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Outline for today’s class 

•Course overview 

• Introduction to programming & Python 

•Computer setup 
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Course Overview 



Syllabus 

• Everything I’m about to go over is covered in the course syllabus 

• Syllabus is available in the “Course Documents” module on Canvas 
◦ We will visit Canvas later in the lecture 

◦ Who doesn’t already have access to Canvas? 
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Course overview 

• BST 273 is a half-semester introduction to computer programming 
◦ Meetings Tuesdays and Thursdays (TR), 11:30am-1pm in this room (FXB G13) 

• In-class activities, but no separate lab component 

• Intended for students who have never programmed before 
◦ Experience running commands in computing environments (R, MATLAB) OK 

◦ Otherwise talk to me 

• Entry-point for other courses with a programming prerequisite 
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Course Staff 

• Instructors (2): 
◦ Eric Franzosa 

◦ Kevin Bonham 

◦ Calling us “Eric” and “Kevin” is fine 

• Teaching Assistants (3): 
◦ Shirley Liao 

◦ Emma Thomas 

◦ Marina Cheng 

• Contact us through Canvas or via the email addresses from the syllabus 
◦ If emailing, please include “BST 273” in the subject line 
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Course Schedule 
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Week Date Day Unit Lecture 

0 09/04/2018 T Fundamentals Orientation 

0 09/06/2018 R Skills Working on the command line 

1 09/11/2018 T Fundamentals Variables, scalar data types and methods 

1 09/13/2018 R Fundamentals Collection data types and iteration 

2 09/18/2018 T Fundamentals Conditional logic and flow of control 

2 09/20/2018 R Fundamentals Working with modules, examples with file I/O 

3 09/25/2018 T Fundamentals Writing functions, references vs. data 

3 09/27/2018 R Fundamentals Making an executable script 

4 10/02/2018 T Skills Version control and intro final projects 

4 10/04/2018 R Skills Testing, debugging, getting online help 

5 10/09/2018 T Special topics Interacting with external programs 

5 10/11/2018 R Special topics Regular expressions 

6 10/16/2018 T Special topics Scientific computing with Python 

6 10/18/2018 R Special topics Object-oriented Python 

7 10/23/2018 T Special topics Parallelism and workflows in Python 

7 10/25/2018 R Special topics Next steps for developing as a programmer 



Textbooks / Readings 

• Think Python 2nd Edition by Allen B. Downey 
◦ Required 

◦ Available in its entirety online at https://greenteapress.com/wp/think-python-2e/ 

◦ Available for purchase in-print if desired (not required) 

◦ Readings will be listed per-lecture on Canvas 

• Additional online readings will be linked from Canvas 
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Course structure 

• Five homework assignments (13% × 5 = 65%) 

• Final project (25%) 

•Participation (10%) 
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Homework assignments 

• Five assignments total (each 13% of final grade, 65% total) 

• Weekly starting next week and excluding last two weeks 

◦ i.e. Final Project work replaces homeworks here 

• Published Mondays on Canvas 

• Due via electronic Canvas hand-in the following Friday by 11:59pm 

• Each homework will be a Python script 

• More formatting details during next Tuesday’s lecture 

◦ (Once first assignment is published) 
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Final project 

• 25% of final grade (~2 homeworks ) 

• Complete and document a Python script to solve a problem in data analysis 

• A number of options will be provided, or you can design your own 

◦ Options + signups will go out the third-to-last week of class 

◦ Must seek instructor approval if designing your own (details to follow) 

• Final project work will go on during last two weeks of class 

• Due Friday October 26th 11:59pm (end of last class week) 
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Participation 

• 10% of final grade 

• This class has an extensive hands-on, in-class component 
◦ We expect you to be here and participate 

• Attendance will be quantified using Canvas “Quizzes” 
◦ No right or wrong answers, not graded, but must submit during class 

◦ Practice “quiz” today re: office hours will have a longer submission window 

• Breakdown 
◦ Augmented by e.g. asking/answering questions in class 

◦ Full credit (10%): 0-1 unexplained absences 

◦ Medium credit (5-9%): 2-3 unexplained absences 

◦ Low credit (0-4%): 4+ unexplained absences 
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Late-work policy 

• Please hand in assignments on time 

• If 1 day late, assignment will be graded out of a maximum of 90% 

• If 2 days late, maximum of 75% 

• If 3 days late, maximum of 50% 

• If 4+ days late, no credit 

• Extensions may be granted if requested with reason at least 24 hours in 
advance of the assignment deadline 
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Collaboration policy 

• DON’T 

◦ Look at / copy another student’s assignment code 

◦ Show your assignment code to another student 

◦ Post assignment code online (in the Canvas Discussion Board or elsewhere)  

◦ Treated as violations of the Academic Integrity policy (linked in full via Syllabus) 

• DO 

◦ Seek help for assignment code during Instructor/TA office hours 

◦ Work with other students on in-class programming activities 

◦ Discuss general concepts with other students 

◦ Consult instructors if you have questions about the OK-ness of your collaboration 
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Other class policies 

• Please bring a laptop with you to class for in-class programming 

◦ If this poses a problem, please talk to us 

• Audits are OK if there’s room – priority goes to registered students 

◦ Contact me to be added to Canvas as a “guest” 

• We know it’s lunch time, but please don’t eat during class 

◦ If you bring a drink, please keep it off the tables to avoid computer spills 
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Office hours 

• Instructor Office Hours 
◦ Currently Fridays, 11am-12pm, SPH2 rm. 434 

◦ I will be there at the above time this Friday for general course questions 

◦ Some room to negotiate on time if this is universally bad (see Canvas poll) 

• TA Office Hours 
◦ To be scheduled via Canvas poll 

◦ 1 hour per TA per week 

◦ Biased toward the end of the week (closer to homework hand-in) 

• Fill out Canvas poll ASAP 
◦ Would like to have office hours finalized by next class 
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Questions? 
(franzosa@hsph.harvard.edu) 



Look at Canvas 



Philosophy of 
Programming 



Learning to Program 

• Why do it? 

◦ Make easy tasks easy 

◦ Make hard tasks possible 

◦ Improve accuracy and efficiency in your work 

◦ It’s empowering! 

• What does it take? 

◦ Learn to identify problems that computers can solve 

◦ Learn to describe those problems in a way that computers can understand 

◦ Learn a programming language to translate those descriptions into code 
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Learning to Program 

• Why do it? 

◦ Make easy tasks easy 

◦ Make hard tasks possible 

◦ Improve accuracy and efficiency in your work 

◦ It’s empowering! 

• What does it take? 

◦ Learn to identify problems that computers can solve (not too bad) 

◦ Learn to describe those problems in a way that computers can understand (harder) 

◦ Learn a programming language to translate those descriptions into code (not too bad) 

◦ Analogous to learning spelling/grammar vs. learning to write well 
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How computers “think” 

• Computers are well-suited to solving problems that can be expressed as 
transformations of data (converting input data into output data) 

• These transformations are algorithms: predefined rules or calculations we 
apply to data in pursuit of solving problems 

• The goal of programming is to translate an algorithm so a computer can 
understand it and apply it to arbitrary data 
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Input 
Data 

Output 
Data 

Algorithm 

List of numbers Sum of numbers 

Pattern and text Locations of pattern in text 

Atmospheric data Weather prediction 



How computers “think” (pros and cons) 

• Computers work very quickly, performing millions of calculations per second 

◦ Computers are fast, even when programmed naively 

• Computers do exactly what you tell them to do* 

◦ They don’t make their OWN mistakes 

• Computers don’t read between the lines / have good intuition 

◦ They do only what you tell them to do explicitly 

• Computers do exactly what you tell them to do* 

◦ They will follow YOUR mistakes without question, often without telling you 
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An example with sorting 
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25 4 11 9 1 8 10 2 2 6 

1 2 2 4 6 8 9 10 11 25 

Consider some unsorted numbers (input data): 

I’m sure you could tell me that the sorted version (output data) is this: 

But how did you get there? 



An example with sorting 
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25 4 11 9 1 8 10 2 2 6 

Consider some unsorted numbers (input data): 

An algorithm for sorting (that works well for us humans) is to iteratively find, 
copy, and eliminate the smallest remaining number… 

Output data: 

25 4 4 4 1 1 1 1 1 1 

25 4 4 4 4 4 2 2 2 

1 2 2 4 6 8 9 10 11 25 

4 



An example with sorting 

• “Keep finding the smallest number” is a generic algorithm 

◦ It will work on any numbers (ties, fractions, etc.) 

◦ It will work on arbitrarily large lists of numbers 

• Note how the algorithm defined a simple but explicit procedure (“keep finding 
the smallest number”) and repeated it until we had a complete solution 

◦ This is a common theme in algorithms / programming 

◦ Unlike us, a computer can repeat simple steps without getting tired / making mistakes 

• Practice decomposing intuitive procedures into generic algorithms 

◦ We’ll do something with this on the first homework 

9/4/2018 26 



Programming vs. Computer Science 

• Computer Science is concerned with, among other things, finding the best 
algorithm to solve a given problem 
◦ With “best” usually defined as “fastest” or “requiring the fewest steps” 

• The “keep finding the smallest number” algorithm is not particularly efficient 
because it requires us to repeat a lot of work 
◦ E.g. repeatedly considering/rejecting the first number, 25, as the smallest  

• There are faster search algorithms out there, but… 
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First Rule of Programming: 
First get it right – worry about speed later (or never) 



Questions? 
(franzosa@hsph.harvard.edu) 



Python 



Introduction to Python 

• We’ll be learning to program in Python in this course 

• Python exists today in two major flavors 

◦ Python 2.x (getting old) 

◦ Python 3.x (the best place to get started) 

◦ Aside from a couple of things, they are superficially very similar 

• Invented by Dutch programmer Guido van Rossum c. 1991 

• Named after Monty Python, not the snake 

• Python programmers sometimes called “Pythonistas” 

◦ Mostly by themselves… 

9/4/2018 30 



Introduction to Python 

• Python is a “high-level” programming language 
◦ Designed to be easier for humans to read than computers 

◦ Emphasis on words over symbols in code 

◦ White space used to denote blocks of code (rather than symbols) 

• Python is an interpreted programming language 
◦ Computer directly follows your code, without pre-compiling to something else 

• Large “Standard Library” (built-in code) + 1,000s of installable packages 
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Second Rule of Programming: 
Re-using working code is “appropriately lazy” 

Ex. Python sorted( ) function 



Introduction to Python 

• Python favors speed/ease of development over speed of execution 

◦ Good for solving personal research questions (run-once scripts) 

◦ Good for solving objectively “fast” problems (seconds of compute) 

◦ Good for “stitching” results from highly optimized code 

• Blazingly fast compared to manual computation 

• Slow parts can be sped up (optimized) later if needed 

◦ We’ll talk about fast numerical computing in Python later in the course 

• Used across many industries and academic fields 

9/4/2018 32 



Introduction to Python 

• Python bears a striking resemblance to “pseudocode”: a language-agnostic 
way of representing computer algorithms (often in publications) 
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Example of pseudocode Example of Python code 



Not that it’s a popularity contest, but… 
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Images sourced from: 
https://stackify.com/popular-programming-languages-2018/ 

Growth in Stack Overflow 
questions 



Questions? 
(franzosa@hsph.harvard.edu) 



Transition to 
Computer Setup 


