
Object-Oriented Programming
Eric Franzosa, Ph.D. (franzosa@hsph.harvard.edu)
2018-10-18

Outline
Announcements
Intro to Object-Oriented Progr amming (OOP)
Abstract example: a Door class

Pratical examples: Interval and Counter classes

Advanced practical example: a Tree class

Disclaimer
Object-Oriented Programming (OOP) is powerful but weird
If you don't follow today's lecture on the �rst pass, don't worry

De�nitely not needed for the �nal pr oject
A basic understanding of OOP is useful for working with Python modules

Hence our short initial intro in the argparse lecture
You can solve a lot of problems without explicitly using OOP ideas

What is Object-Oriented Programming (OOP)?
A style of programming that bundles data with related methods
These bundles are called classes
Classes are templates for making instances of a particular kind of data object

e.g. argparse.ArgumentParser
OOP style asks data to perform actions, r ather than applying transformations
to data

Key OOP ideas
Classes are organized hierarchically as superclasses and subclasses

This allows us to de�ne progressiv ely more speci�c versions of
objects
Thing > Animal > Mammal > Cow
Thing > Animal > Mammal > Cat

Classes inherit the attributes and abilities of their parent classes (inheritance)
Mammal has a method produce_milk
Hence Cow.produce_milk() works

Hence Cat.produce_milk() works

Different classes of object can respond to the same request in different wa ys
Referred to as polymorphism
Cow.speak() returns "moo"

Cat.speak() returns "meow"

De�ning our own classes of object
Not every program/project needs new classes of object

In my experience, much less common than new functions, for
example

They become handy when bu ilt-in data types (e.g. list and dict) come up

short
Let's look at an example where this is the case

Modeling doors
A door is an object with at least two ob vious attributes:

1. Some sort of unique identi�er (e.g. a door number)
2. A closed/open status

In [109]:

In [110]:

Python lets us store misc. attributes as lists; is a list a good door?
door1 = [101, True]
door2 = [102, False]

dictionaries let us name the attributes, which is a bit better
door1 = {"number": 101, "is_open":True}
door2 = {"number": 102, "is_open":False}

In [111]:

In [112]:

In [113]:

we can define transformations for a door
def open_door(door):
 door["is_open"] = True

door2

open_door(door2)
door2

Out[112]: {'number': 102, 'is_open': False}

Out[113]: {'number': 102, 'is_open': True}

Later I realize that doors can ha ve another status: locked/unlocked

In [114]:

In [115]:

In [116]:

In [117]:

I start adding this field to my door dictionaries from now on
door3 = {"number": 103, "is_open":False, "is_locked":True}

I also need to update the opening function
def open_locking_door (door):
 if not door["is_locked"]: # <--
 door["is_open"] = True

door3

open_locking_door (door3)
door3

Out[116]: {'number': 103, 'is_open': False, 'is_locked': True}

Out[117]: {'number': 103, 'is_open': False, 'is_locked': True}

In [118]: # the new opening function won't work on our earlier-defined doors
open_locking_door (door2)

KeyError Traceback (most recent call last)
<ipython-input-118-2351c7884be9> in <module>()
 1 # the new opening function won't work on our earlier-defined doors
----> 2 open_locking_door (door2)

<ipython-input-115-ed56ee24f6f0> in open_locking_door (door)
 1 # I also need to update the opening function
 2 def open_locking_door (door):
----> 3 if not door["is_locked"]: # <--
 4 door["is_open"] = True

KeyError: 'is_locked'

Issues with the above approach
I'm relying on my memory to track the dictionaries we created as "doors"
There is nothing enforcing the requirements to be a " door"

is {"number":104, "is_locked":True} a "door"?

There is nothing tying the door tr ansformations we wrote to the door data
There is nothing tying the locked door to the more generic door

De�ning a Door object
In [119]:

class is a Python keyword for de�ning a new type of object with a block of

code
The block encapsulates rele vant functions (methods) and data (attributes)
The __init__ method de�nes what happens when we mak e a new instance

of the object
Here, set a number (passed as an argument) as the Door's number
Also, create an attribute is_open set to False

self is used to refer to the object itself in methods (more in a bit)

class Door:
 def __init__(self, number):
 self.number = number
 self.is_open = False

Calling a Door like a function runs its __init__ method and returns a new

door
Python's __init__ is called a constructor in other languages

In [120]:

In [121]:

In [122]:

In [123]:

make a new Door numbered 101
door1 = Door(101)

Python sees this door as a new kind of object
print(door1)

access Door attributes with <.> syntax
door1.number

note that <is_open> we defined as False by default
door1.is_open

<__main__.Door object at 0x7f73405c60f0>

Out[122]: 101

Out[123]: False

We can associate other Door -related methods with the Door class

In [128]:

The method call door1.check_status() behaves like a function call

check_status(door1)
The self argument of check_status is what allows this to work

door1.check_status() means "call check_status with

door1 as the �rst argument"

Hence self is always present as the �rst argument of a method

class Door:

 def __init__(self, number):
 self.number = number
 self.is_open = False

 def open(self):
 self.is_open = True

 def check_status(self):
 print("I'm open" if self.is_open else "I'm closed")

In [129]:

In [130]:

door1 = Door(101)
call Door methods using <.> syntax
door1.check_status()

door1.open()
door1.check_status()

I'm closed

I'm open

In [131]:

In [132]:

let's make some more Doors
door2 = Door(102)
door3 = Door(103)

we can interact with them efficiently
for d in [door1, door2, door3]:
 d.check_status()

I'm open
I'm closed
I'm closed

In [133]:

In [134]:

In [135]:

oops, I accidentally repeated a door number
door4 = Door(103)

door3 and door4 are different, even though their attributes are all the sa
me
door3 == door4

compare with
door3 = {"number": 103, "is_open":True}
door4 = {"number": 103, "is_open":True}
door3 == door4

Out[134]: False

Out[135]: True

The power of Door (i.e. OOP)
We don't have to rely on our memory for de�nition

Need a door? Call Door
Can have required (e.g. number) and default (e.g. is_open) attributes

Relevant methods are associ ated with the object (e.g. open)

Object is distinct from the sum of the data it contains
Next up: We can easily make other types of doors

De�ning a SecureDoor object
In [137]:

class SecureDoor(Door) says SecureDoor is a type of Door
By default, SecureDoor inherits all the methods and attributes of Door
We've added a new attribute to the __init__: is_locked
We've reworked open to check is_locked
We didn't rede�ne check_status

class SecureDoor(Door):

 def __init__(self, number):
 self.number = number
 self.is_open = False
 self.is_locked = True # <--

 def open(self):
 if not self.is_locked: # <--
 self.is_open = True

In [138]:

In [139]:

In [140]:

let's make a secure door
sec_door = SecureDoor(105)

SecureDoor inherits the <check_status> method from Door
sec_door.check_status()

But its <open> method works differently
sec_door.open()
sec_door.check_status()

I'm closed

I'm closed

Because we have implemented an open method in all doors, we can still do intuitiv e

things like:

In [141]: # polymorphism: <open> works differently on different doors
for d in [door1, door2, sec_door]:
 d.open()
 d.check_status()

I'm open
I'm open
I'm closed

Practical example: De�ning an Interval class
Could represent a span of y ears, e.g. 1983-2018
Could represent a span of genome coordinates, e.g. 1,383,452 to 1,384,591

In [142]:

In [143]:

In [144]:

In [145]:

an interval is defined by a start and end position
class Interval():
 def __init__(self, start, end):
 self.start = start
 self.end = end

ival1 = Interval(1983, 2018)

print(ival1)

ival1.start, ival1.end

<__main__.Interval object at 0x7f73405c6828>

Out[145]: (1983, 2018)

A lot of Python polymorphism comes from implementing special object
methods �anked by __s

For example, implement __repr__ to de�ne interaction with the print
function
This is also the method that is called if we e valuate a piece of data on its own
line in a Jupyter Notebook

In [146]:

In [147]:

In [148]:

In [149]:

class Interval():

 def __init__(self, start, end):
 self.start = start
 self.end = end

 def __repr__(self):
 return "I'm an interval from {} to {}".format(self.start, self.end
)

ival1 = Interval(1983, 2018)

print(ival1)

ival1

I'm an interval from 1983 to 2018

Out[149]: I'm an interval from 1983 to 2018

Implement __len__ to determine interaction with the len function

In [150]:

In [151]:

In [152]:

class Interval():

 def __init__(self, start, end):
 self.start = start
 self.end = end

 def __repr__(self):
 return "I'm an interval from {} to {}".format(self.start, self.end
)

 def __len__(self):
 return self.end - self.start

ival1 = Interval(1983, 2018)

len(ival1)

Out[152]: 35

The length of a discrete interval is different from that of a continuous interval
We must include the end point as a unit of distance

For example, the interval fro m 2 to 4 in 1->2->3->4->5 contains 3 numbers

This is a great use-case for subclassing/ polymorphism

In [153]:

In [154]:

In [155]:

class DiscreteInterval (Interval):

 # Note: no <__init__>, we can just inherit the one from <Interval>

 def __len__(self):
 return self.end - self.start + 1

ival1 = DiscreteInterval (2, 4)

len(ival1)

Out[155]: 3

Let's extend Interval to make a better interval with an extra method

Speci�cally, one that will test if the interval contains a particular value

In [156]:

In [157]:

In [158]:

In [159]:

class BetterInterval (Interval):

 def contains(self, value):
 """ returns True if <value> in the interval """
 return self.start < value < self.end

ival1 = BetterInterval (1983, 2018)

ival1.contains(1776)

ival1.contains(1995)

Out[158]: False

Out[159]: True

Let's extend Interval (again) to make a better interval with an extra

method
This time, let's de�ne an interval that can test if it o verlaps with some other
interval
HINT: two intervals overlap if the LARGER START is smaller than the
SMALLER END

In [160]:

In [161]:

In [162]:

In [163]:

class BetterInterval (Interval):

 def overlaps(self, ival2):
 """ return True if this interval overlaps ival2 """
 return max(self.start, ival2.start) < min(self.end, ival2.end)

ival1 = BetterInterval (1983, 2018)
note that second interval doesn't have to be a <BetterInterval>
ival2 = Interval(1969, 1995)
ival3 = Interval(1969, 1974)

ival1.overlaps(ival2)

ival1.overlaps(ival3)

Out[162]: True

Out[163]: False

Let's make a �nal interval that will merge two overlapping intervals as a new
interval

In [166]:

In [167]:

In [168]:

In [169]:

class BestInterval(BetterInterval):

 def merge(self, ival2):
 ret = None
 if self.overlaps(ival2):
 min_start = min(self.start, ival2.start)
 max_end = max(self.end, ival2.end)
 ret = BestInterval(min_start, max_end)
 return ret

ival1 = BestInterval(1983, 2018)
ival2 = Interval(1969, 1995)
ival3 = Interval(1969, 1974)

print(ival1.merge(ival2))

print(ival1.merge(ival3))

I'm an interval from 1969 to 2018

None

If we de�ne our merge function as __add__ instead, then we can use the

addition operator (+) to merge intervals

This is how + can add numbers but concatenate strings in Python:

Polymorphism!

In [170]:

In [171]:

In [172]:

class BestInterval(BetterInterval):
 def __add__(self, ival2):
 ret = None
 if self.overlaps(ival2):
 min_start = min(self.start, ival2.start)
 max_end = max(self.end, ival2.end)
 ret = BestInterval(min_start, max_end)
 return ret

ival1 = BestInterval(1983, 2018)
ival2 = Interval(1969, 1995)
ival3 = Interval(1969, 1974)

ival1 + ival2

Out[172]: I'm an interval from 1969 to 2018

Practical example: De�ning a SimpleCounter class
For counting the elements of iterable objects
A task that came up on numerous homeworks

In [173]: class SimpleCounter():

 def __init__(self):
 self.counts = {}

 def update(self, iterable):
 for i in iterable:
 if i not in self.counts:
 self.counts[i] = 0
 self.counts[i] += 1

 def __repr__(self):
 return str(self.counts)

In [174]: sc = SimpleCounter()
sc.update("bananarama")
print(sc)

{'b': 1, 'a': 5, 'n': 2, 'r': 1, 'm': 1}

Let's subclass SimpleCounter to make something a bit more aesthetically

pleasing
We'll rede�ne __repr__, but __init__ and update don't need to change

In [175]:

In [176]:

class PrettyCounter(SimpleCounter):
 def __repr__(self):
 ret = []
 for item, count in self.counts.items():
 ending = "s" if count > 1 else ""
 ret.append("I found '{}' {:>2} time{}".format(item, count, end
ing))
 return "\n".join(ret)

pc = PrettyCounter()
pc.update("bananarama")
pc.update("ana, my nana, ate a banana")
print(pc)

I found 'b' 2 times
I found 'a' 14 times
I found 'n' 7 times
I found 'r' 1 time
I found 'm' 2 times
I found ',' 2 times
I found ' ' 5 times
I found 'y' 1 time
I found 't' 1 time
I found 'e' 1 time

As you may have discovered, there's a similar Counter in the collections
module:

In [178]:

Nothing magic about the "of�cial" Counter - it works just like ours!

from collections import Counter
cc = Counter()
cc.update("bananarama")
print(cc)

Counter({'a': 5, 'n': 2, 'b': 1, 'r': 1, 'm': 1})

Practical example: Tree data
A tree is a general data structure in which items (called nodes) are arranged
hierarchically
The tree begins at a root node

All other nodes have exactly one parent
A node can therefore have 0 or more children

In [179]: # The class to represent a <Node> is not too complicated

class Node():

 def __init__(self, name):
 self.name = name
 self.parent = None
 self.children = []

 def __repr__(self):
 return self.name

In [180]: # The class to represent a <Tree> is more involved (it does most of the wor
k)

class Tree():

 def __init__(self,):
 """ a dictionary to map node names to nodes in the tree """
 self.nodes = {}

 def get_node(self, name):
 """ fetch an existing node by name, or create it if new """
 if name not in self.nodes:
 self.nodes[name] = Node(name)
 return self.nodes[name]

 def populate(self, relationships):
 """ add parent/child relationships to the tree """
 for parent, child in relationships:
 pnode = self.get_node(parent)
 cnode = self.get_node(child)
 cnode.parent = pnode
 pnode.children.append(cnode)

In [181]:

In [182]:

relationships = [
 ["thing", "vehicle"],
 ["thing", "animal"],
 ["vehicle", "plane"],
 ["vehicle", "train"],
 ["vehicle", "automobile"],
 ["animal", "mammal"],
 ["mammal", "cat"],
 ["mammal", "cow"],
]

my_tree = Tree()
my_tree.populate(relationships)

In [183]: for name, node in my_tree.nodes.items():
 print(node)
 print(" parent :" , node.parent)
 print(" children :" , node.children)

thing
 parent : None
 children : [vehicle, animal]
vehicle
 parent : thing
 children : [plane, train, automobile]
animal
 parent : thing
 children : [mammal]
plane
 parent : vehicle
 children : []
train
 parent : vehicle
 children : []
automobile
 parent : vehicle
 children : []
mammal
 parent : animal
 children : [cat, cow]
cat
 parent : mammal
 children : []
cow
 parent : mammal
 children : []

Challenges

Add a method to Tree called get_root that will �nd and return the tree's

root node (hint: in a properly de�ned tree, the root is the only node that
doesn't have a parent).

Add a method to Tree called get_leaves that will �nd and return the tree's

leaf nodes (hint: a leaf is a node that doesn 't have any children of its own).

(Harder) Add a method to Tree called get_lineage. This function should

take the name of a node as an a rgument and return the path from the root of
the tree to that node. For example my_tree.get_lineage('cow')
should return ['thing', 'animal', 'mammal', 'cow'] based on the

data above.

