
BST 273: Introduction to
Programming

Eric Franzosa (franzosa@hsph.harvard.edu)

Kevin Bonham (kbonham@broadinstitute.org)

http://franzosa.net/bst273

http://franzosa.net/bst273
http://franzosa.net/bst273

Outline for today’s class

•Course overview

• Introduction to programming & Python

•Computer setup

9/4/2018 2

Course Overview

Syllabus

• Everything I’m about to go over is covered in the course syllabus

• Syllabus is available in the “Course Documents” module on Canvas
◦ We will visit Canvas later in the lecture

◦ Who doesn’t already have access to Canvas?

9/4/2018 4

Course overview

• BST 273 is a half-semester introduction to computer programming
◦ Meetings Tuesdays and Thursdays (TR), 11:30am-1pm in this room (FXB G13)

• In-class activities, but no separate lab component

• Intended for students who have never programmed before
◦ Experience running commands in computing environments (R, MATLAB) OK

◦ Otherwise talk to me

• Entry-point for other courses with a programming prerequisite

9/4/2018 5

Course Staff

• Instructors (2):
◦ Eric Franzosa

◦ Kevin Bonham

◦ Calling us “Eric” and “Kevin” is fine

• Teaching Assistants (3):
◦ Shirley Liao

◦ Emma Thomas

◦ Marina Cheng

• Contact us through Canvas or via the email addresses from the syllabus
◦ If emailing, please include “BST 273” in the subject line

9/4/2018 6

Course Schedule

9/4/2018 7

Week Date Day Unit Lecture

0 09/04/2018 T Fundamentals Orientation

0 09/06/2018 R Skills Working on the command line

1 09/11/2018 T Fundamentals Variables, scalar data types and methods

1 09/13/2018 R Fundamentals Collection data types and iteration

2 09/18/2018 T Fundamentals Conditional logic and flow of control

2 09/20/2018 R Fundamentals Working with modules, examples with file I/O

3 09/25/2018 T Fundamentals Writing functions, references vs. data

3 09/27/2018 R Fundamentals Making an executable script

4 10/02/2018 T Skills Version control and intro final projects

4 10/04/2018 R Skills Testing, debugging, getting online help

5 10/09/2018 T Special topics Interacting with external programs

5 10/11/2018 R Special topics Regular expressions

6 10/16/2018 T Special topics Scientific computing with Python

6 10/18/2018 R Special topics Object-oriented Python

7 10/23/2018 T Special topics Parallelism and workflows in Python

7 10/25/2018 R Special topics Next steps for developing as a programmer

Textbooks / Readings

• Think Python 2nd Edition by Allen B. Downey
◦ Required

◦ Available in its entirety online at https://greenteapress.com/wp/think-python-2e/

◦ Available for purchase in-print if desired (not required)

◦ Readings will be listed per-lecture on Canvas

• Additional online readings will be linked from Canvas

9/4/2018 8

https://greenteapress.com/wp/think-python-2e/
https://greenteapress.com/wp/think-python-2e/
https://greenteapress.com/wp/think-python-2e/
https://greenteapress.com/wp/think-python-2e/
https://greenteapress.com/wp/think-python-2e/
https://greenteapress.com/wp/think-python-2e/

Course structure

• Five homework assignments (13% × 5 = 65%)

• Final project (25%)

•Participation (10%)

9/4/2018 9

Homework assignments

• Five assignments total (each 13% of final grade, 65% total)

• Weekly starting next week and excluding last two weeks

◦ i.e. Final Project work replaces homeworks here

• Published Mondays on Canvas

• Due via electronic Canvas hand-in the following Friday by 11:59pm

• Each homework will be a Python script

• More formatting details during next Tuesday’s lecture

◦ (Once first assignment is published)

9/4/2018 10

Final project

• 25% of final grade (~2 homeworks)

• Complete and document a Python script to solve a problem in data analysis

• A number of options will be provided, or you can design your own

◦ Options + signups will go out the third-to-last week of class

◦ Must seek instructor approval if designing your own (details to follow)

• Final project work will go on during last two weeks of class

• Due Friday October 26th 11:59pm (end of last class week)

9/4/2018 11

Participation

• 10% of final grade

• This class has an extensive hands-on, in-class component
◦ We expect you to be here and participate

• Attendance will be quantified using Canvas “Quizzes”
◦ No right or wrong answers, not graded, but must submit during class

◦ Practice “quiz” today re: office hours will have a longer submission window

• Breakdown
◦ Augmented by e.g. asking/answering questions in class

◦ Full credit (10%): 0-1 unexplained absences

◦ Medium credit (5-9%): 2-3 unexplained absences

◦ Low credit (0-4%): 4+ unexplained absences

9/4/2018 12

Late-work policy

• Please hand in assignments on time

• If 1 day late, assignment will be graded out of a maximum of 90%

• If 2 days late, maximum of 75%

• If 3 days late, maximum of 50%

• If 4+ days late, no credit

• Extensions may be granted if requested with reason at least 24 hours in
advance of the assignment deadline

9/4/2018 13

Collaboration policy

• DON’T

◦ Look at / copy another student’s assignment code

◦ Show your assignment code to another student

◦ Post assignment code online (in the Canvas Discussion Board or elsewhere)

◦ Treated as violations of the Academic Integrity policy (linked in full via Syllabus)

• DO

◦ Seek help for assignment code during Instructor/TA office hours

◦ Work with other students on in-class programming activities

◦ Discuss general concepts with other students

◦ Consult instructors if you have questions about the OK-ness of your collaboration

9/4/2018 14

Other class policies

• Please bring a laptop with you to class for in-class programming

◦ If this poses a problem, please talk to us

• Audits are OK if there’s room – priority goes to registered students

◦ Contact me to be added to Canvas as a “guest”

• We know it’s lunch time, but please don’t eat during class

◦ If you bring a drink, please keep it off the tables to avoid computer spills

9/4/2018 15

Office hours

• Instructor Office Hours
◦ Currently Fridays, 11am-12pm, SPH2 rm. 434

◦ I will be there at the above time this Friday for general course questions

◦ Some room to negotiate on time if this is universally bad (see Canvas poll)

• TA Office Hours
◦ To be scheduled via Canvas poll

◦ 1 hour per TA per week

◦ Biased toward the end of the week (closer to homework hand-in)

• Fill out Canvas poll ASAP
◦ Would like to have office hours finalized by next class

9/4/2018 16

Questions?
(franzosa@hsph.harvard.edu)

Look at Canvas

Philosophy of
Programming

Learning to Program

• Why do it?

◦ Make easy tasks easy

◦ Make hard tasks possible

◦ Improve accuracy and efficiency in your work

◦ It’s empowering!

• What does it take?

◦ Learn to identify problems that computers can solve

◦ Learn to describe those problems in a way that computers can understand

◦ Learn a programming language to translate those descriptions into code

9/4/2018 20

Learning to Program

• Why do it?

◦ Make easy tasks easy

◦ Make hard tasks possible

◦ Improve accuracy and efficiency in your work

◦ It’s empowering!

• What does it take?

◦ Learn to identify problems that computers can solve (not too bad)

◦ Learn to describe those problems in a way that computers can understand (harder)

◦ Learn a programming language to translate those descriptions into code (not too bad)

◦ Analogous to learning spelling/grammar vs. learning to write well

9/4/2018 21

How computers “think”

• Computers are well-suited to solving problems that can be expressed as
transformations of data (converting input data into output data)

• These transformations are algorithms: predefined rules or calculations we
apply to data in pursuit of solving problems

• The goal of programming is to translate an algorithm so a computer can
understand it and apply it to arbitrary data

9/4/2018 22

Input
Data

Output
Data

Algorithm

List of numbers Sum of numbers

Pattern and text Locations of pattern in text

Atmospheric data Weather prediction

How computers “think” (pros and cons)

• Computers work very quickly, performing millions of calculations per second

◦ Computers are fast, even when programmed naively

• Computers do exactly what you tell them to do*

◦ They don’t make their OWN mistakes

• Computers don’t read between the lines / have good intuition

◦ They do only what you tell them to do explicitly

• Computers do exactly what you tell them to do*

◦ They will follow YOUR mistakes without question, often without telling you

9/4/2018 23

An example with sorting

9/4/2018 24

25 4 11 9 1 8 10 2 2 6

1 2 2 4 6 8 9 10 11 25

Consider some unsorted numbers (input data):

I’m sure you could tell me that the sorted version (output data) is this:

But how did you get there?

An example with sorting

9/4/2018 25

25 4 11 9 1 8 10 2 2 6

Consider some unsorted numbers (input data):

An algorithm for sorting (that works well for us humans) is to iteratively find,
copy, and eliminate the smallest remaining number…

Output data:

25 4 4 4 1 1 1 1 1 1

25 4 4 4 4 4 2 2 2

1 2 2 4 6 8 9 10 11 25

4

An example with sorting

• “Keep finding the smallest number” is a generic algorithm

◦ It will work on any numbers (ties, fractions, etc.)

◦ It will work on arbitrarily large lists of numbers

• Note how the algorithm defined a simple but explicit procedure (“keep finding
the smallest number”) and repeated it until we had a complete solution

◦ This is a common theme in algorithms / programming

◦ Unlike us, a computer can repeat simple steps without getting tired / making mistakes

• Practice decomposing intuitive procedures into generic algorithms

◦ We’ll do something with this on the first homework

9/4/2018 26

Programming vs. Computer Science

• Computer Science is concerned with, among other things, finding the best
algorithm to solve a given problem
◦ With “best” usually defined as “fastest” or “requiring the fewest steps”

• The “keep finding the smallest number” algorithm is not particularly efficient
because it requires us to repeat a lot of work
◦ E.g. repeatedly considering/rejecting the first number, 25, as the smallest

• There are faster search algorithms out there, but…

9/4/2018 27

First Rule of Programming:
First get it right – worry about speed later (or never)

Questions?
(franzosa@hsph.harvard.edu)

Python

Introduction to Python

• We’ll be learning to program in Python in this course

• Python exists today in two major flavors

◦ Python 2.x (getting old)

◦ Python 3.x (the best place to get started)

◦ Aside from a couple of things, they are superficially very similar

• Invented by Dutch programmer Guido van Rossum c. 1991

• Named after Monty Python, not the snake

• Python programmers sometimes called “Pythonistas”

◦ Mostly by themselves…

9/4/2018 30

Introduction to Python

• Python is a “high-level” programming language
◦ Designed to be easier for humans to read than computers

◦ Emphasis on words over symbols in code

◦ White space used to denote blocks of code (rather than symbols)

• Python is an interpreted programming language
◦ Computer directly follows your code, without pre-compiling to something else

• Large “Standard Library” (built-in code) + 1,000s of installable packages

9/4/2018 31

Second Rule of Programming:
Re-using working code is “appropriately lazy”

Ex. Python sorted() function

Introduction to Python

• Python favors speed/ease of development over speed of execution

◦ Good for solving personal research questions (run-once scripts)

◦ Good for solving objectively “fast” problems (seconds of compute)

◦ Good for “stitching” results from highly optimized code

• Blazingly fast compared to manual computation

• Slow parts can be sped up (optimized) later if needed

◦ We’ll talk about fast numerical computing in Python later in the course

• Used across many industries and academic fields

9/4/2018 32

Introduction to Python

• Python bears a striking resemblance to “pseudocode”: a language-agnostic
way of representing computer algorithms (often in publications)

9/4/2018 33

Example of pseudocode Example of Python code

Not that it’s a popularity contest, but…

9/4/2018 34

Images sourced from:
https://stackify.com/popular-programming-languages-2018/

Growth in Stack Overflow
questions

Questions?
(franzosa@hsph.harvard.edu)

Transition to
Computer Setup

