
Conditionals and Flow of Control
Eric Franzosa, Ph.D. (franzosa@hsph.harvard.edu)
2018-09-18

Outline
HW2 + of�ce hours notes
Review of key concepts from week 1
Boolean values
Comparative and logical operators
Conditionals: if/elif/else
The while loop and loop control

Practice

Review: Variables
A variable is a "bucket" for storing data (or a reference to data).
Acting on a variable is the same as acting on the data it contains (or refers to).

In []:

In []:

"hello, world!" .upper()

message = "hello, world!"
message.upper()

Review: Scalar Data
We'll use four types of scalar data in this course

strings

ints (integers)

floats (decimal numbers)

boolean values (more on those toda y)

Scalar data are immutable: operations on the data don't change the data.

In []:

Scalar data are "updated" b y overwriting the variables that contain them.

In []:

x = 5
x + 5
print(x)

y = 5
y = y + 5
print(y)

Review: Collections
We'll use three main data collections in this course:

lists are ordered collections of elements

dicts (dictionaries) are mappings fr om one type of data to another

sets are unordered collections of unique elements

Collections are mutable: we can change them after the y are created.

In []:

In []:

x = [0,1,2,3,4]
print(x)

x[0] = "Hello"
x.append("World")
print(x)

Review: Transformations of Data
In Python we can transform data using functions, methods, and operators.

In []:

In []:

The piece of data that "owns" acts as an implied �rst argument: in other words,
x.method() behaves similarly to method(x).

functions take data as arguments and return some output
sum([1, 2, 3, 4, 5])

methods are functions associated with particular data
"hello, world!" .upper()

Operators are usually symbo ls and act on the data surrounding them (called operands).

In []:

The same operator can do different things depending on the types of the surrounding

data:

In []:

In []:

5 + 5

"5" + "5"

[5] + [5]

Review: the for loop
The for loop allows us to repeat a block of code. Properties of the for loop:

De�nition of one (or more) temporary variables (e.g. x below)

Which store the elements of an iter able piece of data (e.g. a list of numbers)
Which are manipulated in an indented block of code

In []: for x in [0,1,2,3,4]:
 x = x + 1
 # note: a new aspect of print(), ending with " " rather than a new line
 print(x, end=" ")

Outline
HW2 + of�ce hours notes
Review of key concepts from week 1
Boolean values
Comparative and logical operators
Conditionals: if/elif/else
The while loop and loop control

Practice

True and False
There are only two Boolean values: True and False. They are used by computers to

track objectively true and false statements within code.

"The blue whale is the largest mammal": Objectively true.

"Texas is the largest of the 50 U nited States": Objectively false.

"The grizzly bear is the best type of bear": An opinion. Neither objectiv ely true nor
false.

Comparative operators
Comparative operators return True/False values:

== : test of equality

!= : test of inequality ("not equals")

< and > : less-than / greater-than

<= and >= : less-than-or-equal-to / greater-than-or-equal-to

In []:

In []:

In []:

== returns True if the surrounding values are equal...
5 == 5

...and False otherwise
5 == -5

!= returns the opposite of ==
5 != -5

Be careful not to confuse = and ==.

= is the assignment operator: puts data into a variable.

== is the test of equality: evaluates if two pieces of data are equal.

Very common programming mix-up.

Note that neither = nor == are direct analogs of = as it's used in math.

= in math is an assertion: x = 5 implies x is 5.
== poses a question: x == 5 asks "Is x equal to 5?" (it might not be).

= is an action: x = 5 sets the value of x to 5.

Aside: Checking divisibility with == with %
% is the modulus operator.

returns the remainder when we divide x by y.

x % y is read "x mod y" (similar to how x * y is read "x times y").

In []:

If x mod y is 0, then x divides evenly into y.
For example, if x mod 2 is 0, then x is even.
We will use this a lot today.

In []:

5 % 2

10 % 2 == 0

Comparative operators: <, >, <=, >=
In []:

In []:

In []:

2 < 3

3 < 3

3 <= 3

Comparative operators work on strings as well (where they indicate alphabetical
order). It can be helpful to think of x < y as meaning "does x come before y in sorted

list?"

In []:

In []:

In []:

"a" < "b"

"b" < "a"

"a" > "A"

Comparative operators: in
in is a special operator in Python that checks for "membership".

In []:

In []:

In []:

is the item present in a list?
1 in [1,2,3,4,5]

is the item a key of a dictionary?
"apple" in {"apple":0.99, "banana":0.59}

is the item (a string) a substring of a longer string?
"Eric" in "America"

Logical operators: and and or
The operators and and or allow us to ask more sophisticated logical questions.

In []:

In []:

In []:

<and> returns True if both flanking statements are True
1 < 10 and 10 < 100

1 < 10 and 10 > 100

<or> returns True if at least one flanking statement is True
1 < 10 or 10 > 100

Logical operators: not
not negates (�ips) the truth value that follows it (the logical equivalent of multiplying

by -1).

In []:

In []:

In []:

In []:

not True

not 100 > 10

not 2 < 10 or 10 > 100

use parentheses to make the order of execution more explicit
not (2 < 10 or 10 > 100)

Conditionals: the if statement
Like the for loop, the if statement is another common "structure " for building

programs. An if block will only execute if a given condition is True.

In []:

In []:

x = 4
if x % 2 == 0:
 print(x, "is even")

TEST = "Eric" in "America"
if TEST:
 print("I found a substring!")

Recall an example from an earlier lecture:

In []: RAINING = True
DAYTIME = True
if RAINING and DAYTIME:
 print("I went to the movies")

Conditionals: the if/else statement
The if/else statement is slightly fancier: it e xecutes the if block if a given condition

is True, otherwise it executes the else block.

In []: x = 4
if x % 2 == 0:
 print(x, "is even")
else:
 print(x, "is odd")

Conditionals: the if/else statement
if/else statements are fundamental to decision making in progr ams (and life).

In []: traffic_signal = "Red"
if traffic_signal == "Green":
 print("Let's go!")
else:
 print("Stop!")

Conditionals: the ternary operator
Simple if/else statements (i.e. those with one "line " per block) can be expressed with

the ternary operator A if B else C . This operator returns A if B is True, otherwise

it returns C.

In []: pattern = "fun"
text = "fundamentals"
answer = "found" if (pattern in text) else "missing"
print(answer)

Conditionals: the if/elif/else statement
The if/elif/else statement is the most �exible: it allows us to check a variety of

possible conditions. Only the block associated with the �rst True condition will be

executed. Here, else is often used to catch an unexpected option.

In []: traffic_signal = "Yellow"
if traffic_signal == "Green":
 print("Let's go!")
elif traffic_signal == "Yellow":
 print("Slow down, prepare to stop.")
elif traffic_signal == "Red":
 print("Stop!")
else:
 print("Unknown signal; proceed with caution.")

if/elif differs from a pair of if statements:

In []:

In []:

x = 5
if x > 3:
 print(x, "is greater than 3")
elif x > 1:
 print(x, "is greater than 1")

if x > 3:
 print(x, "is greater than 3")
if x > 1:
 print(x, "is greater than 1")

Conditionals in loops
Conditionals frequently arise within loops. There, the y allow us to perform different
actions depending on the current value of the loop variable. Note the second le vel of
indentation for the if/else blocks.

In []: for i in [1,2,3,4,5]:
 if i % 2 == 0:
 print("Even", end=" ")
 else:
 print("Odd", end=" ")

Conditionals in loops: Fizz Buzz
"Fizz Buzz" is a children's game in which players count in a circle.
When it's time to say a number that is divisible by 3, you say "Fizz" instead of
the number.
When it's time to say a number that is divisible by 5, you say "Buzz".
If the number is divisible by both 3 and 5, you say "Fizz Buzz".

In []: for i in range(1, 35):
 say = i
 if i % 3 == 0 and i % 5 == 0:
 say = "Fizz Buzz"
 elif i % 3 == 0:
 say = "Fizz"
 elif i % 5 == 0:
 say = "Buzz"
 print(say, end=", ")

Conditionals in loops: Fizz Buzz
The order of the tests in our if/elif/else statement different from m y description

of the game. What happens if I use the original order?

In []: for i in range(1, 35):
 say = i
 if i % 3 == 0:
 say = "Fizz"
 elif i % 5 == 0:
 say = "Buzz"
 elif i % 3 == 0 and i % 5 == 0:
 say = "Fizz Buzz"
 print(say, end=", ")

Structure conditionals from more to less speci�c .

Conditionals in loops: Fizz Buzz
We can also approach this pro blem with nested conditionals :

In []: for i in range(1, 35):
 say = i
 if i % 3 == 0:
 if i % 5 == 0:
 say = "Fizz Buzz"
 else:
 say = "Fizz"
 elif i % 5 == 0:
 say = "Buzz"
 print(say, end=", ")

Deeply nested code is harder for PEOPLE to read. A void when possible.

Conditionals in loops: Max Price
Find the most expensive fruit in this dictionary of prices:

In []:

In []:

prices = {
 "apple": 0.99,
 "banana": 0.59,
 "cantaloupe": 2.99,
 "grape": 0.05,
}

a common "motif" for finding a max
max_price = 0
for fruit in prices:
 my_price = prices[fruit]
 if my_price > max_price:
 max_price = my_price
print(max_price)

break and continue change loop behavior
Executing break exits the loop immediately.

Executing continue moves immediately to the next cycle of the loop.

In []:

In []:

In []:

for i in range(10):
 print(i, end=" ")

for i in range(10):
 if i > 5:
 break
 print(i, end=" ")

for i in range(10):
 if i < 5:
 continue
 print(i, end=" ")

The while loop
The while continues looping as long as a condition is True.

In []:

If we comment out the x += 1 line, then x < 10 will ALWAYS be True,
and we will loop forever.
This is an example of an "in�nite loop".
If your code is "hanging" (run ning for a long time without doing anything),
check for bad while loops.

x = 0
while x < 10:
 print(x, end=" ")
 x += 1

Practice: The Collatz Conjecture
Consider the following algorithm that acts on a positiv e interger n:

If n is even, divide n by 2, then repeat this process .
If n is odd, triple n and add 1, then repeat this process.

No matter what n we start with, if we repeat the abo ve rules over and over, we always
seem to end up at 1. Indeed,

 is that all numbers will end up at 1: a
fact that has never been proven (but no counterexamples have been found).

Convince yourself: Pick a number and verify that repeating the above process
leads to 1.
For example, if I start with n = 12, I pass through n = 6, 3, 10, 5, 16, 8, 4, 2, and
�nally 1.

The Collatz Conjecture
(https://en.wikipedia.org/wiki/Collatz_conjecture)

https://en.wikipedia.org/wiki/Collatz_conjecture

Practice: The Collatz Conjecture
Below I've written a Python function to generate a Collatz "chain". Try to describe in
words what the function is doing using concepts from toda y's lecture. (// is the integer
division operator: it returns the integer part of a quotient between two numbers,
whereas normal division, /, always returns a decimal ans wer.)

In []:

In []:

What would happen if we called collatz() with an argument (number) that
violated the Collatz Conjecture? In other words, a (theoretical) number whose chain
never arrived at 1?

def collatz(n):
 chain = [n]
 while n != 1:
 if n % 2 == 0:
 n = n // 2
 else:
 n = 3 * n + 1
 chain.append(n)
 return chain

try experimenting with different numbers
collatz(12)

Practice: The Collatz Conjecture: Exercise 1
Write a Python loop to try to �nd the longest Collatz chain between 2 and
100.
What number produces the chain?
How long is the chain?

In []: # here is a code "skeleton" to get you started
best_n = 1
best_chain = []
replace [] to loop through the numbers 2-100
for n in []:
 # replace [] with a function call to get n's chain
 my_chain = []
 # replace 0 to test if this is the longest chain we've seen
 if len(my_chain) > 0:
 # replace 1 and [] to track the best n and its chain
 best_n = 1
 best_chain = []

results
print(best_n)
print(len(best_chain))
print(best_chain)

Practice: The Collatz Conjecture: Exercise 2
Write Python code to determine how man y Collatz chains (up to a given number) pass
through a given number. For example, there are 5 chains starting between 2 and 100
that pass through 25.

In []: # your code here

Practice: The Collatz Conjecture: Exercise 3
Write Python code to determine the most frequently visited numbers in chains
starting between 2 and 100. Note that we can use a dictionary in this process:

In []:

In []:

counts = {}
for n in [9, 99, 99, 999, 999, 999]:
 # if n is not already in counts, we will get an error when we try to inc
rease it
 if not (n in counts):
 counts[n] = 0
 counts[n] = counts[n] + 1
print(counts)

your code here

More like this: Project Euler
If you like math puzzles like the ones above, is
full of them. It is also a great place to pr actice a new programming language. Providing
the correct answer to a problem unlocks the ne xt (slightly harder) problem.

Project Euler (https://projecteuler.net/)

https://projecteuler.net/

