
Next steps

Eric Franzosa (franzosa@hsph.harvard.edu)

Kevin Bonham (kbonham@broadinstitute.org)

http://franzosa.net/bst273

http://franzosa.net/bst273
http://franzosa.net/bst273

Learning to Program

• Why do it?

◦ Make easy tasks easy

◦ Make hard tasks possible

◦ Improve accuracy and efficiency in your work

◦ It’s empowering!

• What does it take?

◦ Learn to identify problems that computers can solve

◦ Learn to describe those problems in a way that computers can understand

◦ Learn a programming language to translate those descriptions into code

10/26/2018 2

How to keep learning

• Take additional courses (we’ll talk about a few)

• Read additional books (we’ll talk about a few)

• Read/watch videos online (we’ll suggest some places to look)

• Practice, practice, practice

10/26/2018 3

Learning through coursework

• A few different types of courses will be accessible with your new coding skills

• Computer science

◦ Theory of computing, algorithms, data structures

◦ Practical applications: why is ‘Bob’ in dict faster than ‚Bob‛ in list?

• Software engineering

◦ Best practices for making code that will be used more than once

◦ Documenting, testing, working as a team

• Applied computing

◦ Using computers to solve practical problems

◦ Bioinformatics, statistical computing, data science

10/26/2018 4

Classes at HSPH

• BST 267: Introduction to Social and Biological Networks

◦ Fall 2 with Jukka-Pekka Onnela

◦ Uses the Python NetworkX module

• BST 262: Computing for Big Data

◦ Fall 2 with Christine Choirat

◦ Methods and best practices for programming against big data (in R or Python)

• BST 234: Introduction to Data Structures and Algorithms

◦ Spring with Christoph Lange and Curtis Huttenhower

◦ Data structures and computer algorithms for statistical computing

10/26/2018 5

Classes at HSPH

• BST 281: Genomic Data Manipulation

◦ Spring with Curtis Huttenhower and Eric Franzosa

◦ Methods for studying high-throughput molecular biological data

◦ In-class Python activities with Jupyter notebooks

10/26/2018 6

Classes outside of HSPH

• CS 50: Introduction to Computer Science (Harvard University)

◦ Very broad introduction to topics in computer science

◦ Explores facets of a number of different programming languages, including Python

◦ Also available online (via Edx)

• 6.009: Fundamentals of Programming (MIT)

◦ Offered in Fall and Spring

◦ Expands on 6.0001, Intro to Programming in Python (~this course)

10/26/2018 7

Books

10/26/2018 8

Online materials

• https://learnpythonthehardway.org/

◦ Another online textbook

• http://www.learnpython.org/

◦ Interactive Python tutorials (similar to our Juptyer notebooks)

• https://www.reddit.com/r/learnpython/

◦ A subreddit devoted to learning Python in particular

• https://stackoverflow.com/

◦ Questions and answers for computing and programming

• https://www.youtube.com/user/Computerphile

◦ Videos on all sorts of topics in computing

10/26/2018 9

https://learnpythonthehardway.org/
http://www.learnpython.org/
https://www.reddit.com/r/learnpython/
https://www.reddit.com/r/learnpython/
https://www.reddit.com/r/learnpython/
https://stackoverflow.com/
https://www.youtube.com/user/Computerphile
https://www.youtube.com/user/Computerphile

Practice, Practice, Practice

• The best way to keep developing coding skills is to keep using them

• If you encounter a computing problem, try to solve it with Python

◦ Works especially well for tasks in data analysis or organization

◦ Or anything where you think “I wish I could automate this”

• When you get stuck, research the problem online

• Once you’re over the initial learning curve, this is the best way to learn

10/26/2018 10

thanks.py

10/26/2018 11

Websites that will give you problems to solve

• http://www.pythonchallenge.com/

◦ Old, but very Python-focused

• https://projecteuler.net/

◦ Math puzzles that require coding to solve

• http://rosalind.info/

◦ Bioinformatics problems that require coding to solve

• Advent of code

10/26/2018 12

http://www.pythonchallenge.com/
http://www.pythonchallenge.com/
https://projecteuler.net/
https://projecteuler.net/
http://rosalind.info/about/
http://rosalind.info/about/

Meaning vs Syntax - reprise

Overview

• A programming "language" is really a translation
◦ Human intent --> machine code

• There are two basic features in any language:
◦ Data (information)

◦ Instructions (actions)

• The concepts you have learned in the course are extensible to any
programming language

◦ Think in terms of inputs and outputs

◦ Don’t repeat yourself (write functions!)

◦ Pay attention to error messages (and google!)

10/26/2018 14

Write functions

10/26/2018 15

def weird_addition(number1, number2):
 result = 2 * (number1 + number2)
 return result

weird_addition <- function(number1,number2){
 result <- 2 * (number1 + number2)
 return(result)
}

function weird_addition(number1, number2)
 result = 2 * (number1 + number2)
 return result
end

R

Python

Julia

Use code that others have written

10/26/2018 16

import pandas as pd
import argparse

library("dyplr")
library("argparse")

using DataFrames
using ArgParse

R

Python

Julia

Use the REPL

10/26/2018 17

>>> x = "look at me, I'm a string!”
>>> x
"look at me, I'm a string!”
>>> 5 ** 2
25

> x <- ‛look at me, I'm a string!‛
> x
[1] ‛look at me, I'm a string!‛
> 5 ^ 2
[1] 25

julia> x = ”look at me, I'm a string!”
”look at me, I'm a string!”
julia> 5 ^ 2
25

R Python

Julia

Use collections

10/26/2018 18

d = {"apple": "green", "banana": "yellow", "orange": "orange"}
d["banana"] # "yellow”
l = [1, 1.2, "a"]
l[1] # 1.2

l = c(1, 1.2, "a")
l[2] # "1.2"

d = Dict("apple"=> "green", "banana"=> "yellow", "orange"=> "orange")
d["banana"] # "yellow”
l = [1, 1.2, "a"]
l[2] # 1.2

R

Python

Julia

Read (and google) the error messages

10/26/2018 19

>>> from math import sqrt
>>> sqrt(-2)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: math domain error

> sqrt(-2)
[1] NaN
Warning message:
In sqrt(-2) : NaNs produced

julia> sqrt(-2)
ERROR: DomainError with -2.0:
sqrt will only return a complex result if called with a complex argument.
Try sqrt(Complex(x)).
Stacktrace:
 [1] throw_complex_domainerror(::Symbol, ::Float64) at ./math.jl:31
 [2] sqrt at ./math.jl:479 [inlined]
 [3] sqrt(::Int64) at ./math.jl:505
 [4] top-level scope at none:0

R Python

Julia

