
Version	Control	and	Git
Kevin	Bonham,	PhD

2	Oct,	2018



Learning	Objectives

• Recognize	git jargon	(repo,	commit,	stage,	push,	pull,	branch	etc.)
• Initialize	and	commit	to	a	local	git repository
• Use	git branches	to	make	changes	to	working	code	without	losing	
the	current	state
• Clone	a	remote	repository,	make	a	change,	and	then	start	a	pull	
request.

10/2/18 2

After	completing	this	lesson,	you	will	be	able	to:



But	first!



Version	Control



Version	control	is	a	system	for	tracking	the	state	of	
files	and	/	or	folders

10/2/18 5

my_presentation_draft.pptx

my_presentation_v1.pptx

my_presentation_v2.pptx

my_presentation_v3.pptx

my_presentation_v1_eric_notes.pptx

my_presentation_garbage.pptx

my_presentation_v1_edits.pptx



What	if	you	have	multiple	files?

10/2/18 6

from my_functions import print_name
from my_variables import my_name

print_name(my_name)

├ run.py ----------
|
|
|
├ my_functions.py -
|
|
├ my_variables.py -

my_app/

def print_name(a_name):
print(“My name is”, a_name)

my_name = "Kevin"



What	if	you	have	multiple	files?

10/2/18 7

from my_functions import print_name
from my_variables import user_name

print_name(user_name)

├ run.py ----------
|
|
|
├ my_functions.py -
|
|
├ my_variables.py -

my_app/

def print_name(a_name):
print(“Your name is”, a_name)

user_name = input("What is your name? ")



What	if	you	have	multiple	files?

10/2/18 8

from my_functions_v2 import print_name
from my_variables_v2 import user_name

print_name(user_name)

├ run_v2.py ----------
|
|
|
├ my_functions_v2.py -
|
|
├ my_variables_v2.py -

my_app/

def print_name(a_name):
print(“Your name is”, a_name)

user_name = input("What is your name? ")



What	if	you’re	collaborating?

10/2/18 9

from my_functions import print_name
from my_variables import my_name

print_name(my_name)

├ run.py ----------
|
|
|
├ my_functions.py -
|
|
├ my_variables.py -

my_app/

def print_name(a_name):
print(“My name is”, a_name)

my_name = “Eric"



Why	not	use	web	drive	like	gdrive or	dropbox?
•Changes	to	files	are	often	co-dependent
◦ simultaneous	coding	is… problematic

• Explicit	versioning
◦Changes	can	“break”	code	in	ways	text	can’t	be	broken

•Ability	to	take	multiple	development	paths

10/2/18 10



Version	Control	
Systems	(VCS)



A	version	control	system:
• Explicitly tracks	the	state	of	files	and	folders
•Keeps	a	record	of	changes	to	files	and	folders
◦Without	requiring	name	changes

• Enables	moving	forward	and	backward	in	time

10/2/18 12



is	a	Distributed	Version	
Control	System	(DVCS)



Git has	a	lot	of	jargon
•Repository	(repo):	a	git-enabled	folder
◦Sometimes	refers	to	all	locations	(remotes	and	locals)	of	a	
particular	fork

•Commit:	an	snapshot	of	code
•Branch:	a	particular	history	of	commits	(multiple	branches	
can	exist	in	the	same	repo)
•Merge:	When	two	branches	are	joined	together	and	any	
conflicts	are	dealt	with

10/2/18 14



10/2/18 15



git ≠	github
•Github (and	gitlab and	bitbucket)	is	a	place	for	hosting	a	
“remote”	repository
◦Also	adds	collaboration	features

• git is	powerful	even	if	used	only	on	your	local	machine
◦But… get	free	private	repos	on	github with	your	.edu address	(or	
use	gitlab /	bitbucket)

10/2/18 16



Install	git
• Mac:

◦ https://brew.sh/
◦ Copy	install	code	(on	the	webpage)

§ /usr/bin/ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)”

◦ $ brew install git

• Windows:
◦ https://gitforwindows.org/

10/2/18 17



Clone	the	exercise	repo

10/2/18 18

$ git clone https://github.com/kescobo/bst273_lecture09.git

Cloning into 'bst273_lecture09'...
remote: Enumerating objects: 11, done.remote: Counting objects: 
100% (11/11), done.
remote: Compressing objects: 100% (9/9), done.
remote: Total 11 (delta 1), reused 11 (delta 1), pack-reused 0
Unpacking objects: 100% (11/11), done.


