
OS and Software Interaction

Eric Franzosa (franzosa@hsph.harvard.edu)

http://franzosa.net/bst273

http://franzosa.net/bst273
http://franzosa.net/bst273

Overview

• Announcements

• Final project reminder

• Interacting with your Operating System (OS)
◦ The os and shutil modules

◦ Short introduction to recursion

• Interacting with external programs
◦ The subprocess module

• Activity

10/9/2018 2

Final project
reminder

Final project

• 25% of final grade (~2 homeworks)

• Complete and document a Python script to solve a problem in data analysis

• A default option will be provided, or you can design your own

◦ Must seek instructor approval if designing your own (details to follow)

• Final project work will go on during last two weeks of class

• Due Friday October 26th 11:59pm (end of last class week)

• Official assignment will launch next Monday (10/16/2018) with more details

10/9/2018 4

The default final project: scatter.py

• Design a script to load 2-3 columns of data from a file (input)

◦ x-values

◦ y-values

◦ data series (optional)

• Make a scatter plot of the data

◦ One set of points per series, if specified

• Save the scatter plot as a PNG figure (output)

• Manage data loading (and graphical options like axis labels) with a custom
command-line interface

10/9/2018 5

The default final project: scatter.py

10/9/2018 6

sepal width (cm) sepal length (cm) petal width (cm) petal length (cm) class

5.1 3.5 1.4 0.2 Iris-setosa

4.9 3.0 1.4 0.2 Iris-setosa

4.7 3.2 1.3 0.2 Iris-setosa

4.6 3.1 1.5 0.2 Iris-setosa

5.0 3.6 1.4 0.2 Iris-setosa

5.4 3.9 1.7 0.4 Iris-setosa

4.6 3.4 1.4 0.3 Iris-setosa

5.0 3.4 1.5 0.2 Iris-setosa

4.4 2.9 1.4 0.2 Iris-setosa

4.9 3.1 1.5 0.1 Iris-setosa

5.4 3.7 1.5 0.2 Iris-setosa

4.8 3.4 1.6 0.2 Iris-setosa

4.8 3.0 1.4 0.1 Iris-setosa

4.3 3.0 1.1 0.1 Iris-setosa

The default final project: scatter.py

• Data manipulation elements are a natural extension of previous homeworks

• The actual plotting work can be done with matplotlib

◦ A powerful, well-documented Python plotting package

◦ Part of the project will involve online research into matplotlib commands

10/9/2018 7

The other final project: choose your own adventure

• Write a script to solve a problem of your choosing

◦ Does not have to be related to research

• Custom final projects must:

◦ Implement a command-line interface for user interaction

◦ Use a Python module (or another element of Python coding) that we did not
specifically cover in class in a non-trivial way

• Email Eric and Kevin this week to get a sign-off on your idea:

◦ Specify the problem you want to solve

◦ Specify the format of the input and output data

◦ Specify what new module (or concept) you’ll be using

◦ We can iterate with you if you have thoughts on some (but not all) of these items

10/9/2018 8

Final project hand-in

• Same rules for the default and other final projects

• Deliverables

◦ Your script (templates will NOT be provided)

◦ Sample input and output data

 Examples will be provided for the default final project

◦ A README.txt file with answers to questions + sample commands

• Upload materials to Canvas as a single ZIP (or TAR) archive

• Publish your materials to a private github repository (details will follow)

• Official “assignment” will launch next Monday (10/16/2018)

◦ This will contain more specific details, including parameters of the default project

10/9/2018 9

Interacting with
operating systems

Interacting with Operating Systems (OSes)

• We’ve seen some of this already with sys

◦ Read command line arguments with sys.argv

◦ Use system I/O streams with from sys.stdin and sys.stdout

• Other options are managed by the modules os and shutil

◦ https://docs.python.org/3/library/os.html

◦ https://docs.python.org/3/library/shutil.html

10/9/2018 11

https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/shutil.html
https://docs.python.org/3/library/shutil.html

The os module

• Access it like any other module

◦ >>> import os

• Use it to figure out where your script is running

◦ >>> os.getcwd()

◦ ‘/home/efranzosa/’

• Or work in a different location

◦ >>> os.chdir(‘Downloads’)

◦ >>> os.getcwd()

◦ ‘/home/efranzosa/Downloads’

10/9/2018 12

The os module

• os enables command-line maneuvers and queries from within Python code

◦ os.getcwd() is an analog of pwd on the command line

◦ os.chdir() is an analog of cd on the command line

10/9/2018 13

os.stat

• Returns information about a file as a stat_result object

◦ >>> my_stats = os.stat(‚iris.tsv‛)

◦ >>> my_stats.st_size

◦ 4629 # file size in bytes as an int

◦ >>> my_stats.ctime

◦ 1539036926 # creation time

• Note, OSes measure time in seconds since Jan 1, 1970

◦ The beginning of the “Unix Epoch”

◦ Unix times can be conveniently subtracted from one another

◦ Can be converted to normal dates and times with the datetime module

10/9/2018 14

os.listdir(path)

• Returns the file and directory names present in path (default=“.”) as a list

◦ >>> os.list_dir()

◦ [‘iris.tsv’, ‘iris.txt’, ‘my_plot.png’, ‘scatter.py’]

• Similar to running the ls command

10/9/2018 15

os.path

• Contains a collection of useful functions for working with file paths

• A “module within a module”

• Use nested dot syntax to access functions

◦ e.g. os.path.function

10/9/2018 16

os.path.join & split

• os.path.join

◦ # joins paths on OS-specific parent-child path separator

◦ >>> os.path.join(‚dirname‛, ‚filename‛)

◦ ‘dirname/filename’

• os.path.split

• # splits path on OS-specific parent-child path separator

◦ >>> os.path.split(‚dir1/dir2/filename‛)

◦ [‚dir1/dir2‛, ‚filename‛]

• Always use these over e.g. ‚/‛.join(‚dirname‛, ‚filename‛)

◦ Any thoughts why?

10/9/2018 17

os.path.exists & isdir

• os.path.exists(path)

◦ # returns True/False if <path> exists/doesn’t exist

◦ >>> os.path.exists(‚recipe_for_immortality.txt‛)

◦ False

• os.path.isdir(path)

◦ # returns True/False if <path> is/isn’t a folder

◦ >>> os.path.isdir(‚/home/efranzosa/Downloads‛)

◦ True

10/9/2018 18

os.walk(path)

• One of my favorite Python functions

• Yields triples of three items:

◦ The path to a folder on your computer

◦ A list of folders within that folder

◦ A list of files within that folder

• Does this recursively for the path folder and all folders below path

10/9/2018 19

os.walk(path)

• Recall our demo folder from Lecture 2
◦ >>> for items in os.walk(‚demo‛)

◦ ... print(items)

10/9/2018 20

demo/
├── README.txt
├── hmp2012
│ └── metadata.tsv
├── gov
│ └── us_constitution.txt
└── words
 ├── words.txt
 └── more_words
 └── wikipedia_top100.txt

os.walk(path)

• Recall our demo folder from Lecture 2
◦ >>> for items in os.walk(‚demo‛)

◦ ... print(items)

10/9/2018 21

demo/
├── README.txt
├── hmp2012
│ └── metadata.tsv
├── gov
│ └── us_constitution.txt
└── words
 ├── words.txt
 └── more_words
 └── wikipedia_top100.txt

1st iteration: ('demo', ['gov', 'hmp2012', 'words'], ['README.txt'])

os.walk(path)

• Recall our demo folder from Lecture 2
◦ >>> for items in os.walk(‚demo‛)

◦ ... print(items)

10/9/2018 22

demo/
├── README.txt
├── hmp2012
│ └── metadata.tsv
├── gov
│ └── us_constitution.txt
└── words
 ├── words.txt
 └── more_words
 └── wikipedia_top100.txt

1st iteration: ('demo', ['gov', 'hmp2012', 'words'], ['README.txt'])
2nd iteration: ('demo/gov', [], ['us_constitution.txt'])

os.walk(path)

• Recall our demo folder from Lecture 2
◦ >>> for items in os.walk(‚demo‛)

◦ ... print(items)

10/9/2018 23

demo/
├── README.txt
├── hmp2012
│ └── metadata.tsv
├── gov
│ └── us_constitution.txt
└── words
 ├── words.txt
 └── more_words
 └── wikipedia_top100.txt

1st iteration: ('demo', ['gov', 'hmp2012', 'words'], ['README.txt'])
2nd iteration: ('demo/gov', [], ['us_constitution.txt'])
3rd iteration: ('demo/hmp2012', [], ['metadata.tsv'])

os.walk(path)

• Recall our demo folder from Lecture 2
◦ >>> for items in os.walk(‚demo‛)

◦ ... print(items)

10/9/2018 24

demo/
├── README.txt
├── hmp2012
│ └── metadata.tsv
├── gov
│ └── us_constitution.txt
└── words
 ├── words.txt
 └── more_words
 └── wikipedia_top100.txt

1st iteration: ('demo', ['gov', 'hmp2012', 'words'], ['README.txt'])
2nd iteration: ('demo/gov', [], ['us_constitution.txt'])
3rd iteration: ('demo/hmp2012', [], ['metadata.tsv'])
4th iteration: ('demo/words', ['more_words'], ['words.txt'])

os.walk(path)

• Recall our demo folder from Lecture 2
◦ >>> for items in os.walk(‚demo‛)

◦ ... print(items)

10/9/2018 25

demo/
├── README.txt
├── hmp2012
│ └── metadata.tsv
├── gov
│ └── us_constitution.txt
└── words
 ├── words.txt
 └── more_words
 └── wikipedia_top100.txt

1st iteration: ('demo', ['gov', 'hmp2012', 'words'], ['README.txt'])
2nd iteration: ('demo/gov', [], ['us_constitution.txt'])
3rd iteration: ('demo/hmp2012', [], ['metadata.tsv'])
4th iteration: ('demo/words', ['more_words'], ['words.txt'])
5th iteration: ('demo/words/more_words', [], ['wikipedia_top100.txt'])

The 5th iteration is the FINAL iteration because we have explored every folder inside
of the path we initially provided to the os.walk() function.

os.walk(path)

• Yields triples of three items:

◦ The path to a folder on your computer

◦ A list of folders within that folder

◦ A list of files within that folder

• Note that I said “yields” not “returns”

• os.walk() is a special type of function called a generator

◦ Generators return multiple values one-at-a-time

◦ This lets us iterate over them in a for loop

10/9/2018 26

Example of a generator

10/9/2018 27

import sys

def square_values(values):
 for v in values:
 yield float(v)**2

for x in square_values(sys.argv):
 print(x)

$ python script.py 1.0 2.0 3.0

script.py (open in Atom) (a terminal)

Turn a function into a generator
with the yield operator

1.0
4.0
9.0

A brief introduction to recursion

• os.walk() also happens to be an excellent example of recursion:

◦ An important (general) concept in computer programming

• Recursion is a way to solve problems that can be divided into similar sub-
problems whose solutions are not yet known.

• Properties of a recursive function:

◦ Calls itself to solve sub-problems of a non-trivial problem

◦ Returns an exact solution for trivial problems (so-called “base cases”)

10/9/2018 28

def recursive(problem):
 if not is_trivial(problem):
 return recursive(subproblem1) + recursive(subproblem2)
 else:
 return trivial_solution

A brief introduction to recursion

• How many descendants does a given person have (counting him/herself)?

10/9/2018 29

def count_descendants(person):
 children = person.get_children()
 if len(children) > 0:
 count = 1
 for child in children:
 count += count_descendants(child)
 return count
 else:
 return 1

A brief introduction to recursion

10/9/2018 30

import os
import sys

recursively find all files below <path>
def find_files(path):
 files = []
 for name in os.listdir(path):
 full = os.path.join(path, name)
 if os.path.isdir(full):
 files += find_files(full)
 else:
 files += [full]
 return files

for p in find_files(sys.argv[1]):
 print(p)

script.py (open in Atom)

$ python script.py demo/

(a terminal)

demo/gov/us_constitution.txt
demo/hmp2012/metadata.tsv
demo/README.txt
demo/words/more_words/wikipedia_top100.txt
demo/words/words.txt

File manipulation overview

10/9/2018 31

From the os module itself

Function call What it does

os.rename(name1, name2) Rename the file/folder with name1 to name2

os.remove(path) Remove the file (not folder) located at path

os.mkdir(name) Make a folder named name

os.rmdir(path) Remove the folder located at path

From the shutil module (import shutil to use these functions)

Function call What it does

shutil.copy(path1, path2) Copy (recursively) everything at path1 to path2

shutil.move(path1, path2) Move (recursively) everything at path1 to path2

Interacting with
software

Interacting with software

• The subprocess module provides three important capabilities:

◦ Make any command-line call from within a Python program

◦ Determine if the command finished successfully

◦ Capture the output of the command (for subsequent processing)

• Centered on a single function, subprocess.run, with many options

• Convenience functions call subprocess.run with different defaults

◦ subprocess.call

◦ Subprocess.check_output

• Can read more online at:

◦ https://docs.python.org/3/library/subprocess.html

10/9/2018 33

subprocess.call

• Runs a command at the command-line and returns an “exit code”

• “0” indicates success

◦ >>> subprocess.call(‚ls‛)

◦ 0

• Any other number (often 1-255) indicates some error occurred

◦ >>> subprocess.call(‚wc recipe_for_immortality.txt‛)

◦ 1

10/9/2018 34

subprocess.call

• Setting shell=True allows us to perform complex piped commands and use
system variables (such as “$HOME”)

◦ >>> subprocess.call(‚ls $HOME | wc -l‛, shell=True)

◦ 0

• Note: this is frowned upon in professional code for security reasons, but is OK
for things you’re writing and executing yourself

10/9/2018 35

subprocess.call

• If you’re NOT using shell=True, you can provide your command as a list of
strings which will be automatically joined

◦ >>> my_path = ‚iris.tsv‛

◦ >>> subprocess.call([‚wc‛, ‚-l‛, my_path])

◦ 1

• This makes interspersing commands and variables a bit easier

10/9/2018 36

subprocess.check_output

• Runs the command and returns the standard output
◦ >>> subprocess.check_output(‚wc -l iris.tsv‛, encoding=‚utf-8‛)

◦ ‘152 iris.tsv\n’

• By default, subprocess.check_output returns individual “bytes”

◦ Setting encoding=‚utf-8‛ provides more traditional string formatting

• Output is provided as one, long string (with newlines)

◦ >>> subprocess.check_output(‚ls demo‛, encoding=‚utf-8‛)

◦ ‘gov\nhmp2012\nREADME.txt\nwords\n’

• How could we process the output line by line?

10/9/2018 37

subprocess.check_output

• A common (if verbose) coding motif:

10/9/2018 38

import subprocess

for line in subprocess.check_output(command, encoding=‚utf-8‛).split(‚\n‛):
 # do something with <line>

Activity

code_count.py

• On Canvas you’ll find an almost-complete script called code_count.py

• This script uses concepts from today’s lecture to count the number of lines in
Python scripts located below a certain directory.

◦ In case you want to tell someone “I coded N lines of Python in BST 273”

• The script needs a few more lines of code in order to function properly.

◦ All things you’ve seen before today, albeit in other contexts.

• Take a few minutes to look over the script amongst yourselves, then we’ll
discuss it (and the necessary changes) together.

10/9/2018 40

code_count.py: Extension 1

• Modify the script to only count lines of Python code that include an import
statement; do not open/parse any of the files using Python.

• HINT: How would you count the import statements in a single Python file
using a command-line chain?

10/9/2018 41

code_count.py: Extension 2

• See if you can modify the script to compute the total SIZE of all Python files
below a given folder.

• HINT: You can do this without making any special system calls using one of the
features of the Python os module.

10/9/2018 42

code_count.py: Extension 3

• Modify the script so that it is not specific to Python files. Instead, have the
user pass file-extensions-of-interest as arguments of the program.

10/9/2018 43

Extras

A brief introduction to recursion

• Consider the factorial of a number, n, written n!

◦ n! = n × (n-1) × (n-1) × … 2 × 1

◦ n! = n × (n-1)!

• This is a recursive function for computing factorials:

10/9/2018 45

def factorial(n):
 answer = n
 if n > 1:
 answer *= factorial(n - 1)
 return answer

