
Scienti�c Computing with Python
Eric Franzosa, Ph.D. (franzosa@hsph.harvard.edu)
2018-10-16

Outline
Announcements
Final project details
The Python scienti�c stack
numpy and its ndarray
pandas and its DataFrame
Brief overview of scipy, statsmodels, and scikit-learn
Time-permitting: Use cases from m y research

The Python Scienti�c Stack

Originally:

numpy for its ef�cient array data structure

scipy for numerical analysis methods

matplotlib for 2D plotting

Today we also include:

pandas a powerful data frame object

scikit-learn for clustering and classi�cation (machine learning)

statsmodels for statistical modeling

numpy
numpy is an important module outside of the Python standard library

It is bundled with Anaconda 3
The heart of scienti�c computing in Python

In [104]: # numpy is imported under the shortcut <np>
import numpy as np

the numpy.ndarray
At the core of numpy is the numpy.ndarray
A class representing an n-dimensional array
Vectors of numbers are 1-dimensional arr ays

We've represented these as lists
Matrices of numbers are 2-dimensional arr ays

We've represented these as lists of lists
numpy.ndarrays can have arbitrarily many dimensions

though 1 and 2 are most common

In []: help(np.ndarray)

making an numpy.ndarray
We typically make numpy.ndarrays with the convenience function

numpy.array
For this reason, we often shorthand numpy.ndarray to just "array"

We can turn a Python list into an array, for example:

In [106]: np.array([1,2,3,5,7])

Out[106]: array([1, 2, 3, 5, 7])

In [107]:

In [108]:

In [109]:

let's put that array in the variable <a> so we can work with it
a = np.array([1,2,3,5,7])

we can index into an array like a list
a[0]

we can slice from an array like a list as well
a[0:3]

Out[108]: 1

Out[109]: array([1, 2, 3])

In [110]:

In [111]:

In [112]:

we can similarly define a 2d array
b = np.array([[1,2,3],[4,5,6],[7,8,9]])

the "dimensions" of an array are stored in an attribute, <shape>
b.shape

the length of <shape> is the dimensionality of the array
len(b.shape)

Out[111]: (3, 3)

Out[112]: 2

In [113]:

In [114]:

In [115]:

In [116]:

slicing/indexing a 2d array is easier than with a list of lists
b

indexing directly into the 2d array gives a 1d array
b[0]

unlike lists of lists, we can index other dimensions using the <:> operato
r
b[:,0]

we can slice out a chunk of the array easily
b[1:,1:]

Out[113]: array([[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]])

Out[114]: array([1, 2, 3])

Out[115]: array([1, 4, 7])

Out[116]: array([[5, 6],
 [8, 9]])

Mathematical operations on arrays
Behave very differently from operations on lists

More "mathy" (but not exactly the same as math!)

In [117]:

In [118]:

duplication
2 * [1,2,3]

multiplication by a constant
2 * np.array([1,2,3])

Out[117]: [1, 2, 3, 1, 2, 3]

Out[118]: array([2, 4, 6])

In [119]:

In [120]:

concatenation
[1,2,3] + [1,2,3]

element-wise addition
np.array([1,2,3]) + np.array([1,2,3])

Out[119]: [1, 2, 3, 1, 2, 3]

Out[120]: array([2, 4, 6])

Some aspects of array math have no list
equivalents

In [121]:

In [122]:

broadcasting
1 + np.array([1,2,3])

will not work
1 + [1,2,3]

Out[121]: array([2, 3, 4])

TypeError Traceback (most recent call last)
<ipython-input-122-a5ced438c221> in <module>()
 1 # will not work
----> 2 1 + [1,2,3]

TypeError: unsupported operand type(s) for +: 'int' and 'list'

In []:

In []:

element-wise product
np.array([1,2,3]) * np.array([1,2,3])

will not work
[1,2,3] * [1,2,3]

Element-wise multiplication works on pairs of arr ays with the same shape

In []:

In []:

In []:

In []:

A = np.array([[1,2],[3,4]])
A

B = np.array([[0,1],[1,0]])
B

A * B

use <np.matmul> for proper matrix multiplication of 2d arrays
np.matmul(A, B)

Advanced indexing
In []:

In []:

In []:

In []:

a = 2 * np.array(range(9))
a

index by a list of positions
a[[1,3,5]]

index with a yes/no (True/False) call for each position
a % 3 == 0

a[a % 3 == 0]

Vectorized functions
Arrays are designed to be use d with vectorized functions
Vectorized functions avoid explicit loops over arrays, which are slow
(relatively speaking)
numpy contains many vectorized versions of common functions

In []:

In []:

In []:

In []:

b = np.array([[1,2,3],[4,5,6],[7,8,9]])
b

the sum of all 2d array elements
np.sum(b)

the sum over the first axis (note base-0 counting)
np.sum(b, axis=0)

the sum over the second axis
np.sum(b, axis=1)

Arrays and vectorized computation are fast
In []:

In []:

In []:

let's make a big list and array equivalent
import random
x = [random.random() for k in range(100000)]
y = np.array(x)

%timeit -n100 np.sum(y)

%timeit -n100 sum(x)

In []:

In []:

a manual loop is even slower
def my_sum(numbers):
 ret = 0
 for n in numbers:
 ret += n
 return ret

%timeit -n100 my_sum(x)

Other ways to make arrays
In []:

In []:

In []:

an array of ones of a specified shape
np.ones([2, 3])

an array of zeroes of a specified shape (note the spelling)
np.zeros([2, 3])

range equivalent
np.arange(0, 2, 0.25)

In []:

In []:

load from a file (by default splits rows on any whitespace)
a = np.genfromtxt("numbers-10rows.tsv")
a

replicating elements of hw4
column = 3
print("MEAN=", np.mean(a[:, column]), "MEDIAN=", np.median(a[:, column]
))

Element types
Arrays try to force their elem ents to be �oating-point numbers.
We can tell arrays to coerce data to another type.
Unlike lists, all array elements have to have the save type.

This is part of where the ef�ciency of arrays comes from.

In []: # casting to integers
np.genfromtxt("numbers-10rows.tsv" , dtype=int)[0:3]

I use 1d arrays a lot for working with biological
sequences

Say I have a gene that is 50 nucleotides (nts) long...
I map RNA-seq reads of length 15 nts starting at positions 12, 15, and 21...
What is the coverage at position 17?

In []:

In []:

In []:

gene = np.zeros(50)
read_starts = [12, 15, 17]
read_len = 15
for start in read_starts:
 start = start - 1
 gene[start:start+read_len] += 1

gene

gene[17-1]

What is a data frame?
A data frame is special kind of 2d array
Each row represents one "sample" or "observation"

These may be named, but it's not r equires
Each column represents a particular type of measurement

Each column must have a unique name
The data in a single column are all of the same type

Very common (and important) in all sorts of statistical modeling

The pandas DataFrame
The pandas module implements a powerful data fr ame class

In []:

In []:

In []:

pandas is typically imported as pd
import pandas as pd

we can build a DataFrame with a dictionary of lists (or arrays) of the sam
e length
data = {
 "Name": ["Alice", "Bob", "Carol"],
 "Height": [1.45, 1.83, 1.34],
 "Age": [23, 45, 91],
}

data frames are often abbreviated df
pd.DataFrame(data)

It is much more common to load these sort of data from a �le

In []:

In []:

note that the file doesn't have to be a csv, despite the name of the metho
d
df = pd.read_csv("iris_renamed.tsv" , sep="\t")

df.head()

Indexing columns
In []:

In []:

We can index particular columns using their names like dictionary keys
df["label"].head()

the read_csv method makes smart choices about data types
df["petal_width"].head()

In []: # can also access columns with "namespace"-style naming
df.petal_width.head()

Indexing rows
In []:

In []:

rows are indexed with the .iloc attribute
df.iloc[0]

slicing works too
df.iloc[3:8]

Advanced row indexing
In []:

In []:

Like arrays, we can slice rows using Boolean vectors
df[df.sepal_width > 7.5]

pandas also includes convenience selection methods
df.nlargest(5, "sepal_length")

Data Exploration
Pandas includes a lot of usefu l functions for data exploration

In []: # descriptive statistics for numerical columns
df.describe()

In []: # same idea, but only for rows of a certain label
df[df.label == "Iris-setosa"].describe()

In []:

In []:

regroup a data frame by a categorical feature
groups = df.groupby("label")

aggregate groups by some function
groups.agg("mean")

Going further with arrays and data frames
Most scienti�c computing in Python can be done with basic data types
(lists, dicts)

Working with numpy arrays and/or pandas data frames is often easier and

generally faster
The numpy.ndarray and pandas.DataFrame are individually very

powerful and contain many useful methods
Google/consult the docs as needed

The scipy module
Contains a wide variety of functions for scienti�c data analysis
Examples: optimization, clustering, signal and image processing, and
statistical testing
Increasingly being broken apart into specialized "scienti�c kits" (scikits)

In []:

In []:

In []:

In []:

from scipy.stats import mannwhitneyu, spearmanr

pw_s = df[df.label == "Iris-setosa"].petal_width
sw_s = df[df.label == "Iris-setosa"].sepal_width
pw_v = df[df.label == "Iris-virginica"].petal_width

mannwhitneyu(pw_s, pw_v)

spearmanr(pw_s, sw_s)

The statsmodels module
Regression analysis in Python using R-lik e syntax

In []:

In []:

In []:

import statsmodels.formula.api as smf

results = smf.ols("petal_width ~ sepal_width + C(label)" , data=df).fit()

results.summary()

The scikit-learn module
Machine learning in Python
Great website:

Really nice for clustering and classi�cation

http://scikit-learn.org/stable/index.html (http://scikit-
learn.org/stable/index.html)

http://scikit-learn.org/stable/index.html

Final Project Interactions
Plots on the previous slide were generated with matplotlib

Python's main plotting engine
You will learn about matplotlib for the �nal project

You do not need to use arrays or data frames for the �nal project
But you can if desired

Outline
Announcements
Final project details
The Python scienti�c stack
numpy and its ndarray
pandas and its DataFrame
Brief overview of scipy, statsmodels, and scikit-learn
Time-permitting: Use cases from m y research

