
Lecture 03 - Variables, Scalars and FunctionsLecture 03 - Variables, Scalars and Functions
2018-09-11 Kevin Bonham, PhD

OutlineOutline
Meaning vs syntax
Variables and methods
Types of information (scalars)

Hands-on: working with Booleans and Strings

Learning OjectivesLearning Ojectives
At the end of this class period, you should be able to:

1. Identify and explain the difference between common scalar types
2. Create and modify variables in python
3. Perform basic arithmetic calculations in code
4. Manipulate strings and print the results to the console

Meaning vs SyntaxMeaning vs Syntax
A programming "language" is really a translation

Human intent --> machine code
There are two basic features in any language:

Data (information)
Instructions (actions)

The type of translation between intent and machine code is the "syntax"The type of translation between intent and machine code is the "syntax"
For example, to ask the computer to display some text on the screen...

In python 2: print "Hello, World!"
In python 3: print("Hello, World!")
In julia: println("Hello, World!")
In java: System.out.println("Hello, World!")

We will be using python3 syntaxWe will be using python3 syntax
But many (most?) of the concepts you learn in this course are applicable to other languages
too. Just append in {LANGUAGE} to your google search to learn the syntax. Eg:

In [28]: for language in ["python 2", "python 3", "julia", "java", "ruby", "perl"]:
 print("How do I print something to the screen in {}?".format(language))

How do I print something to the screen in python 2?
How do I print something to the screen in python 3?
How do I print something to the screen in julia?
How do I print something to the screen in java?
How do I print something to the screen in ruby?
How do I print something to the screen in perl?

ExerciseExercise
Find the syntax for exponentiation in python

In this course, we will not always provide the answer ahead of time. Many solutions are just
a Google (or Bing) search away.

In []: # make this cell return 2 raised to the eighth power

2 8

Variables store informationVariables store information
It is often useful to pass around data with names, rather than passing around the values
themselves.

In [29]:

But we can "assign" it to a variable (in this case, x) with =:

In [30]:

2 + 2 # this value isn't stored anywhere

x = 2 + 2

Out[29]: 4

Now we can access the value in the variable:

In [31]:

In [32]:

x

print("The value of x is", x)

Out[31]: 4

The value of x is 4

And perform operations with it:

In [33]: x * 4

Out[33]: 16

Variables behave exactly like their valuesVariables behave exactly like their values
In other words,

In [34]:

is identical to

In [35]:

print("The value of x is", 4)

x = 4
print("The value of x is", x)

The value of x is 4

The value of x is 4

Variables can be reassignedVariables can be reassigned
In [36]:

In [37]:

counter = 1
counter

counter = counter + 1 # can also write `counter += 1`
counter

Out[36]: 1

Out[37]: 2

In [38]:

Poll: Week 1, lecture 3Poll: Week 1, lecture 3

Question 1Question 1

What is the value of the counter variable?

1. 1
2. 2
3. 10
4. 11

counter = 1

This line says: perform the following action 10 times
for i in range(10):
 # This line says, add 1 to the value of counter
 counter = counter + 1

In []: counter

Pay attention to the difference between the following:

In [39]: # This is identical to the previous version we saw
counter = 1
for i in range(10):
 counter = counter + 1

What's different here?
counter_2 = 1
for i in range(10):
 counter_2 + 1

Poll: Week 1, lecture 3Poll: Week 1, lecture 3

Question 2Question 2

What is the value of the variable counter_2?

1. 1
2. 2
3. 10
4. 11

"Functions" perform actions on data"Functions" perform actions on data
You've already seen a couple of functions in action eg:

In [40]: print("Hello, World!")

for i in range(10):
 counter = counter + 1

Hello, World!

Functions may also "return" resultsFunctions may also "return" results
In [41]:

In [42]:

sum([1,2,3,4])

print("Hi, I'm Z!")

Out[41]: 10

Hi, I'm Z!

When we assign variables with functions we assign the "return" value of the function

In [43]:

In []:

y = sum([1,2,3,4])
z = print("Hi, I'm Z!")

print(y)
print(z)

Hi, I'm Z!

Functions take 0 or more "arguments"Functions take 0 or more "arguments"
In []: s1 = "Hello,"

s2 = "World!"

print(s1)
print(s2)
print()
print(s1, s2) # arguments are separated by commas

When writing functions, arguments (When writing functions, arguments (args) are like variables) are like variables

In []: def weird_addition(number1, number2):
 result = 2 * (number1 + number2)
 return result

weird_addition(3, 10)

Complete the functionComplete the function
Complete the following function to divide the �rst argment by the square of the second
argument and return the result.

When this code block is evaluated, it should print "42.0".

In []: def square_divide(): # What should the arguments for this function be?
 sd = n1 / n2 ** 2 # In python, `**` is the syntax for exponents
 # don't forget to return the result

result = square_divide(168, 2)

print(result)

Types of information (scalars)s of information (scalars)
Different sorts of information are stored differently by computers
Most programming languages have built-in data types

Most also have the ability to create your own
Common simple data types are:

Strings: sequences of characters surrounded by quotes: "Hello,
World!"
Integers: positive or negative whole numbers: 42
Floats: numbers with decimals: 3.142
Booleans: binary values, True or False

The actions of functions depend on their argumentsThe actions of functions depend on their arguments
In []:

In []:

In []:

In []:

"Hello, " + "World!"

20 + 22

20 + 22.0

20 + "22.0"

"Scalars" are single values"Scalars" are single values
Ints, Floats, and Bools are examples of scalars
There are also containers for holding multiple objects (Thursday)
Strings are weird

Can be thought of as scalars
Can be thought of as array of characters

A �nal note on python functionsA �nal note on python functions
Many python types have internal "methods"
Methods are another name for functions that act on a type
In python, internal methods are called with dot syntax

In []: my_string = "I am a happy string, all held together"
my_string.split()

Internal methods may also take arguments

In []: my_other_string = "Please! Dont pull me apart! I cant take it!"
my_other_string.split("!")

Hands on practiceHands on practice
Download the 03-variables-scalars-functions.ipynb �le from Canvas

Launch with jupyter notebook
Execute the cells in order (shift+enter evaluates a cell)

Cells preceded by a bold question may require some editing to the the correct
output

expected output will be in bold italics
Try to �x errors or correct the code to get the right output.

Googling is permitted, encouraged even! Collaboration is also ok, but make sure you
understand what's happening.

Working with logic / booleansWorking with logic / booleans
Boolean values are binary values: True or False. These values are returned when we ask

questions about equality or compare values to see if one is less than or greater than the
other

In python, the syntax for this is == for "is equal?", != for "is not equal?", > and < for "is

greater than?" and "is less than?", and >= and <= for "is greater/less than or equal to?"

For example (see if you can predict the outcome before you evaluate the cell):

In []:

In []:

In []:

In []:

In []:

In []:

We can also do

In []:

In []:

In []:

In each of the following, change only one boolean value to get the cell to return True

1 == 1.0

1 == 2

1 != 2

100 > 10

100 < 10 * 10

100 <= 10 * 10

boolean logic (https://en.wikipedia.org/wiki/Boolean_algebra#Operations)

True and False

x = 1
y = 10

y < x or x * 10 == y

True and not False

https://en.wikipedia.org/wiki/Boolean_algebra#Operations

In []:

In []:

In []:

In []:

In []:

In each of the following, change only one of the following:

== (is equal?) to != (is not equal?) or vice versa

and to or or vice versa

insert or remove a not

to get the cell to evaluate to True

NOTE: In most cases there are multiple correct answers. Try out different methods.

False or False # eg, make one of these True

False and True

pay attention to order of operations
False and True or False

False or True and False

False or (True and False)

In []:

In []:

In []:

In []:

In []:

String practiceString practice
Strings are sequences of characters. You can concatenate (merge) strings by adding them
together.

In []:

Some arithmetic operations also work:

In []:

e = 2.72
pi = 3.14
lue = 42 # Life, the Universe and Everything

e < pi and not pi > lue

e == pi or e == lue

False and e == pi or e == lue

(False and False or False) and True

"What makes strings less than?" < "I bet I know..."

"One String. " + "Two String. " + "Red String. " + "Blue String."

"Why? Because. " * 10

Notice that the spaces have to be included when concatenating:

In []:

When printing, spaces are added between arguments

In []:

The following strings will be used in some of the following exercises. Evaluate the cell, but
do not change it.

In []:

Get the output of each of the following cells to match the text in italics above it. Try
adding the least amount of text possible.

a = "No"
b = "bueno"
a + b

print(a, b)

s1 = "The short"
s2 = "brown fox"
s3 = "jumped over"
s4 = "the lazy dog"
s5 = "ban"
s6 = "ana"
s7 = "na"

"The short brown fox jumped over the lazy dog"

In []:

Same thing, but you can't add commas

In []:

bananananananana

In []:

Recall that the .split() function acts on a string to divide it at spaces (if no arguments

are passed), or at a character if a character is passed as an argument.

In []:

The .join() function does the inverse. It's a method of a string (the separator) and takes a

list as an argument (we'll learn more about lists on Thursday, it's what's returned by

print(s1, s4)

print(s1 + s2, s3, s4)

print(s5 + s6 + s7) # you can do this with only 2 characters

a = "Whoa... what happened?".split()
a

.split())

In []:

Get the following to return The-short-brown-fox-jumped-over-the-lazy-dog

In []:

" ".join(a)

my_string = s1 + ' ' + s2 + ' ' + s3 + ' ' + s4

my_split = my_string.split()

join(my_split)

