equations 17 and 6 in the paper. The 95 percent
confidence intervals in square brackets are estimated using 500 bootstrap replicates. Bootstrap standard
errors based on 500 draws are in parentheses.
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Online Appendix A

Additional Figures

Appendix Figure A.1 plots the histograms of hourly wages in (nominal) $0.10 bins using

administrative data separately for the states of Minnesota (panel A) and Washington (panel

B). Both are based on hourly wage data from UI records from 2003-2007. Hourly wages

are constructed by dividing quarterly earnings by the total number of hours worked in

the quarter. The counts are normalized by dividing by total employment in that state,

averaged over the sample period. The figure shows very clear bunching at multiples of

$1 in both states, especially at $10. Appendix Figure A.2 plots the overlaid histograms of

hourly wages, pooled across both MN and WA, in real $0.10 bins from 2003q4 and 2007q4,

and shows that the nominal bunching at $10.00 occurs at different places in the real wage

distribution in 2003 and 2007.
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Figure A.1: Histograms of Hourly Wages In Administrative Payroll Data from Min-
nesota and Washington, 2003-2007

Panel A: Minnesota
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Panel B: Washington
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Notes. The figure shows histograms of hourly wages in $0.10 (nominal) wage bins, averaged over
2003q1 to 2007q4, using administrative Unemployment Insurance payroll records from the states
of Minnesota (Panel A) and Washington (Panel B). Hourly wages are constructed by dividing
quarterly earnings by the total number of hours worked in the quarter. The counts in each bin
are normalized by dividing by total employment in that state, averaged over the sample period.
The UI payroll records cover over 95% of all wage and salary civilian employment in the states.
The counts here exclude NAICS 6241 and 814, home-health and household sectors, which were
identified by the state data administrators as having substantial reporting errors.
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Figure A.2: Histograms of Real Hourly Wages In Administrative Payroll Data from
Minnesota and Washington, 2003-2007
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Notes. The figure shows a histogram of hourly wages in $0.10 real wage bins (2003q1 dollars)
for 2003q1 and 2007q1, using pooled administrative Unemployment Insurance payroll records
from the states of Minnesota and Washington. The nominal $10 bin is outlined in dark for each
year—highlighting the fact that this nominal mode is at substantially different part of the real wage
distributions in these two periods. Hourly wages are constructed by dividing quarterly earnings
by the total number of hours worked in the quarter. The counts in each bin are normalized by
dividing by total employment in that state for that quarter. The UI payroll records cover over 95%
of all wage and salary civilian employment in the states. The counts here exclude NAICS 6241 and
814, home-health and household sectors, which were identified by the state data administrators as
having substantial reporting errors.
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Online Appendix B Bunching in Hourly Wage Data from

Current Population Survey and Supplement

For comparison, we next show an analogous histogram of hourly nominal wage data using

the national CPS data. In Figure B.3, we plot the nominal wage distribution in U.S. in 2003

to 2007 in $0.10 bins. There are notable spikes in the wage distribution at $10, $7.20 (the bin

with the federal minimum wage), $12, $15, along with other whole numbers. At the same

time, the spike at $10.00 is substantially larger than in the administrative data (exceeding

0.045), indicating rounding error in reporting may be a serious issue in using the CPS to

accurately characterize the size of the bunching.

We also use a 1977 CPS supplement, which matches employer and employee reported

hourly wages, to correct for possible reporting errors in the CPS data. We re-weight wages

by the relative incidence of employer versus employee reporting, based on the two ending

digits in cents (e.g., 01, 02, ... , 98, 99). As can be seen in Figure B.4, the measurement error

correction produces some reduction in the extent of visible bunching, which nonetheless

continues to be substantial. For comparison, the probability mass at $10.00 is around

0.02, which is closer to the mass in the administrative data than in the raw CPS. This is

re-assuring as it suggests that a variety of ways of correcting for respondent rounding

produce estimates suggesting a similar and substantial amount of bunching in the wage

distribution.
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Figure B.3: Histogram of Hourly Wages in National CPS data, 2003-2007
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Notes. The figure shows a histogram of hourly wages by $0.10 (nominal) wage bins, averaged
over 2003q1 and 2007q4, using CPS MORG files. Hourly wages are constructed by average weekly
earnings by usual hours worked. The sample is restricted to those without imputed earnings. The
counts here exclude NAICS 6241 and 814, home-health and household sectors. The histogram
reports normalized counts in $0.10 (nominal) wage bins, averaged over 2003q1 and 2007q4. The
counts in each bin are normalized by dividing by total employment, averaged over the sample
period.
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Figure B.4: Wage Bunching in CPS data, 2003-2007, Corrected for Reporting Error Using
1977 CPS supplement
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Notes. The figure shows a histogram of hourly wages by $0.10 (nominal) wage bins, averaged
over 2003q1 to 2007q4, using CPS MORG files, where individual observations were re-weighted
to correct for overreporting of wages ending in particular two-digit cents using the 1977 CPS
supplement. Hourly wages are constructed by dividing average weekly earnings by usual hours
worked. The sample is restricted to those without imputed earnings. The counts here exclude
NAICS 6241 and 814, home-health and household sectors. The histogram reports normalized
counts in $0.10 (nominal) wage bins, averaged over 2003q1 and 2007q4. The counts in each bin are
normalized by dividing by total employment, averaged over the sample period.
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Online Appendix C

Testing Discontinuous Labor Supply on Amazon Mechani-

cal Turk Observational Data

Our Amazon Mechanical Turk experiment focused on discontinuities at 10 cents, while our

bunching estimator used the excess mass at $1.00. In this appendix we present evidence

from observational data scraped from Amazon Mechanical Turk to show that there is also

no evidence of a discontinuity in worker response to rewards at $1.00. Our primary source

of data was collected by Panos Ipseiros between January 2014 and February 2016, and, in

principle, kept track of all HITs posted in this period.

We keep the discussion of the data and estimation details brief, as interested readers can

see details in Dube et al. (2018). Dube et al. (2018) combines a meta-analysis of experimental

estimates of the elasticity of labor supply facing requesters on Amazon Mechanical Turk

with Double-ML estimators applied to observational data.. That paper does not look at

discontinuities in the labor supply at round numbers.

Following Dube et al. (2018) we use the observed duration of a batch posting as a

measure of how attractive a given task is as a function of observed rewards and observed

characteristics. We calculate the duration of the task as the difference between the first

time it appears and the last time it appears, treating those that are present for the whole

period as missing values. We convert the reward into cents. We are interested in the labor

supply curve facing a requester. Unfortunately, we do not see individual Turkers in this

data. Instead we calculate the time until the task disappears from our sample as a function

of the wage. Tasks disappear once they are accepted. While tasks may disappear due to

requesters canceling them rather than being filled, this is rare. Therefore, we take the time

until the task disappears to be the duration of the posting—i.e., the time it takes for the

task to be accepted by a Turker. The elasticity of this duration with respect to the wage

will be equivalent to the elasticity of labor supply when offer arrival rates are constant
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and reservation wages have an exponential (constant hazard) distribution. We estimate

regressions of the form:

ln(durationh) = β× ln(rewardh) + δrequester + δhourposted + ε

Where h indexes HIT batches,and the specification includes requester fixed effects and

fixed effects for the hour the HIT batch is first posted. We also show specifications that

add keyword combination fixed effects (the keywords allow Turkers to look for particular

tasks), log of the initial number of HITs in the batch, and log of time allotted by the

requester. This will almost always be an overestimate of the actual time taken to complete

the task, but is likely correlated with it. Note that time allotted is also how much time

a Turker has to do the task, and if the task is too long relative to the time allotted, it

may expire before the Turker can complete the task. Hence short time allotted does not

necessarily imply the task is shorter, and Turkers may be averse to tasks that have too little

time allotted.

Results are shown in Table C.1. There is a clear negative relationship between rewards

and duration. If the distribution of reservation wages has a constant hazard and the rate

at which offers are received is constant, this implies an upward sloping labor supply

curve with a very low elasticity (< 1), but still considerably larger than our experimental

estimate on MTurk.20 We also show analogues of our experimental specifications from our

pre-analysis plan. The first approach tests for a discontinuity by adding an indicator for

rewards greater than or equal to 100 (“Jump at 100”). This level discontinuity is tested in

specifications 3 and 4, and there is no evidence of log durations becoming discontinously

larger above $1.00. The second approach tests for a slope break at $1.00 by estimating a

knotted spline that allows the elasticity to vary between 51 and 95 cents, 95 cents and $1.00,

20In Dube et al. (2018) we implement a more comprehensive adjustment for unobserved heterogeneity
using a double-machine-learning estimator proposed by Chernozhukov et al. (2017); this yields much
smaller labor supply elasticities relative to the fixed-effects specifications, and very close, not only to our
experimental estimates presented above, but also to the precision-weighted mean calculated from a number
of other experimentally estimated elasticities.
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and then greater than $1.00. The slope break specification is tested in specifications 5 and

6, where we report the change in slopes at $1.00 (“Spline”). Again, there is no evidence of

a change in the relationship between log duration and log reward between $0.95 and $1.00

versus greater than $1.00.
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Table C.1: Duration of Task Posting by Log Reward and Jump at $1.00

(1) (2) (3) (4) (5) (6)

Log Reward -0.663*** -0.842*** -0.689** -0.938*** -0.632* -0.976**
(0.171) (0.210) (0.274) (0.338) (0.329) (0.405)

Jump at 100 0.015 0.058
(0.116) (0.165)

Spline -0.243 0.287
(2.361) (3.347)

Additional controls:
Requester x Source FE Y Y Y Y Y Y
Hour Posted FE Y Y Y Y Y Y
Keyword FE N Y N Y N Y
Log Initial HITs N Y N Y N Y
Log Time Alloted N Y N Y N Y

Sample size 22,097 15,684 22,097 15,684 22,097 15,684

Notes. Sample is restricted to HIT batches with rewards between 51 and 149 cents. Columns 3,
4 and 8 estimate a specification testing for a discontinuity in the duration at $1.00, as in our
pre-analysis plan, while columns 5 and 6 estimate the spline specification testing for a change
in the slope of the log duration log reward relationship at $1.00, also from the pre-analysis plan.
Significance levels are * 0.10, ** 0.05, *** 0.01.
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Online Appendix D

Additional Experimental Details and Specifications from Pre-

analysis Plan

Figure D.1 shows screenshots from the experimental layout facing MTurk subjects. while

D.3 shows specifications parallel to those from the main text, except with the number

correct as the outcome, to measure responsiveness of subject effort to incentives. There is

no evidence of any effect of higher rewards on the number of images labelled.

In Tables D.1 and D.2 we show specifications from our pre-analysis plan that parallel

those in 7 and D.3, respectively. These were linear probability specifications in the level of

wages without any controls, instead of the logit specifications with log wages and controls

we show in the main text. We also pool the two different task volumes. The initial focus

of our experiment was to test for a discontinuity at 10 cents, which is unaffected by our

changes in specification. While the elasticity is qualitatively very similar, the logit-log

wage specification shown in the text is closer to our model, a variant of the model specified

by Card et al. (2016), and improves precision on the elasticity estimate.
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Figure D.1: Online Labor Supply Experiment on MTurk

Page 1: Consent Form

The instructions are the same on all subsequent pages, but are collapsed (though they can
be revealed by clicking the “Show” link).

Page 2: Demographic Info Sheet

1

Page 3: Image Tagging Task

Page 4: Option to Continue

2

Notes. The figure shows the screen shots for the consent form and tasks associated with the online labor
supply experiment on MTurk.
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Table D.3: Task quality by offered task reward on MTurk

(1) (2) (3) (4) (5) (6) (7) (8)
Log Wage -0.006 -0.002 0.011 0.001 0.011 0.031

(0.012) (0.017) (0.017) (0.022) (0.033) (0.034)

Jump at 10 -0.002 -0.006
(0.007) (0.013)

Spline -0.019 -0.052
(0.067) (0.127)

Local 0.003 0.012
(0.011) (0.022)

Global -0.003 -0.002
(0.006) (0.012)

η -0.006 -0.002 0.011 0.001 0.011 0.032
(0.012) (0.017) (0.017) (0.023) (0.034) (0.035)

Sample Pooled Pooled Pooled Pooled Sophist. Sophist. Sophist. Sophist.
Sample Size 4073 4073 4073 4031 1407 1407 1407 1396

Notes. The reported estimates are logit regressions of getting at least 1 out of 2 images correctly
tagged on log wages (conditional on accepting the task), controlling for number of images done
in the task (6 or 12), age, gender, weekly hours worked on MTurk, country (India/US/other),
reason for MTurk, and an indicator for HIT accepted after pre-registered close date. Column 1
reports specification 1 that estimates the labor-supply elasticity, without a discontinuity. Col-
umn 2 estimates specification 2, which tests for a jump in the probability of acceptance at 10
cents. Column 3 estimates a knotted spline in log wages, with a knot at 10 cents, and reports
the difference in elasticities above and below 10 cents. Column 4 estimates specification 4,
including indicator variables for every wage and testing whether the different in acceptance
probabilities between 10 and 9 cents is different from the average difference between 12 and 8
(local) or the average difference between 5 and 15 (global). Columns 5-8 repeat 1-4, but restrict
the sample to "sophisticates": Turkers who respond that they work more than 10 hours a week
and their primary motivation is money. Robust standard errors in parentheses.
* p < 0.10, ** p < 0.5, *** p < 0.01
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Online Appendix E

Theoretical extension: An efficiency wage interpretation where

effort depends on wage

In the main paper, we assume that the firm’s ability to set wages comes from monopsony

power. However, it may be recasted in terms of efficiency wages where wage affects

productivity: there, too, the employer will set wages optimally such that the impact of

a small change in wages around the optimum is approximately zero. In this section, we

show a very similar logic applies in an efficiency wage model with identical observational

implications as our monopsony model, with a re-interpretation of the labor supply elasticity

η as capturing the rate at which the wage has to increase to ensure that the no-shirking

condition holds when the firm wishes to hire more workers. Indeed, the observation that

the costs of optimization errors are limited when wages are a choice variable was originally

made by Akerlof and Yellen (1985) in the context of an efficiency wage model.

As in Shapiro and Stiglitz (1984), workers choose whether to work or shirk. Working

entails an additional effort cost e. Following Rebitzer and Taylor (1995), we allow the

detection of shirking, D(l), to fall in the amount of employment l(w).21 Workers quit with

an exogenous rate q. An unemployed worker receives benefit b and finds an offer at rate

s. The discount rate is r. All wage offers are assumed to be worth accepting; once we

characterize the wage setting mechanism, this implies a bound for the lowest productivity

firm. Finally, generalizing both Rebitzer and Taylor (1995) and Shapiro and Stiglitz (1984),

21In Shapiro and Stiglitz (1984), the detection probability is exogenously set. This produces some predic-
tions which are rather strong. For example, the model does not predict wages to vary with productivity, as
the no shirking condition that pins down the optimal wage does not depend on firm productivity. The same
is true for the Solow model, where the Solow condition is independent of firm productivity (see Solow 1979).
As a result, those models cannot readily explain wage dispersion that is independent of skill distribution,
which makes it less attractive to explain bunching. However, if we generalize the Shapiro-Stiglitz model to
allow the detection probability to depend on the size of the workforce as in Rebitzer and Taylor (1995), this
produces a link between productivity, firm size and wages. Going beyond Rebitzer and Taylor, we further
generalize the model to allow for heterogeneity in firm productivity, which produces a non-degenerate
equilbrium offer wage distribution.
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we allow the wages offered by firms to vary; indeed our model will predict that higher

productivity firms will pay higher wages—leading to equilibrium wage dispersion.

We can write the expected value of not shirking as:

VN(w) = w− e +
(1− q)VN(w)

1 + r
+

qVU

1 + r

The value of shirking can be written as:

VS(w) = w +
(1− q)(1− D)VS(w)

(1 + r)
+
(1− (1− q)(1− D))VU

(1 + r)

Finally, the value of being unemployed is:

VU = b +
sEVN + (1− s)VU

(1 + r)

The (binding) no shirking condition, NSC, can be written as:

VN(w) = VS(w)

Plugging in the expressions above and simplifying we get the no-shirking condition:

w =
r

1 + r
VU +

e(r + q)
D(l)(1− q)

We can further express VU as a function of the expected value of an offer VNand the

probability of receiving an offer, s, as well as the unemployment benefit b. However, for

our purposes, the key point is that this value is independent of the wage w and is taken to

be exogenous by the firm in its wage setting. Since detection probability D(l) is falling in l,

we can now write:

D(l) =
e (r + q)(

w− e + 1
1+r VU

)
(1− q)
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This generates a relationship between l and w:

l(w) = D−1

 e (r + q)(
w− e + 1

1+r VU
)

(1− q)

 = d


(

w− e + 1
1+r VU

)
(1− q)

e (r + q)


where d(x) = D−1( 1

x ). Since D′(x) < 0, we have d′(x) > 0. This is analogous to the labor

supply function facing the firm: to attract more workers who will work, one needs to pay

a higher wage because detection is decling in employment, D′(l) < 0. Therefore, we can

write the elasticity of the implicit labor supply function as:

l′(w)w
l(w)

=
d′(.)w

d(.)
× 1− q

e(r + q)

.

If we assume a constant elasticity d(x) function with elasticity ρ then the implicit

“effective labor” supply elasticity is also constant:

η =
l′(w)w

l(w)
= ρ× 1− q

e(r + q)

The elasticity is falling in effort cost e, exogenous quit rate q, as well as the discount

rate, r. It is also rising in the elasticity ρ, since a higher ρ means detection does not fall as

rapidly with employment.

The implicit effective labor supply function is then:

l(w) =
wη

C
=

wρ× 1−q
e(r+q)

C

which is identical to the monopsony case analyzed in the main text. For a firm with

productivity pi, profit maximization implies setting the marginal cost of labor to the

marginal revenue product of labor (pi), i.e., wi = η
1+η pi. 22

22We can also solve for VN = (E(w)−e)(1+r)
r−b(1+r) =

(
η

1+η E(p)−e
)

(1+r)

r−b(1+r) . This implies we can write the equi-
librium value of being unemployed as a function of the primitive parameters as follows: VU =

82



Finally, we can augment this labor supply function to exhibit left-digit bias. Consider

the case where for wage w ≥ w0 , the wage is perceived to be to equal to w̃ = w + g while

under w0 it is perceived to be w̃ = w. Now, the labor supply can be written as:

l(w) = D−1
(

e(r+q)
(w−e+ 1

1+r VU)(1−q)

)
= d

(
(w−e+ 1

1+r VU)(1−q)
e(r+q)

)
for w < w0

l(w) = D−1
(

e(r+q)
(w+g−e+ 1

1+r VU)(1−q)

)
= d

(
(w+g−e+ 1

1+r VU)(1−q)
e(r+q)

)
for w ≥ w0

Note that under the condition that d(x) has a constant elasticity, the implicit labor

supply elasticity continues to be constant both below and above w0. However, there is a

discontinuous jump up in the l(w) function at w0. Therefore, we can always appropriately

choose a γ such that this implicit labor supply function can be written as:

l(wj, γ) =
wη × γ

1wj≥w0

C
=

wρ× 1−q
e(r+q) × γ

1wj≥w0

C

Facing this implicit labor supply condition, firms will optimize:

Π(p, w) = (p− w)l(w, γ) + D(p)1w=w0

With a distribution of productivity, p, higher productivity firms will choose to pay more,

as the marginal cost of labor implied by the implicit labor supply function is equated with

the marginal revenue product of labor at a higher wage. Intuitively, higher productivity

firms want to hire more workers. But since detection of shirking falls with size, this requires

them to pay a higher wage to ensure that the no shirking condition holds. Similarly, all

of the analysis of firm-side optimization frictions goes through here as well. A low η

due to (say) high cost of effort now implies that a large amount of bunching at w0 can be

consistent with a small amount of optimization frictions, δ.

One consequence of this observational equivalence is that we cannot distinguish be-

tween efficiency wages and monopsony in our observational analysis. However, in our

experimental analysis, we find that the evidence from online labor markets is more consis-

(1 + r)
[

b
r+s −

e
1−b(1+r + ηE(p)

(1+η)(r−b(1+r)

]
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tent with a monopsony interpretation than an effort one, due to the absence of any effect of

wages on the number of images tagged correctly. At the same time, it is useful to note that

many of the implications from this efficiency wage model are quite similar to a monopsony

one: for instance, both imply that minimum wages may increase employment in equilib-

rium, as Rebitzer and Taylor show. Therefore, while understanding the importance of

specific channels is useful, the practical consequences may be less than what may appear

at first blush.
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Online Appendix F

Deconvolution estimator

In this appendix, we describe the deconvolution estimator we use to estimate the distribu-

tions of the the elasticity η and δ. Recall that if we condition on δ > 0,we can take logs of

equation 15 to obtain:

2 ln(ω) = − ln(η(1 + η) + ln(δ) = − ln(η(1 + η)) + E[ln (δ) |δ > 0] + ln(δres)

We make the assumption that δres is lognormally distributed, so that ln(δres) ∼ N(0, σ2
δ ),

and we fix E[ln (δ) |δ > 0] = ln (E(δ|δ > 0)) + 1
2 σ2

δ . We can use the fact that the cumulative

distribution function of 2 ln(ω) is given by 1− φ̂ (exp {2 ln(ω)}) to numerically obtain a

density for 2 ln(ω), where φ̂ is empirically estimated from the shape of the missing mass.

This then becomes a well-known deconvolution problem, as the density of − ln(η(1 + η))

is the deconvolution of the density of 2 ln(ω) by the Normal density we have imposed

on ln(δres). We can then recover the distribution of η,H(η), from the estimated density of

− ln(η(1 + η)).

To see this, consider the general case of when the observed signal (W) is the sum of the

true signal (X) and noise (U). (In our case W = 2 ln(ω)− E[ln (δ) |δ > 0] and U = ln(δres).)

W = X + U

Manipulation of characteristic functions implies that the density of W is fW(x) =

( fX ∗ fU) (x) =
∫

fX(x − y) fU(y)dy where ∗ is the convolution operator. Let Wj be the

observed sample from W.

Taking the Fourier transform (denoted by ∼) , we get that ˜fW =
∫

fW(x)eitxdx =

f̃X × ˜fU. To recover the distribution of X, in principle it is enough to take the inverse

Fourier transform of
˜fW
˜fU

. This produces a “naive” estimator f̂X = 1
2π

∫
e−itx ∑N

j=1
eitWj

N
φ(t) dt, but
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unfortunately this is not guaranteed to converge to a well-behaved density function. To

obtain such a density, some smoothing is needed, suggesting the following deconvolution

estimator:

f̂X =
1

2π

∫
e−itxK(th)

∑N
j=1

eitWj

N

φ(t)
dt

where K is a suitably chosen kernel function (whose Fourier transform is bounded and

compactly supported). The finite sample properties of this estimator depend on the choice

of fU. If ˜fU decays quickly (exponentially) with t (e.g. U is normal), then convergence

occurs much more slowly than if ˜fU decays slowly (i.e. polynomially) with t (e.g. U is

Laplacian). Note that once we recover the density for X = ln(η(1 + η)), we can easily

recover the density for η.

For normal U = ln(δres), Delaigle and Gijbels (2004) suggest a kernel of the form:

K(x) = 48
cos(x)
πx4 (1− 15

x2 )− 144
sin(x)
πx5 (1− 5

x2 )

This estimator also requires a choice of bandwidth which is a function of sample size.

Delaigle and Gijbels (2004) suggest a bootstrap-based bandwidth that minimizes the mean-

integral squared error, which is implemented by Wang and Wang (2011) in the R package

decon, and we use that method here.
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