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Last lecture

e Basic terminology
 What is linkage

* Linkage methods

* What is association



This lecture

e Association methods

e Data quality
e Variant-based quality
* Sample-based quality

* Population-based association studies, aka GWAS, aka common variant
association studies

* Family-based association studies
* Rare variant association studies



Software?

* Plink 1.9, 2alpha (https://www.cog-genomics.org/plink2) - universal

* Bcftools — fast for vcf/bcef format
(https://samtools.github.io/bcftools/bcftools.html)

» Oxford set of tools (gen/bgen format)
(https://www.well.ox.ac.uk/~gav/bgen format/software.html)

* BOLT-LMM - fast LMM models
 GCTA - originally for heritability estimation, now pretty universal
* Good old R / python



https://www.cog-genomics.org/plink2
https://samtools.github.io/bcftools/bcftools.html
https://www.well.ox.ac.uk/~gav/bgen_format/software.html

GWAS workflow

Dataset 1
2
3




Quality control (QC)

 Variant-based
e Calling quality
* Variant missingness rate
e Deviance from HWE
 Mendelian consistency

e Sample-based
* Cryptic relatedness
* Population structure
* Inbreeding coefficient
* Wrong pedigree information
» Sex verification (based on X)



GWAS / WGAS

* Number of samples (n)
e 500-500,000 (UK Biobank)
e Larger n -> more statistical power and more computational burden

* Number of SNVs (m)
* Genotyped
* 500,000-1,700,000
* [[lumina MEGA Ex array ~1.7M (Multi-Ethnic Global)

* Imputed
 8M common variants based on HRC imputation panel (n=65k)



GWAS / WGAS 2

* Whole Exome Sequence (WES)
e 1-2M variants in exome regions only (coding regions)

* Whole Genome Sequence (WGS)

N samples M variants
4300 87M
10600 141M

19k 219M

65k 582M
122k 721M




MAF spectrum

* Mathematically described by the Ewen’s sampling formula

* Rule of thumb: 70% of variants below 5% (Visscher, Goddard, Derks,
Wray 2012)
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Population-based association studies

* Find variants that are statistically associated with phenotype

1. Dichotomous phenotype
e Case versus control

2. Quantitative phenotype

* Height

* Blood markers

e Gene expression measures (QTL)
3. Time-to-event

e Survival

* Time to onset

Y

M variants




Case/control

test<-mutate (ADSE, affected=ifelse (affected==0,H4, affected-1))
tab<-table (testfaffected, cestfrs429358)

print (tab)

$#

% 0 1 2

#% 0 3907 527 15

## 1 3137 1986 163
chi=g.test (tab)

$#

$#% Pearson's Chi-sguared test
##

#% data: tab
#% ¥-sguared = 98%.85, df = 2, p-valus < 2.Ze-1a

 HO: Genotype frequencies are same for cases and controls

» Alternatives include allelic test (1df), Fisher exact test, Cochran-Armitage trend



Linear regression / logistic regression

* Can account for covariates and better correct for population
stratificiation
Y~PG+YZ + €
* |dentity link function for linear regression

* Logit link function for logistic regression

exp(a + Bg; +vz;)
1+ exp(a+ Lg; +yz;)

P(y;=1) =



Example

fit<—glm(affected~r=s429358+=2ex+PC1+PC2, family = binomial () ,data=test)

surmary (Eit)

%

$#% Call:

% glm(formula = affected ~ rs429358 + sex + PCl + PCZ2, familv = kbinomial(),
% data = test)

%

$#% Deviance Residuals:

¥4 Min 1Q Median 3Q Max

$#+ -2.4075 -1.0843 0.6856 1.2827 1.30897

%

$%# Coefficients:

¥4 Estimate 5td. Error z walue Pr(>|z|)

4 (Intercept) -0.27128 0.07371 -3.681 0.000233 ###

$#4+ r=4239358 1.52018 0.05240 29.009 <« Z2e-1la **%

£+ =ex 0.03440 0.04365 0.788 0.430584

$#+ PC1 3.13185 2.16073 1.449 0.147214

$% PBC2Z -1.872893 2.18200 -0.858 0.3590697

#E ——

$#4% Signif. codes=: g '*&%® 0 _ Q001 ****' Q.01 **' Q.05 *.* 0.1 " * 1
£

## (Dispersion parameter for binomial family taken to be 1)
%

## Hull deviance: 13424 on 9734 degrees of freedom
## EResidual deviance: 12364 on 9730 degreeszs of freedom
¥4 (648 observations deleted dus to missingness)

$#+ BIC: 12374

%

$## Mumber of Fisher Scoring iterations: 3




Example plink

* plink19 --bfile filename --pheno phenofile --pheno-name
Affection.Status --covar covarfile --covar-name PC1-PC5,sex --logistic -
-out outname
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Manhattan plot

chromosome

Ikram et al. PLoS Genetics 2010



Multiple testing problem

 If a=0.05, then m*a are expected to be found just by chance
* Use multiple testing correction (Bonferroni)
 GWAS significance level ~5e-08, widely accepted

* For WGAS with rare variants should be even smaller (Fadista et al.
2016)
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Bias due to population structure

Population 1 Population 2
» allele frequency differences between

populations due to genetic drift and
gene flow

* Since we campare allele frequencies
sampling from different populations
can lead to false-positive association
findings

* Suppose cases are over-sampled

from group 2, relative to controls
@ 000

o cases
* Then any allele which is more

common (higher minor allele 0000
frequency) in group 2 will appear to controls
be associated with the trait



Example (simulation)

e 1000 cases / 1000 controls
* 100k null SNPs

Population 1 400 600
Population 2 600 400

Gnotyps  lcases oo

AA 421 319
AB 469 505
BB 110 176

P=3.8e-08



Inflated QQ plot
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ldentification and correction: PCA

* |dentification of stratification based on
systematic patterns along the entire

PCA plot based on 100k SNPs

0.03
|

genome 0o ©

* Approriate similarity measure between
two individuals

* Most popular: GRM (EIGENSTRAT, Price
et al. 2010) .

0.01
|

PC2
|

% population 1
©  population 2

-0.01

-0.03

* Incorporation of information into
association test for single variant
(principal components)

-0.025 -0.024 -0.022 -0.020

PCA1



GRM

 Calculate genetic covariance matrix (genetic relationship matrix)

* N individuals, m markers:

G[g;“ N g?”“} by = 130G =2P)(G, ~2p)
m = 2ps(1_ ps)

* Perform an eigenvalue decomposition and use top principal
components in a regression as covariates



QQ plot after PCA correction

0gylp)

Pcorrected=2.2e-05




Mixed models

* The test of association is performed in the fixed effects part of the
model

* Implicitly captures population structure and cryptic relatedness by
modelling the covariance matrix.

e Can increase power by implicitly conditioning on associated loci other
than the candidate locus and by larger sample sizes
(related+unrelated)

 software packages (e.g. EMMAX, GCTA, GEMMA, LMM-BOLT, GMMAT,
SAIGE)



Mixed models

*Y~XB + g+ ¢

* Y — phenotype

e X — vector of covariates (fixed effects)

* [ —vector of fixed effects coefficients

» g~(0,K0oj) —total genetics effects per ind, e~(0, [o£)

* K—relationship matrix, often GRM is taken.



Example mixed models

° Large GWAS’ Several populations Letter = Published: 10 August 2011
Genetic risk and a primary role for cell-

« Compared several approaches mediated immune mechanisms in multiple
sclerosis

TheInternational Multiple Sclerosis Genetics Consortium & The Wellcome Trust Case Control

Consortium 2

Nature 476, 214-219 (11 August 2011) | Download Citation &

b B Finland
B Sweden
® Norway Abstract
B Denmark
B Australia
& . . . )
- si Multiple sclerosis is a common disease of the central nervous system in
B Germany which the interplay between inflammatory and neurodegenerative
B Belgium . . . . .
® Poland processes typically results in intermittent neurological disturbance
2 'Jgi”d followed by progressive accumulation of disability'. Epidemiological
M France studies have shown that genetic factors are primarily responsible for
e B Spain P } . .
Basas ¥ Contiols 2 htaly the substantially increased frequency of the disease seen in the

relatives of affected individuals®®, and systematic attempts to identify
a, b, All cases and controls were drawn from populations with European ancestry; cases . . ) . ) o o
linkage in multiplex families have confirmed that variation within the

from 15 countries and controls from 8. a, Numbers of case (red) and control (black) samples
from each country. b, The projection of samples onto the first two principal components of major histocompatibility complex (MHC) exerts the greatest individual
Mes shown on the left and controls on theright The axes are effect on risk*. Modestly powered genome-wide association studies

(GWAS)?6.7.89.10 have enabled more than 20 additional risk loci to be



Example mixed models

Lambda — genomic inflation factor, median inflation of test statistics
A = median(x%, x2, ..., x2)/0.455

No correction PCA correction, 100 PCs Mixed model approach

20
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Association methods (family-based)

 Test for both linkage and association

e Robust to population substructure: different environments,
admixture, stratification, failure of HWE

* Requires genotyped families (parent-child, or siblings)
* TDT test for trio design (affected offspring)

* FBAT - generalization to general phenotypes, general pedigrees,
missing parental genotypes, and multiple variants (Lake and Laird
2001, Laird and Lange 2006,...)



Family-based designs

* Trio
* both parental genotypes observed

» Affected siblings

* Usually no parent genotypes

©

O




DT

e classical trio design : affected offspring o) A

* implies outcome-based sampling O

e if variant is associated, observed
transmission rates should deviate from .
mendelian

(?/?)
e compares transmissions from
heterozygous parents to offspring with
expectation under Mendel‘s laws



DT

Table 2

Combinations of Transmitted and Nontransmitted Marker
Alleles M, and M, among 2n Parents of n Affected Children

NONTRANSMITTED
ALLELE
TRANSMITTED
ALLELE M, M, TOTAL II — {b_{:}I/(b+ﬂ}.
M1 ;;;;;;;;;;;;;;;;; ad b atb
Ml ................. C d ct+d

Total ....ovvnt... a+c b+d 2n




Generalizations

* FBAT: generalization of TDT to general phenotypes, general pedigrees,
missing parental genotypes, and multiple variants (Lake and Laird
2001, Laird and Lange 2006,...)

* GDT: incorporates parental phenotypes (Chen et al. 2009)

Received: 12 June 2018 Revised: 26 Seplember 2018 Accepled: 26 November 2018
01: 10.1002/gepi.22181

Gepetlc ) *‘ IFP:;;;NAO‘I";;I‘:LAL GENETIC
Epidemiology ¥ oo

RESEARCH ARTICLE WILEY

A comparison of popular TDT-generalizations for
family-based association analysis

Julian Hecker® | Nan Laird | Christoph Lange

Department of Biostatistics, Harvard T.I1. b
Chan School of Public Health, Boston, Abstract

Massachusetts The transmission disequilibrium test (TDT) is the gold standard for testing the




FBAT general framework

U= ZT(X — E(X|P)) Z = U/sqrt(Var(U))

U= (= X - E(XIP))

 T-—trait, based on phenotype Y and offset

* X—genotype

 P-—parental genotypes

* Sum over all offspring

* E(X]|P)is the expected marker score computed under HO, conditional on P
* Equivalent to TDT, when trio design and no missing data

* FBAT toolkit



Variance explained by common variants

* Schizophrenia

e Estimated heritability from twin studies: 65-80%

* Proportion of heritability explained by common SNPs: 25-31%
* Biploar Disorder

* Estimated heritability from twin studies: 75-85%

* Proportion of heritability explained by common SNPs: 25-31%



Where is the missing heritability? Theories:

 Lack of Power: weak effects
* Rare variants
 Epistasis: combinations of SNPs

* Epigenetics: external and environmental factors



Where is the missing heritability? Theories:

e Rare variants



Rare variants

 characterized by small minor allele frequencies (i.e. below 5% or 1%)

e due to small allele frequencies a weaker LD-structure compared to
common variants

 Singletons: rare variants with an allele count of 1, private mutations,
unclear role



Major problem - power

Power
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Rare variant analysis

* When the sample size is limited try to combine the signal from
multiple rare variants.

 How to test multiple rare variants?
* Combine signals

* How to group rare variants for testing?
* Functional annotations
* Sliding windows



Power

MAF=0.01, B=0.1 SDs, a=5x10"°
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Rare variant analysis

e Burden (CAST,CMC,WSS)

2
* Testing the combined effect of multiple Qg = {Z:(yi —fzi)(z ngij)}
rare variants i—1 -1

* Work well for signals in one direction

* VVariance-component (SKAT) N N 2
* Jointly test individual variant-score test Qs = ZWij :ZW,- {Z g; (Y, —ﬂi)}
statistics J=1 J=1 =1

 Robust to effect direction

* SKAT-O - weighted average of SKAT and _ (1
burden-test statistics Qp = PQs +(1-P)Qs



Rare variants explain the missing heritability?

New Results | comment Q Previous Next ©
Recovery of trait heritability from whole genome sequence data Posted March 25, 2019.

® Pierrick Wainschtein, Deepti P. Jain, & Loic Yengo, Zhili Zheng, Download PDE % Email

TOPMed Anthropometry Working Group, Trans-Omics for Precision Medicine Consortium, R ) 7 Share
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Heritability, the proportion of phenotypic variance explained by genetic factors, can he
estimated from pedigree data ', but such estimates are uninformative with respect to L
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Beyond main effects

Gene-gene interaction

Gene-environment interaction

Definition

Diagram

When two or more DNA variations interact either directly
(DNA-DNA or DNA-mRNA interactions), to change tran-
scription or translation levels, or indirectly by way of their
protein products, 1o alter disease risk separate from their
independent effects

Allelic variant |

Allelic variant i
of locus B

No disease Disease X

When a DNA variation interacts with an environmental
factor, such that their combined effectis distinct from their
independent effects

Environmental
factor K

Allelic variant |

No disease Disease X



summary

* Association methods
e Data quality
GWAS
Multiple testing problem
Population stratification
Mixed models
Family-based association studies
Rare variant association studies



