Genome-wide and familybased association studies

Dmitry Prokopenko

dprokopenko@mgh.harvard.edu

Last lecture

- Basic terminology
- What is linkage
- Linkage methods
- What is association

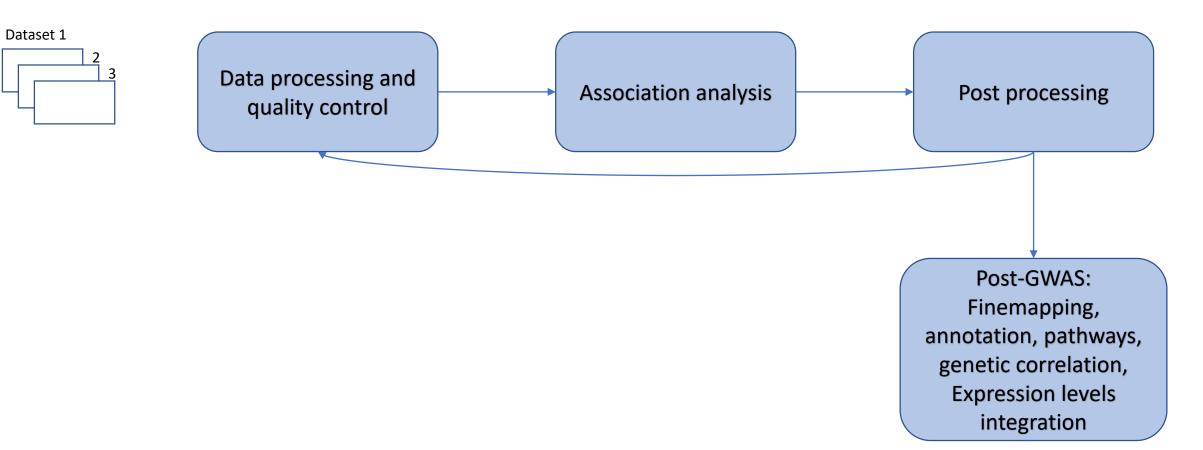
This lecture

- Association methods
 - Data quality
 - Variant-based quality
 - Sample-based quality
 - Population-based association studies, aka GWAS, aka common variant association studies
 - Family-based association studies
 - Rare variant association studies

Software?

- Plink 1.9, 2alpha (<u>https://www.cog-genomics.org/plink2</u>) universal
- Bcftools fast for vcf/bcf format (<u>https://samtools.github.io/bcftools/bcftools.html</u>)
- Oxford set of tools (gen/bgen format) (<u>https://www.well.ox.ac.uk/~gav/bgen_format/software.html</u>)
- BOLT-LMM fast LMM models
- GCTA originally for heritability estimation, now pretty universal
- Good old R / python

GWAS workflow



Quality control (QC)

- Variant-based
 - Calling quality
 - Variant missingness rate
 - Deviance from HWE
 - Mendelian consistency
- Sample-based
 - Cryptic relatedness
 - Population structure
 - Inbreeding coefficient
 - Wrong pedigree information
 - Sex verification (based on X)

GWAS / WGAS

- Number of samples (n)
 - 500-500,000 (UK Biobank)
 - Larger n -> more statistical power and more computational burden
- Number of SNVs (m)
 - Genotyped
 - 500,000 -1,700,000
 - Illumina MEGA Ex array ~1.7M (Multi-Ethnic Global)
 - Imputed
 - 8M common variants based on HRC imputation panel (n=65k)

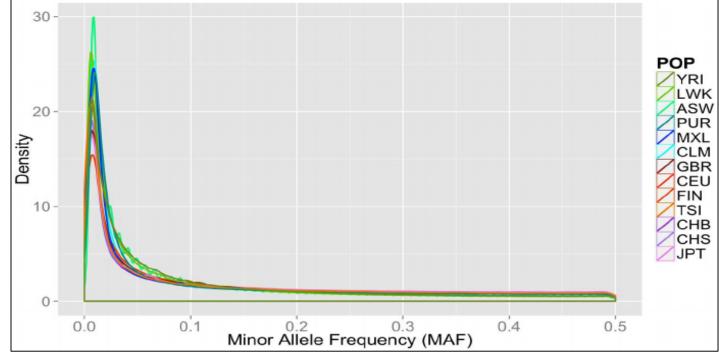
GWAS / WGAS 2

- Whole Exome Sequence (WES)
 - 1-2M variants in exome regions only (coding regions)
- Whole Genome Sequence (WGS)

N samples	M variants
4300	87M
10600	141M
19k	219M
65k	582M
122k	721M

MAF spectrum

- Mathematically described by the Ewen's sampling formula
- Rule of thumb: 70% of variants below 5% (Visscher, Goddard, Derks, Wray 2012)



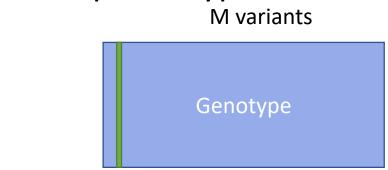
WJ Ewens. Mathematical population genetics

Population-based association studies

• Find variants that are statistically associated with phenotype

γ

- 1. Dichotomous phenotype
 - Case versus control
- 2. Quantitative phenotype
 - Height
 - Blood markers
 - Gene expression measures (QTL)
- 3. Time-to-event
 - Survival
 - Time to onset



Case/control

test<-mutate(ADSP,affected=ifelse(affected==0,NA,affected=1))
tab<-table(test\$affected,test\$rs429358)
print(tab)</pre>

0 1 2 ## 0 3907 527 15 ## 1 3137 1986 163

chisq.test(tab)

##
Pearson's Chi-squared test
##
data: tab
X-squared = 989.65, df = 2, p-value < 2.2e-16</pre>

- H0: Genotype frequencies are same for cases and controls
- Alternatives include allelic test (1df), Fisher exact test, Cochran-Armitage trend

Linear regression / logistic regression

• Can account for covariates and better correct for population stratificiation

 $\mathbf{Y} \sim \boldsymbol{\beta} \boldsymbol{G} + \boldsymbol{\gamma} \boldsymbol{Z} + \boldsymbol{\varepsilon}$

- Identity link function for linear regression
- Logit link function for logistic regression

$$P(y_i = 1) = \frac{\exp(\alpha + \beta g_i + \gamma z_i)}{1 + \exp(\alpha + \beta g_i + \gamma z_i)}$$

Example

```
fit<-glm(affected~rs429358+sex+PC1+PC2,family = binomial(),data=test)
summary(fit)</pre>
```

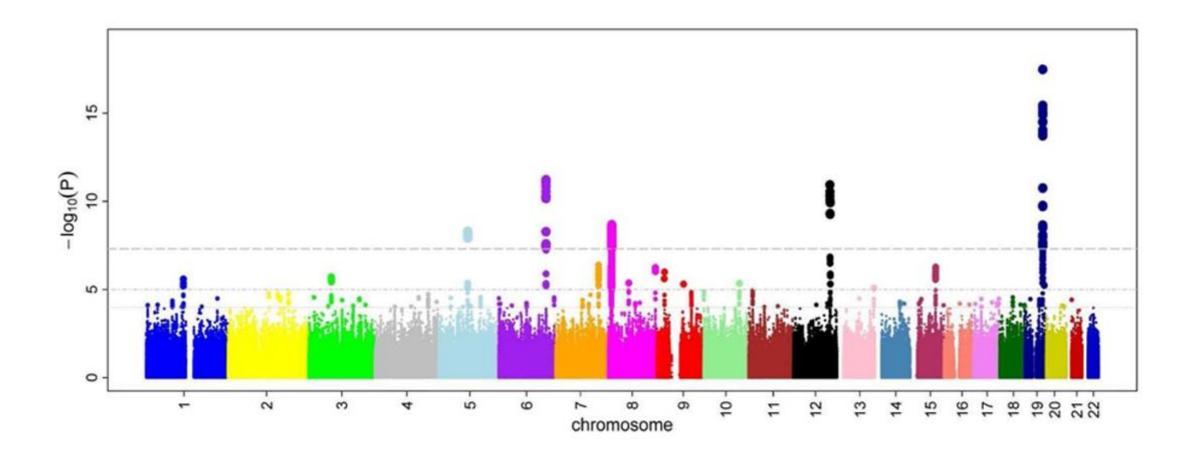
```
##
## Call:
## glm(formula = affected ~ rs429358 + sex + PC1 + PC2, family = binomial(),
##
     data = test)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.4075 -1.0843 0.6856 1.2627 1.3097
##
## Coefficients:
##
            Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.27128 0.07371 -3.681 0.000233 ***
## rs429358 1.52019 0.05240 29.009 < 2e-16 ***
## sex 0.03440 0.04365 0.788 0.430584
      3.13185 2.16073 1.449 0.147214
## PC1
## PC2
          -1.87293 2.18200 -0.858 0.390697
## ----
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
    Null deviance: 13424 on 9734 degrees of freedom
## Residual deviance: 12364 on 9730 degrees of freedom
## (648 observations deleted due to missingness)
## AIC: 12374
##
## Number of Fisher Scoring iterations: 3
```

Example plink

plink19 --bfile filename --pheno phenofile --pheno-name
 Affection.Status --covar covarfile --covar-name PC1-PC5, sex --logistic out outname

_								
CHR	SNP	BP	A 1	TEST	NMISS	OR	STAT	P
1	1:762159:T:C	762159	С	ADD	10154	0.9459	-0.07175	0.9428
1	1:762159:T:C	762159	С	sex	10154	0.957	-1.08	0.2801
1	1:762159:T:C	762159	С	PC1	10154	0.8619	-0.0715	0.943
1	1:762159:T:C	762159	С	PC2	10154	0.001005	-3.339	0.0008419
1	1:762159:T:C	762159	С	PC3	10154	0.07598	-1.265	0.2059
1	1:762159:T:C	762159	С	PC4	10154	2.857e-10	-8.558	1.146e-17
1	1:762159:T:C	762159	С	PC5	10154	0.2254	-0.4586	0.6465
1	1:861368:C:T	861368	Т	ADD	10020	0.7031	-0.2489	0.8034
1	1:861368:C:T	861368	Т	sex	10020	0.9481	-1.3	0.1936
1	1:861368:C:T	861368	Т	PC1	10020	0.6602	-0.1993	0.8421
1	1:861368:C:T	861368	Т	PC2	10020	0.001068	-3.288	0.001009
1	1:861368:C:T	861368	Т	PC3	10020	0.09682	-1.137	0.2556
1	1:861368:C:T	861368	Т	PC4	10020	3.386e-10	-8.463	2.609e-17
1	1:861368:C:T	861368	Т	PC5	10020	0.2167	-0.4703	0.6381
1	1:865628:G:A	865628	A	ADD	10154	0.762	-1.504	0.1326
1	1:865628:G:A	865628	A	sex	10154	0.9564	-1.095	0.2734
1	1:865628:G:A	865628	A	PC1	10154	0.8359	-0.08621	0.9313
1	1:865628:G:A	865628	A	PC2	10154	0.001047	-3.318	0.0009056
1	1:865628:G:A	865628	A	PC3	10154	0.07233	-1.289	0.1974

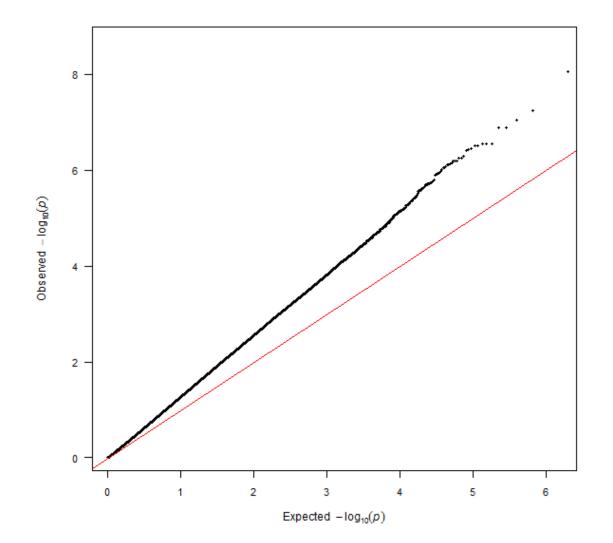
Manhattan plot



Multiple testing problem

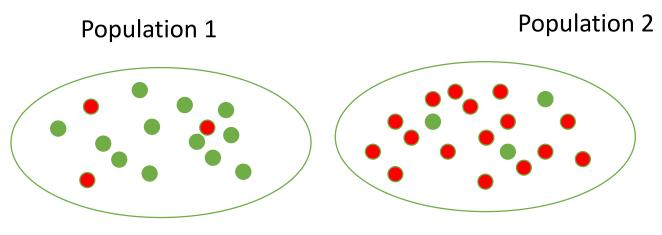
- If α =0.05 , then m* α are expected to be found just by chance
- Use multiple testing correction (Bonferroni)
- GWAS significance level ~5e-08, widely accepted
- For WGAS with rare variants should be even smaller (Fadista et al. 2016)

QQ plot



Bias due to population structure

- allele frequency differences between populations due to genetic drift and gene flow
- Since we campare allele frequencies sampling from different populations can lead to false-positive association findings
- Suppose cases are over-sampled from group 2, relative to controls
- Then any allele which is more common (higher minor allele frequency) in group 2 will appear to be associated with the trait



Example (simulation)

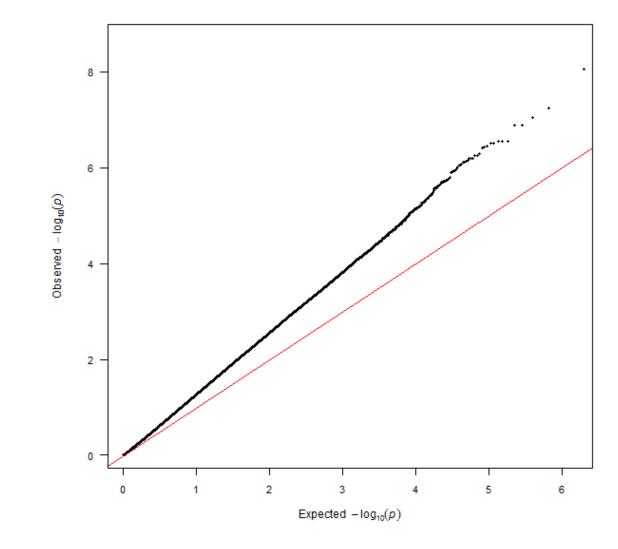
- 1000 cases / 1000 controls
- 100k null SNPs

Population	cases	controls
Population 1	400	600
Population 2	600	400

Genotype	cases	controls
AA	421	319
AB	469	505
BB	110	176

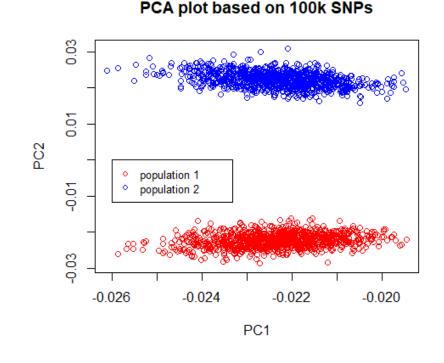
P=3.8e-08

Inflated QQ plot



Identification and correction: PCA

- Identification of stratification based on systematic patterns along the entire genome
- Approriate similarity measure between two individuals
- Most popular: GRM (EIGENSTRAT, Price et al. 2010)
- Incorporation of information into association test for single variant (principal components)



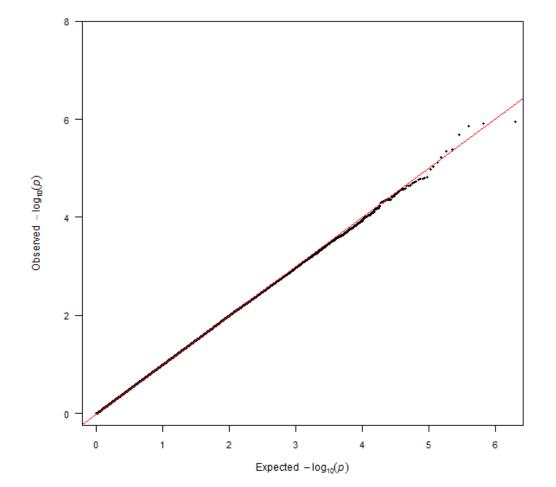
GRM

- Calculate genetic covariance matrix (genetic relationship matrix)
- N individuals, m markers:

• Perform an eigenvalue decomposition and use top principal components in a regression as covariates

Price A.L. et al. (2006) Principal components analysis corrects for stratification in genomewide association studies.

QQ plot after PCA correction



Mixed models

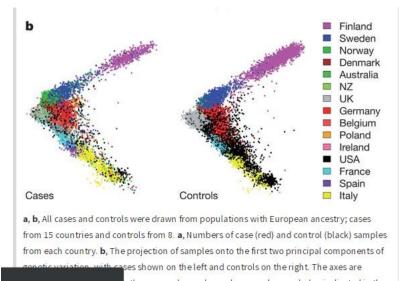
- The test of association is performed in the fixed effects part of the model
- Implicitly captures population structure and cryptic relatedness by modelling the covariance matrix.
- Can increase power by implicitly conditioning on associated loci other than the candidate locus and by larger sample sizes (related+unrelated)
- software packages (e.g. EMMAX, GCTA, GEMMA, LMM-BOLT, GMMAT, SAIGE)

Mixed models

- Y $\sim X\beta + g + \varepsilon$
- Y phenotype
- X vector of covariates (fixed effects)
- β vector of fixed effects coefficients
- $g \sim (0, K\sigma_g^2)$ total genetics effects per ind, $\varepsilon \sim (0, I\sigma_e^2)$
- K relationship matrix, often GRM is taken.

Example mixed models

- Large GWAS, several populations
- Compared several approaches



International journal of science

MENU 🗸

Letter | Published: 10 August 2011

Genetic risk and a primary role for cellmediated immune mechanisms in multiple sclerosis

The International Multiple Sclerosis Genetics Consortium & The Wellcome Trust Case Control Consortium 2

Nature 476, 214–219 (11 August 2011) | Download Citation 🛓

Abstract

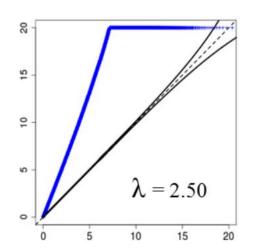
Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability¹. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals^{2,3}, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk⁴. Modestly powered genome-wide association studies (GWAS)^{5,6,7,8,9,10} have enabled more than 20 additional risk loci to be

Sawcer et al. Nature 2011

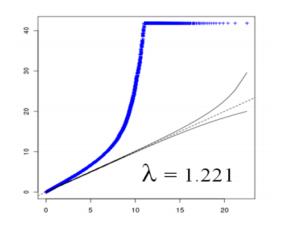
Example mixed models

Lambda – genomic inflation factor, median inflation of test statistics $\lambda = median(\chi_1^2, \chi_2^2, ..., \chi_n^2)/0.455$

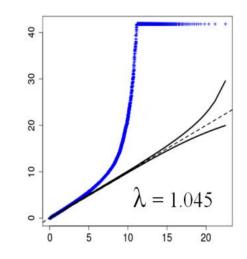
No correction



PCA correction, 100 PCs



Mixed model approach

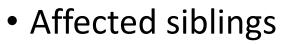


Association methods (family-based)

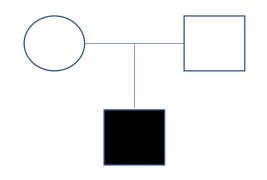
- Test for both linkage and association
- Robust to population substructure: different environments, admixture, stratification, failure of HWE
- Requires genotyped families (parent-child, or siblings)
- TDT test for trio design (affected offspring)
- FBAT generalization to general phenotypes, general pedigrees, missing parental genotypes, and multiple variants (Lake and Laird 2001, Laird and Lange 2006,...)

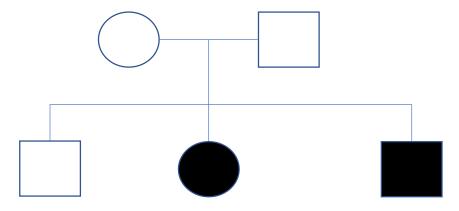
Family-based designs

- Trio
 - both parental genotypes observed



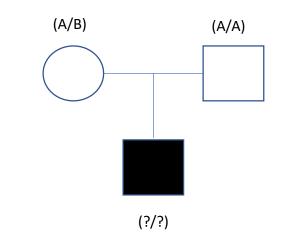
• Usually no parent genotypes





TDT

- classical trio design : affected offspring
- implies outcome-based sampling
- if variant is associated, observed transmission rates should deviate from mendelian
- compares transmissions from heterozygous parents to offspring with expectation under Mendel's laws



TDT

Table 2

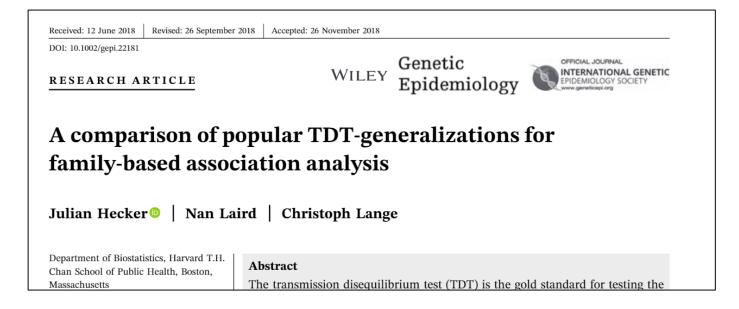
Combinations of Transmitted and Nontransmitted Marker Alleles M_1 and M_2 among 2n Parents of n Affected Children

T	Nontra		
Transmitted Allele	M ₁	M ₂	Total
M ₁	а	Ь	a+b
M ₂	c	d	<u>c+d</u>
Total	a+c	b+d	2 <i>n</i>

$$\chi^2 = (b-c)^2/(b+c).$$

Generalizations

- FBAT: generalization of TDT to general phenotypes, general pedigrees, missing parental genotypes, and multiple variants (Lake and Laird 2001, Laird and Lange 2006,...)
- GDT: incorporates parental phenotypes (Chen et al. 2009)



FBAT general framework

$$U = \sum T(X - E(X|P))$$

$$U = \sum (Y - \mu)(X - E(X|P))$$

$$Z = U/sqrt(Var(U))$$

- T trait, based on phenotype Y and offset
- X genotype
- P parental genotypes
- Sum over all offspring
- E(X|P) is the expected marker score computed under HO, conditional on P
- Equivalent to TDT, when trio design and no missing data
- FBAT toolkit

Variance explained by common variants

• Schizophrenia

- Estimated heritability from twin studies: 65-80%
- Proportion of heritability explained by common SNPs: 25-31%
- Biploar Disorder
 - Estimated heritability from twin studies: 75-85%
 - Proportion of heritability explained by common SNPs: 25-31%

Lee et al. "Estimating the proportion of variation in susceptibility to schizophrenia captured by common SNPs." *Nature Reviews Genetics 44.3 (2012): 247-250.* Kieseppa et al. "High concordance of bipolar I disorder in a nationwide sample of twins." *American Journal of Psychiatry 161 (2004): 1814-1821.*

Where is the missing heritability? Theories:

- Lack of Power: weak effects
- Rare variants
- Epistasis: combinations of SNPs
- Epigenetics: external and environmental factors

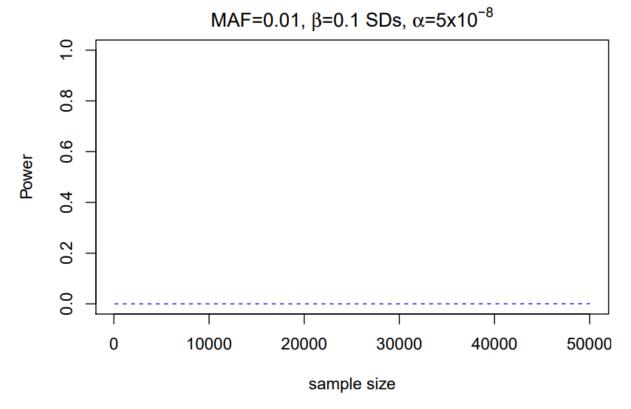
Where is the missing heritability? Theories:

- Lack of Power: weak effects
- Rare variants
- Epistasis: combinations of SNPs
- Epigenetics: external and environmental factors

Rare variants

- characterized by small minor allele frequencies (i.e. below 5% or 1%)
- due to small allele frequencies a weaker LD-structure compared to common variants
- Singletons: rare variants with an allele count of 1, private mutations, unclear role

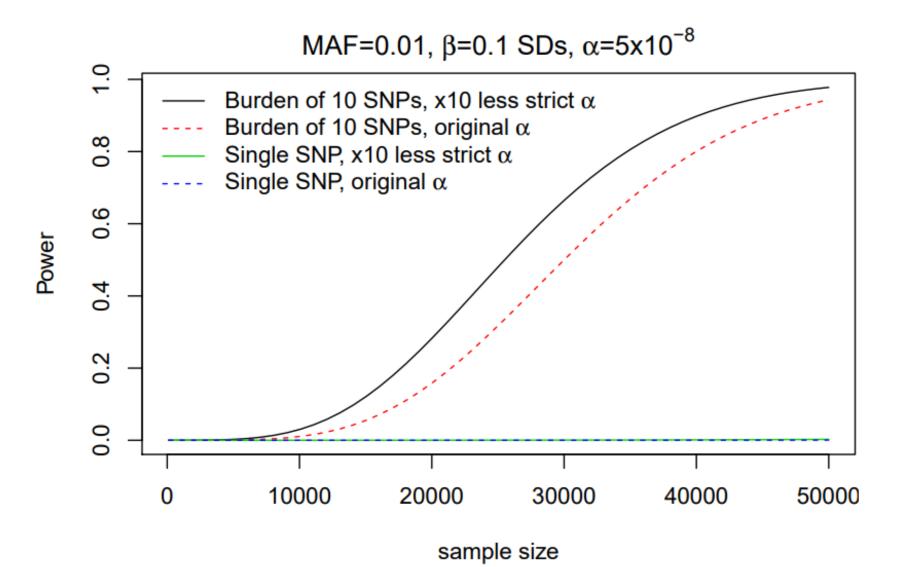
Major problem - power



Rare variant analysis

- When the sample size is limited try to combine the signal from multiple rare variants.
- How to test multiple rare variants?
 - Combine signals
- How to group rare variants for testing?
 - Functional annotations
 - Sliding windows

Power



Slide courtesy: Ken Rice

Rare variant analysis

- Burden (CAST,CMC,WSS)
 - Testing the combined effect of multiple rare variants
 - Work well for signals in one direction
- Variance-component (SKAT)
 - Jointly test individual variant-score test statistics
 - Robust to effect direction
- SKAT-O weighted average of SKAT and burden-test statistics

Morgenthaler and Thilly. Mut. Res. 2007 Li and Leal. AJHG 2008 Madsen and Browning. PLOS Genet. 2009 Wu et al. AJHG 2011 Lee et al. AJHG 2012

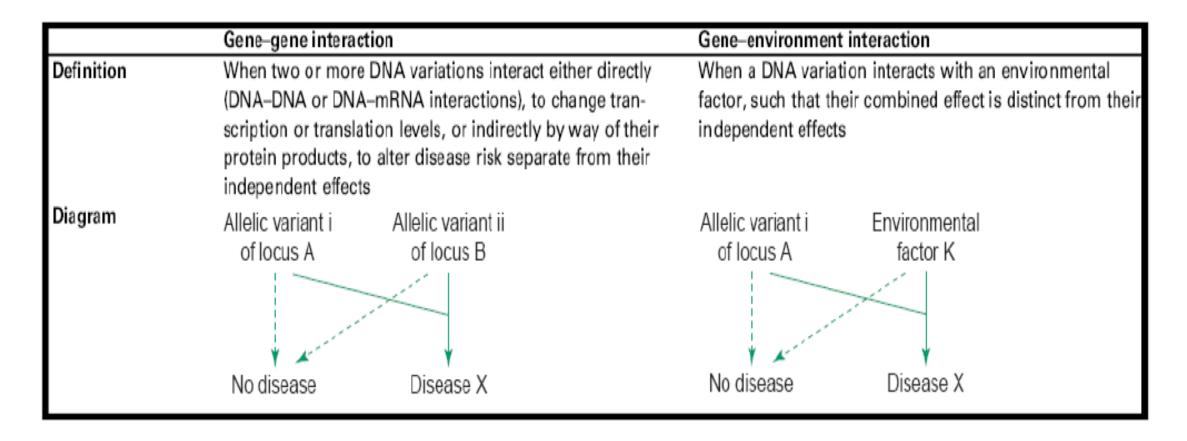
$$Q_{B} = \left[\sum_{i=1}^{n} (y_{i} - \hat{\pi}_{i})(\sum_{j=1}^{m} w_{j}g_{ij})\right]^{2}$$

$$Q_{S} = \sum_{j=1}^{m} w_{j}^{2} S_{j}^{2} = \sum_{j=1}^{m} w_{j}^{2} \left\{ \sum_{i=1}^{n} g_{ij} (y_{i} - \hat{\pi}_{i}) \right\}^{2}$$

 $Q_p = pQ_B + (1-p)Q_S$

Rare variants explain the missing heritability?

Beyond main effects



Summary

- Association methods
 - Data quality
 - GWAS
 - Multiple testing problem
 - Population stratification
 - Mixed models
 - Family-based association studies
 - Rare variant association studies