
Lecture 7 - Writing functions, data vs referencesLecture 7 - Writing functions, data vs references
Kevin Bonham, PhD
2018-09-25

OutlineOutline
Homework notes
Functions and how to write them
Scope and the difference between data and references

Learning ObjectivesLearning Objectives
After this lecture, you will be able to:

Write python functions with scalar arguments that return values
Explain the difference between mutable and immutable objects
Identify the scope of a variable based on its location in loops and functions

Homework NotesHomework Notes
Follow instructions!
Be sure that your code runs wothout errors!
For homework 3, you will need to be able to load a �le in your code

Computer programs are data + actionsComputer programs are data + actions
Data can be scalars
Data can be collections
Functions perform actions

"Functions" perform actions on data"Functions" perform actions on data
In []:

In []:

import time

print("Hello, World!")

counter = 0
for i in range(5):
 counter = counter + 1
 print(counter)
 time.sleep(2)

De�ning a functionDe�ning a function
In python...

Function de�nitions start with def
function names can start with _ or a letter (NOT a number)

function names can contain upper and lowercase letters, numbers and _
python convention: use lowercase and _ to separate words

functions have (immediately after name, args, and end with): followed by a line

break and a tab (or 2+ spaces)

In []:

In []:

def my_function_name(arg1, arg2, kwarg1="default"):
 # Code that performs actions on args
 return None # this is what is returned by default

my_function_name(1,2)

Args are like variables inside a functionArgs are like variables inside a function
In []:

In []:

In []:

x = "a string"
print(x + " woo!")

def a_func(y):
 print(y + " woo!")

a_func("other string")
a_func("string 3")
a_func("4")

Use it in a loopUse it in a loop
In []: for i in range(10):

 a_func(str(i))

Anytime you do something more than ~ twice, probably write a functionAnytime you do something more than ~ twice, probably write a function
In []: # last week you saw this:

traffic_signal = "Yellow"
if traffic_signal == "Green":
 print("Let's go!")
elif traffic_signal == "Yellow":
 print("Slow down, prepare to stop.")
elif traffic_signal == "Red":
 print("Stop!")
else:
 print("Unknown signal; proceed with caution.")

Do you want to write all this any time you see a traffic signal? No!

In []:

In []:

def read_traffic_signal(a_traffic_signal):
 if a_traffic_signal == "Green":
 print("Let's go!")
 elif a_traffic_signal == "Yellow":
 print("Slow down, prepare to stop.")
 elif a_traffic_signal == "Red":
 print("Stop!")
 else:
 print("Unknown signal; proceed with caution.")

read_traffic_signal("Green")
read_traffic_signal("Yellow")
read_traffic_signal("Blue")

Functions can contain any valid codeFunctions can contain any valid code
assign variables
perform actions in loops
check things with conditionals (if/elif/else)

call other functions (or even themselves!)
even de�ne other functions

Poll 1:Poll 1:
In []:

1. Given the code above, what will I get when I run oops_bad_idea(20)?

2. After I run oops_bad_idea(20), what is the value of z?

z = 10

def oops_bad_idea(z):
 return z + 5

args vs vs kwargs
In []:

In []:

def takes_positional_args(a, b):
 return a**2 + b

takes_positional_args()

Arguments are taken in orderArguments are taken in order
In []:

In []:

In []:

takes_positional_args(1,2)

takes_positional_args(a=10, b=100)

order doesn't matter if providing keywords
takes_positional_args(b=100, a=10)

You can provide default valuesYou can provide default values
In []:

In []:

In []:

def takes_kwargs(m=5, n=20):
 return m + n

takes_kwargs()

takes_kwargs(n=500)

Positional arguments can't be mixed and matchedPositional arguments can't be mixed and matched
In []: takes_kwargs(10, m=11)

Variables have "scope"Variables have "scope"
Variables de�ned at the "top level" (eg not in functions or loops) have "global
scope"
other variables have scope limited to the block in which they were de�ned
this can cause unintuitive results!

In []: def foo(rand_arg):
 return # this doesn't do anything

foo(5)
print(rand_arg)

In []: for i in range(10):
 continue # this doesn't do anything

print(i)

In []: def bar():
 for j in range(10):
 continue

bar()
print(j)

In []: def bar():
 for j in range(10):
 continue
 return j

bar()
print(j)

In []: print(bar())

Data vs ReferencesData vs References
Variables are references to data, not the data itself
For datatypes that are immutable (most scalar types), this doesn't matter
For other datatypes (collections, classes), it can matter a lot

ExamplesExamples

Note: you are responsible for the new concepts that areNote: you are responsible for the new concepts that are
demonstrated in the examples belowdemonstrated in the examples below
These examples are meant to demonstrate the difference between data and references to
data. Execute the cells in order, and be sure that you can answer all of the questions in bold,
and that the answers make sense.

By "make sense," I mean that you can understand the behavior of the code, not that you
would have made the same design decisions :-). NOTE: Pay attention to the errors that are
in my original code. Being able to recognize error types and what they mean can make your
life A LOT easier when writing your own code.

You can also edit the code and re-execute to try different variations (I suggest creating new
cells and new variable names so as not to mess with my examples - you can also start a new
notebook or work in the python REPL to keep things truly separate).

In []: # these are immutable
a_float = 3.1
a_string = "Hello, World!"

this is mutable
a_list = ["hello {}".format(n) for n in range(3)]

In []:

Alright - pay attention...Alright - pay attention...
In []:

a_list and another_list now refer to the same underlying object

In []:

In []:

In []:

In []:

Are a_list and another_list still the same?

In []:

When we evaluated a_list.append(), we modi�ed the underlying list object that both

a_list

another_list = a_list

another_list

another_list == a_list

a_list is another_list

a_list.append("Look at me! I'm propagating")

a_list == another_list

variables, a_list and another_list, are referencing.

In []:

What about now? Are a_list and another_list still the same?

In []:

In []:

In []:

When we evaluated a_list = ..., we are reassigned the variable a_list to refer to a

different object.

is vs vs ==
Python has a nifty bit of syntax that helps us determine if something is refering to the same
object vs those that simply have the same value.

a_list = ["I", "don't", "like", "change"]

a_list == another_list

a_list

another_list

In []:

In []:

In []:

ints and strs are immutable - there's no difference between having the same value and

being the same object. Since you can't change the objects, only reasign the variable
referring to them, == and is are the same

In []:

Does the assignment above alter the value of x?

In []:

In []:

We didn't "mutate" 4 (we can't! int's are immutable!). We simple reassigned y to a

different value.

x = 4
y = 4

x == y

x is y

y = y + 2

x == y

print("the value of x is", x)
print("the value of y is", y)

In []:

What will == and is return for w and v?

In []:

In []:

How are w and v different from a_list and another_list above?

In []:

In []:

In []:

In []:

In []:

In []:

w = ["a", "list"]
v = ["a", "list"] # this is a different object with the same value

w == v

w is v

a_list = another_list = ["let's", "see", "that", "again"]

w.append("not propagating!")

v

w

a_list.append("propagating!")

a_list

In []:

In []:

Putting it together with scope and functionsPutting it together with scope and functions

Pay attention to the scope of variables, and to whether variables refer to objects that are
mutable or not.

In []:

In []:

Write a function that returns -1 if value provided is negative, and returns the squareroot
if it's zero or positive

another_list

a_list is another_list

from math import sqrt

sqrt(4)

sqrt(-4)

In []:

Does your function return something? Note: you can have multiple return statements in

your function. Whichever one is reached �rst will be evaluated and the function will
complete.

In []:

In []:

Will the following return True or False?

In []:

In []:

def safe_sqrt(my_num): # don't change this line
 if my_num ???:
 # What should be done if the conditional is true?
 else:
 # what if it's not?

If it works, this should return True
safe_sqrt(-4) == -1

If it works, this should return True
safe_sqrt(9) == 3

3 is 3.0

my_num = -4

safe_sqrt(16) # -1 or 4?

Assignment and conditionalsAssignment and conditionals
Be careful with conditionals that cause variables to be assigned. It's usually a good idea to
assign the variable with a default value outside of the conditional, and then modify it inside.
Execute the following cells in order, note the outputs / errors.

Can you explain what's happening?

In []:

In []:

In []:

In []:

This is especially important in functions, because you don't necessarily know what will be
passed as arguments.

x1 = 4

if x1 % 2 == 0: # do you remember what % means?
 y1 = 3

y1

x2 = 5

if x2 % 2 == 0: # do you remember what % means?
 y2 = 3

y2

In []:

In []:

In []:

What's a better way to write this function so that it can take any integer and give the
correct answer? Bonus points* if you include a way to check for invalid inputs (like negative
numbers or �oats).

*there are no points for this.

In []:

In []:

In []:

Functions that take mutablesFunctions that take mutables

def is_even(some_number):
 if some_number % 2 == 0:
 answer = True

 return answer

is_even(6)

is_even(7)

def better_is_even(some_number):
 # your code here
 return answer

better_is_even(7) # this should return False

better_is_even(-2) # what does this return? What should it return?

Things start to get more complicated when you write functions that take lists and other
collections. Watch out!

In []:

What does the function above do? NOTE: it actually does 2 things that will appear outside
the scope of the function (I'm counting the return value).

In []:

Evaluate the next cell multiple times, note the output. Is it consistant?

In []:

What's in test_list? Is it what you were expecting?

def append_mean(some_list):
 # this check is not necessary, but it's nice to give your users
 # (by user I mean yourself in 2 weeks) some indication of what went wrong
 if not type(some_list) == list:
 raise ValueError("Hey! this function needs a list")

 list_mean = sum(some_list) / len(some_list)
 some_list.append(list_mean)
 return list_mean

test_list = [10, 3, 7]

append_mean(test_list)

In []:

Weird behavior with collections as default argumentsWeird behavior with collections as default arguments
Probably just don't do it

In []:

In []:

In []:

In []:

Why is this happening?

test_list

def dont_do_this(lst=[]):
 lst.append(1)
 return lst

dont_do_this(lst = [-2,-1,0]) # all looks fine if we override the default...

dont_do_this() # if we use the default it seems ok...

dont_do_this() # wtf?

