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         Dopamine, Reinforcement Learning, and Addiction    

sive perspectives on the multifarious roles of 
dopamine in aff ective processing, linking compu-
tational, psychological and neurobiological 
notions. RL ’ s initial treatment of dopamine was 
largely confi ned to learning, of both predictions 
of long run future rewards, and optimal choices 
of actions in the light of those predictions 
 [7,   42,   78,   108,   116] . As pointed out by  [75] , this 
view is consonant with the notion that it is 
involved in the processes of  ‘ wanting ’ , somewhat 
orthogonal to the hedonic issues associated with 
 ‘ liking ’   [10] . 
 This RL-based account informed  [91]  ’ s sugges-
tion about dopamine ’ s involvement in two con-
trol-based aspects of addiction: an uncontroversial 
one associated with the initial reinforcing aspects 
of drugs, and a more contentious one  [87]  associ-
ated with compulsion. However, RL ’ s scope has 
been extended to issues of motivation  [24,   75] , 
vigor  [84] , and the interactions between (i) Pavlo-
vian and instrumental conditioning  [27,   28] , (ii) 
habitual and goal-directed behavior  [20,   31] , and 
(iii) appetitive and aversive processing  [19,   25] . 
These models are collectively simple and rather 
abstract, and cannot fully refl ect the many com-
plexities of the neural substrate. However, they 
have proved their mettle in providing founda-
tions for the design and understanding of a 
wealth of empirical approaches and results. Here, 
we reconsider the light that various of these new 
conceptions of RL sheds on dopamine ’ s involve-
ment in addiction. 

 Introduction 
  ▼  
 The neuromodulator dopamine is richly involved 
in appetitive processing. It is associated with 
both natural and artifi cial reinforcers, including 
intracranial self-stimulation (ICSS) and most, 
though not all, aspects of drugs of addiction  [29,   
35,   60,   68,   69,   112,   130] . However, the exact nature 
(and, particularly in the case of ICSS, importance 
 [44,   55,   85] ) of its involvement is incompletely 
understood, with theories ranging from eff ects 
on incentive motivation  [99,   100,   101] , and over-
coming eff ort costs  [103,   104] , to learning predic-
tions of future reward  [78,   108] , and beyond. 
 The role dopamine plays in addiction is yet more 
complicated, because of the very diff erent modes 
of action of the diff erent drugs, and also the 
rather intricate natural history of addiction, with 
impulsive drug taking leading to compulsive 
behavior and repeated cycles of withdrawal and 
recidivism  [35,   66,   70,   113] , and also with many 
other psychological eff ects such as steeper than 
normal discounting  [120] . Further, dopamine 
certainly does not act alone. Rather, many other 
neurotransmitters and neuromodulators are 
involved, perhaps interacting with each other in 
diff erent ways for diff erent addictive substances. 
 In this short note, we consider the context that 
reinforcement learning (RL;  [118] ) provides for 
dopamine ’ s involvement in addiction  [91,   92] . RL 
is a theory of adaptive, approximately-optimal, 
control, and off ers one of the more comprehen-
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  Abstract 
  ▼  
 Dopamine is intimately linked with the modes of 
action of drugs of addiction. However, although 
its role in the initiation of drug abuse seems rela-
tively uncomplicated, its possible involvement in 
the development of compulsive drug taking, and 
indeed vulnerability and relapse, is less clear. We 

fi rst describe a modern reinforcement learning 
view of aff ective control, focusing on the roles for 
dopamine. We then use this as a framework to 
sketch various notions of the neuromodulator ’ s 
possible participation in initiation and compul-
sion. We end with some pointers towards future 
theoretical developments.         
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 Section 2 very briefl y sketches a modern theory of neural RL 
 [23] , pointing out the diverse infl uences it accords to dopamine. 
Section 3 considers accounts of dopamine ’ s role in the early 
stages of addiction  [91] . Section 4 considers possible extensions 
to compulsion, including the one due to  [91]  involving saturat-
ing predictions, one concerned with saturating action propensi-
ties  [8]  or boosted advantages  [5] , and two sorts of Pavlovian 
responses  [10,   27] . Although we attempt to build an integrative 
account, it is important to remember that there are many very 
important diff erences between diff erent drugs of addiction; fur-
ther, it is not presently possible to capture all their complex 
eff ects at multiple temporal scales over the release and recep-
tion of dopamine itself and other neuromodulators, and also 
over other aspects of systems involved in control. Further, in 
keeping with the special issue, we focus particularly on 
dopamine, leaving many other issues associated with RL models 
of addiction to  [92]  and the extensive critical commentary asso-
ciated with that paper.   

 Reinforcement learning and dopamine 
  ▼  
 At a computational level  [73] , RL off ers theories of learning to 
predict and act appropriately in aff ectively charged, partially 
unknown, environments  [118] . In the most interesting cases, the 
environment has multiple states (like locations in a maze), with 
actions causing stochastically successful transitions between 
states and, perhaps occasionally, giving rise to desirable or unde-
sirable reinforcement outcomes such as foods, drugs or electric 
shocks. RL is often considered in instrumental or operant terms 
with the subject having at least partial agency. However, in the 
case that the subject never has a choice (which one might think 
of as if there is only a single action), exactly the same computa-
tional methods allow the learning of action-free predictions 
about future outcomes, which is normally the preserve of Pavlo-
vian or classical conditioning. We mainly discuss RL in the richer, 
operant case, but refer to Pavlovian issues as they arise. 
 In environments such as a maze, an action cannot only be judged 
by its immediate consequences; rather, it is necessary to con-
sider the cumulative utilities of all the outcomes arising in the 
future that depend on the action. This makes for a computation-
ally challenging problem. RL includes diff erent algorithmic 
responses to this challenge, notably a range of model-based and 
model-free methods  [20] . In turn, these have rather diff erent 
neural implementations  [6] , some, but not others, of which crit-
ically involve dopamine. 
 In model-based RL, subjects are assumed to build so-called for-
ward models of their environments. These specify the probabili-
ties that particular outcomes or state transitions arise from 
particular actions, and also report the utilities of those actions. 
Optimal choice in model-based RL is conceptually simple, involv-
ing forward or backwards search in the tree of all the accessible 
states to fi nd the actions leading to the largest cumulative 
reward. It is also straightforward to handle uncertainty correctly, 
trading off  exploration for exploitation  [46,   21] . However, this 
conceptual simplicity is bought at what is typically a prohibi-
tively huge computational price for searching the tree, or alter-
natively a prohibitively large calculational uncertainty induced 
by the diffi  culty of doing this computation accurately  [20] . 
 Since model-based decisions are made on the basis of predic-
tions of actual outcomes, they can automatically be sensitive to 
the utilities of those outcomes that apply to the subject ’ s current 

motivational state. In psychological terms, model-based RL is 
goal-directed (i.e., animals choose actions because they expect 
particular, desired, outcomes to result;  [31] ). There is evidence 
in rats that some aspects of goal-directed control, notably valua-
tion, are not dependent on dopamine  [32] , although the expres-
sion and force of voluntary action as a whole is diminished by 
dopaminergic defi cits  [74,   83] , perhaps by its eff ects on vigor 
that we discuss below. 
 In model-free RL, subjects acquire ways of evaluating or predict-
ing the long-term summed utilities associated with executing 
actions, without building or searching in any form of forward 
model. Versions of these utilities include what are known as Q 
values  [123]  and advantages  [5] . They can be learned in the 
absence of a model on the basis of the fact that predictions of 
long run utility should be mutually consistent along paths or 
trajectories. For instance, an action at one state has a high value 
if it leads directly to a high utility outcome, or leads to a transi-
tion to a second state that itself has a high value, or indeed both. 
Any inconsistency gives rise to a prediction error that can be 
used to correct the value of the initial state. Of course, early in 
learning, the value of the second state will not be accurate, and 
so this form of  ‘ bootstrapping ’  is statistically ineffi  cient. Never-
theless, Q and advantage values are simple to use, since they 
completely obviate the need for search, with actions associated 
with larger predicted utilities being selected more frequently. 
 Since the predictions are of the summed utilities of the ultimate 
outcomes rather the outcomes themselves, model-free control is 
insensitive to the current motivational state of the subject. In 
psychological terms, model-free RL is habitual  [31] . In the end, 
even the relative utilities of diff erent actions are unimportant; it 
is only necessary to know one that is best at each state. Thus, 
there is a spectrum of model-free RL methods, leading all the 
way down to the most ascetic architecture called the actor-critic 
 [8] . In this, the prediction errors are used to criticize choices, 
ultimately enabling the learning (by the actor) of just this single 
best action at a state, in the absence of any information about 
how much better it is than other possible actions. The general 
impetus to perform an action at a state is sometimes called its 
propensity, as distinct from its Q value or advantage. We discuss 
this diff erence in more depth in section 4. 
 Dopamine plays a substantial role in model-free RL, in both Pav-
lovian  [107]  and instrumental  [79,   102]  settings, with evidence 
that its phasic activity  [108]  and release  [22]  represents aspects 
of the prediction error mentioned above. That is, it is possible 
rather directly to observe and measure the workings of these RL 
models using such techniques as electrophysiology and cyclic 
voltammetry, and, less directly using pharmacological func-
tional magnetic resonance imaging (e.g.,  [89] ). These various 
studies suggest that this error is coded according to the aff ective 
sign of reward (so more reward than expected leads to greater 
activity of dopamine neurons), and is reported by mesolimbic 
and mesostriatal neurons in the ventral tegmental area and sub-
stantia nigra pars compacta to targets in the amygdala, nucleus 
accumbens, dorsal striatum and beyond. It is believed that the 
phasic dopamine may infl uence synaptic plasticity  [95,   124,   125]  
so as to make the predictions more accurate. However, the pre-
cise role of each of these target areas in realizing the predictions 
is not clear. Further, in keeping with the spectrum of increas-
ingly austere controllers, there is a form of helical or spiralling 
connectivity involving a ventral-dorsal axis along the striatum 
and a ventral tegmental area to substantia nigra axis of the 
dopamine cells  [50,   61,   62]  providing a substrate (though 



Original PaperS58

 Dayan P. Dopamine, Reinforcement Learning    …    Pharmacopsychiatry 2009;   42 (Suppl.1): S56 – S65 

 conceived slightly diff erent there  [51] ,) for prediction errors at a 
more ventral part of the spiral (acting as the critic) to teach 
action choices realized at a more dorsal part (the actor). 
 Dopamine plays at least two further roles in modern theories of 
RL. First, there is an association between tonic levels of the neu-
romodulator (which may be partially independent of phasic 
release;  [47] ) and the vigor or energy of responding  [84] . This 
has been interpreted in RL terms as arising from the additional 
degree of freedom of choosing the latency of executing an action 
in order to balance the excess energetic cost of acting very 
quickly against the opportunity cost of missing out on poten-
tially available rewards by acting very slowly.  [84]  suggested 
that tonic dopamine reports the average rate of (controllable) 
reward. This acts as an aspiration level - states or actions associ-
ated with rates of reward lower than the current average will be 
relatively aversive. In temporal terms, this average is exactly the 
opportunity cost of time, and, via the tradeoff  mentioned above, 
is positively correlated with vigor.  [84]  discussed the account 
this provides of the data implicating an involvement of dopamine 
in eff ort costs  [103,   104] . It could also relate to the psychomotor 
activating properties of dopamine-boosting stimulants (which 
is itself a venerable idea in addiction;  [131] ), and increased 
impulsivity, since the higher the opportunity cost, the greater 
the price of a delay, and the less willing subjects will be to wait 
for rewards. 
 The second role concerns a phenomenon called Pavlovian to 
instrumental transfer (PIT). In this, subjects are separately 
trained on two contingencies, an instrumental one, such as lever 
pressing to receive one reward (A); and a Pavlovian one, of the 
association between a conditioned stimulus such as a tone and 
another reward (B). If the subject is then allowed to press the 
lever in extinction (i.e., without any of reward A being provided), 
then it will press the lever more vigorously if the tone is also 
played (also without the actual delivery of reward B). The great-
est excess vigor comes if the Pavlovian and instrumental out-
comes are literally identical (a circumstance called specifi c PIT); 
but lever pressing is enhanced even if the Pavlovian outcome is 
diff erent (general PIT), provided that its current motivational 
value is positive (so water will not exert an eff ect as reward B 
unless the subject is thirsty). PIT appears to depend on Pavlovian 
values, possibly represented in the amygdala  [15] , aff ecting the 
nucleus accumbens, and indeed it is magnifi ed by drugs that 
boost dopamine in the accumbens  [133] . One idea about (gen-
eral) PIT consistent with this dopaminergic infl uence is that pre-
senting the Pavlovian stimulus increases the expected average 
reward rate, and therefore leads to enhanced vigor  [84] ; cer-
tainly there is a inverse correlation between the strength of 
activity of dopamine neurons engendered by a stimulus and the 
latency of the action that is inspired  [105] . 
 The fi nal facet of modern theories of RL is an acknowledgement 
 [13,   14]  of the importance of Pavlovian responses  [27] . That is, 
model-free or model-based predictions of future appetitive (or 
indeed aversive) values elicit characteristic  [11,   12,   77]  prepara-
tory and consummatory responses such as approach (or with-
drawal) that can compete with, and even overwhelm  [56,   126] , 
instrumental choices that experimenters impose as being neces-
sary to get the rewards. Importantly, the nucleus accumbens, a 
critical site for the action of drugs of addiction, seems to be one 
mediator of these responses, which are organized according to a 
state-dependent topography over its extent  [96 – 98] . The results 
on speeded responses associated with reward prediction  [105]  
make it conceivable that dopamine infl uences appetitive Pavlo-

vian responses. It is to be presumed that these responses are 
adaptive in ecologically relevant environments; and indeed 
experimenters have come to use them in working out what 
instrumental actions to mandate in order to hasten the course of 
learning in experiments. Nevertheless, instrumentally wanton 
actions such as approach or withdrawal in the face of reinforcers 
or their immediate predictors could, for instance, lead to mala-
daptive outcomes such as impulsivity or framing eff ects in choice 
 [28] .   

 Initiation 
  ▼  
 We fi rst consider the dopaminergic processes that are initially 
engaged by drugs of addiction and that lead them, if sampled, to 
be likely to be repeated. One obvious route lies within model-
free RL. We argued that the phasic activity of dopamine cells 
acts as an error associated with predictions of future reward. 
When this is positive, this implies that more reward than 
expected has been provided. In turn, dopaminergically-control-
led plasticity should increase the original prediction that then 
appears erroneously pessimistic. If this prediction is associated 
with a state, then this would make the state more attractive, 
potentially leading to Pavlovian approach and other eff ects such 
as conditioned place preference  [119] . If the prediction is the Q 
value or advantage of a particular action at a state, then increas-
ing it will increase the frequency with which that action will be 
chosen at the state  [91] . Thus, drugs that cause dopamine con-
centrations to be higher at key synaptic targets, by blocking 
reuptake, releasing it from stores, inhibiting autoreceptor-medi-
ated feedback inhibition, or directly increasing the phasic activ-
ity of dopaminergic neurons, should lead to some of the fi rst 
signs that drugs can act as (positive) reinforcers. 
 In the model-free actor-critic instrumental conditioning 
architecture, the phasic release of dopamine criticises the 
choice of action. In this case, drug-induced increases will 
infl ate the propensity to perform the associated action. The 
apparently subtle diff erence between this case and the case of 
Q values and advantages is discussed below in terms of the 
evolution of compulsions. 
 Along with these direct routes, there are also some possibilities 
for indirect infl uence. For instance, opioids can act to magnify 
the eff ect of dopamine at its targets  [30,   114,   115,   129] . In the 
simplest model in which dopamine is just a pure appetitive pre-
diction error, this would actually just change the learning rate 
associated with the predictions rather than acting to increase 
the value or propensity of states or actions (since if there is no 
prediction error to start with, there would be no dopamine 
release to be subject to opioid boost). However, there is also a 
baseline or tonic release of dopamine  [47] , and if opioids boost 
this, they would create an imaginary reward that would have the 
same eff ects as above  [111] . There is also some evidence that 
novel stimuli and states lead to phasic dopamine activity  [58] , 
an eff ect modeled in RL prediction error terms as being a spur to 
exploration  [64] . This could provide an initial phasic dopamine 
response on which the opioids would subsequently wield their 
eff ects. 
 Finally, there is ample evidence that opioids enhance the specifi c 
utilities of conventional outcomes such as food  [9,   68,   88]  and 
make various aversive outcomes less unpleasant  [36] . Assuming 
something like a baseline level of activation of the systems 
involved in outcome evaluation (perhaps as part of an opponent 
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structure;  [110] ) this provides an additional route by which 
model-free RL could be aff ected. Importantly, by this means, 
opioids, and other drugs working on specifi c evaluation systems, 
could also infl uence model-based RL  [93] . Since the involvement 
of dopamine in goal-directed control is believed to be relatively 
constrained, this off ers one route towards non-dopaminergic 
aspects of addiction  [69,   57] .   

 Compulsion 
  ▼  
 Compared with this relatively restricted set of ideas about the 
earliest infl uences on drug-taking, the long-run behavioral and 
neural eff ects of addictive drugs appear to be more heterogene-
ous between diff erent substances, and exhibit substantial varia-
tion between diff erent individuals. They have also led to a 
number of rather diff erent theoretical ideas (well aired in  [92]  
and associated commentary). The direct relevance of RL con-
cepts (let alone the infl uence of dopamine), is somewhat ques-
tionable, a fact that underlay many of the criticisms expressed to 
that paper. However, one of the main aspects of maladaptive 
decision making in addiction is the evolution of the compulsive 
consumption of drugs, i.e., that they are sought and consumed 
despite evident knowledge of their negative consequences (e.g., 
 [33,   71] ). In this section, we discuss some of the key candidate 

RL-based routes by which dopamine ’ s infl uence on at least the 
fi rst stages of compulsive behavior might be explained. 
 Before focusing on the role that dopamine might play, we need 
fi rst to understand what the structure of a compulsion might be 
in the context of RL. Normally, the long-run costs of actions are 
assumed to be weighed together with their benefi ts to give rise 
to Q or advantage values or action propensities. Given values for 
two such actions Q a  and Q b  (the second action could, for instance, 
involve just doing nothing), it is simplest  [128]  to consider the 
probability of choosing action a to be p a     =     σ ( Δ Q), where  σ (z)    =    [1 /
 ((1    +    exp(    −    z)))] is the conventional logistic sigmoid, and makes a 
more likely the larger the value of  Δ Q    =    Q a     −    Q b .     ●  ▶     Fig.   1A   shows 
this sigmoid. One would consider a compulsion as being an unu-
sually strongly held impetus towards an action associated with 
the delivery of a drug. 
 The fi rst two routes to compulsion come from problems with 
incorrectly large action values or propensities. The alternative is 
that these basic action-choice quantities are correct, but that 
they fail to determine decision-making completely, for instance 
because of the malign infl uence of Pavlovian responses over 
instrumental behavior. We discuss two routes to compulsion 
coming from this. 
 It is fi rst important to see the likely insuffi  ciency of the simple 
mechanism we discussed above by which drugs that boost the 
dopamine signal can initiate responding. It is easiest to do this 
by writing down the basic RL equations (which, in this simpli-

        Fig. 1           Reinforcement learning action choice. A) The sigmoid function 
 σ ( Δ )    =    1 / (1    +    exp(    −     Δ ) showing the probability of choosing the favoured 
action as a function of the diff erence in Q, propensity or advantage 
values. B-E) The upper plots show underlying Q values, propensities 
or advantages (note the diff erent scales); the lower plots show the 
probabilities of choice of a target action a against a foil action b with 
r b     =    0. B) Q-learning. The upper plot shows the acquisition of a regular 
(solid) Q a  value for r a     =    2 and a drug-adjusted value (dashed) using Eq. 3 
with r a     =    0,d    =    2.5. It is apparent that this mechanism cannot lead to any 
unusually strong compulsion. C) Q learning with a minimum prediction 
error. If, as suggested by  [91] , the prediction error signal is always greater 

than d (Eq. 4), then the Q a  ultimately grows linearly. This could lead to a 
more deeply embedded habit, but at a cost of not accounting for data 
on blocking  [87] . D) Actor-critic learning also leads to deeply embedded 
habits, with the diff erence in propensities between actions rising without 
bound. However, drugs would not exert an unusual infl uence here either, 
except perhaps increasing the speed of learning. E) In standard advantage 
learning (solid), the advantage of the better action tends towards 0 
as the probability of choosing that action goes to 1. Given an additive 
drug-based factor (dashed lines), the advantage value would tend to be 
persistently positive, which might be one route to a compulsion.  
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fi ed case are the same as the fundamental equations of error-
based learning in conditioning;  [94] ). Consider the case of 
acquiring the Q a  value of action a. If the consequence of per-
forming action a is a reward of utility r a , then the error associ-
ated with the current predicted value Q a  is the diff erence 

     δ  a     =    r a     −    Q a         (1) 

 The suggestion is that this is reported by dopamine, giving rise 
to a learning rule for Q a  according to which it is changed to 

    Q a  ← Q a     +     ε  δ  a          (2) 

 This is a discrete form of a learning rule, specifying a punctate 
change to Q a  (in the form of a diff erence equation; the arrow 
indicates that Q a  is replaced by a new quantity during this 
update) based on a single experience. It can be seen as an 
abstraction of a continuous time learning rule based on diff eren-
tial equations characterizing the (multiple timescales of) change 
to synapses representing this quantity. In equation 2,   ε   is a learn-
ing rate parameter that determines the magnitude of the change. 
Given a natural reward worth say r a     =    2 units, Eq. 2 will have Q a  
approach the correct prediction of 2 exponentially quickly. This 
learning curve is shown in the solid line in the upper plot of 
    ●  ▶     Fig.   1B  ; the resulting probability of choosing action a over 
another action b (with r_b    =    Q_b  =    0) is shown in the lower plot. 
 The simplest view of the mechanism for initiation is that the 
drugs exert a net additive eff ect on the prediction error, so 

     δ  a     =    r a     −    Q a     +    d         (3) 

 where d    >    0 is a drug-induced value. In this case,  1   it is easy to see 
that Q a  will converge on r a     +    d rather than r a . Thus, for instance, 
in the absence of any natural reward (r a     =    0), the Q value of the 
action will still be greater than 0 and so admit action. The dashed 
lines in     ●  ▶     Fig.   1B   show this case for r a     =    0 and d    =    2.5. One might 
imagine compulsions arising if this excess reward is so great that 
no cost can compare. However, this does not refl ect the natural 
history of the formation of compulsions, which appear relatively 
slowly, long after the values should have converged. Thus some 
other mechanism or mechanisms must be engaged. 
 Note that measuring the additional signal associated with the 
drugs (and indeed the other such signal discussed below) 
presents some challenges. Nevertheless, cyclic voltammetry 
seems to be becoming a method of choice (e.g.,  [4,   16,   52,   90] ). 
Findings using this method have yet to be fully integrated into 
modern RL accounts.  

 Saturating values 
  [91]  suggested that one other factor might be an irreducible 
fl oor to the prediction error, replacing Eq. 3 with 

    δ  a     =    max{r a     −    Q a     +    d,d}         (4) 

 In this case, the prediction error  δ  a  is always greater than d. 
Thus, since d    >    0, according to the learning rule in Eq. 2, the Q a  
value will increase towards ∞. Of course, in reality it would have 
to saturate at some level, but this saturation, which might take a 
while to be reached, would represent a point at which balancing 
costs and benefi ts might no longer happen.     ●  ▶     Fig.   1C   shows this 

case, indicating the ever-increasing Q a  value associated with 
action leading to the drug.  [91]  made a critical prediction based 
on the diff erence between expressions 3 and 4. Under Eq. 3, 
when the prediction is correct (Q a     =    r a     +    d), there is no prediction 
error ( δ  a     =    0), and so no signal that could support learning. How-
ever, under Eq. 4, there is always a signal to support learning, 
since  δ  a     ≥    d. The psychological phenomenon called blocking  [67]  
probes this by including an extra stimulus and seeing if it can 
soak up any learning. Based on equation 4  [91] , predicted that 
blocking should not occur for cocaine because the positive pre-
diction error ( δ  a     >    0), would provide the substrate for permanent 
learning.  [87]  tested this in a simple case, and found that block-
ing did in fact occur, weighing against this form of the learning 
rule.   

 Propensities and advantages 
 This blocking result  [87]  implies that some values may be cor-
rect, and motivates the alternative proposal that action choice 
mechanisms associated with either propensities or advantages 
are disturbed instead. This is indeed one interpretation of the 
suggestions of  [33,   35] , in their argument that control over the 
choices associated with drug seeking and taking become strongly 
habitual, migrating via the spiralling loops in the striatum 
 [50,   62,   61]  to its most dorsal extent. 
 Unfortunately, although there has been some interesting mode-
ling work on the spirals  [51] , the rules determining which actions 
are controlled, and according to what learning rules, are not 
pinned down by the available data. However, the learning rules 
for both the action propensities in the actor-critic and the advan-
tage values can be described in ways that are consistent with the 
spirals, and so we consider how they might be aff ected by drug-
dependent dopamine boosts. 
 The actor portion of the actor-critic uses action propensities (say 
M a  and M b ) rather than Q values. The probability of choosing a is 
still p a     =     σ (M a     −    M b ), but the learning rule is diff erent. According 
to this, the critic learns just as in Eq. 2, except acquiring the aver-
age value V of whatever actions are tried based on the delivered 
reward r 

     δ  V     =    r    −    V         (5) 

    V  ← V    +     ε  δ  V           (6) 
 where, in the appetitive case,  δ  V  is assumed to be reported by 
dopamine (putatively to the ventral striatum). The blocking 
result  [87]  suggests that this proceeds normally in the face of 
cocaine, according to the equivalent of Eq. 3. The actor learns 
using the same prediction error term  δ  V  (but reported more dor-
sally, up the spiral), and changes the propensities according to 
which action is chosen  [128] . One version of the operation of 
this rule is shown in     ●  ▶     Fig.   1D  , indicating the diff erence 
 Δ M    =    M a     −    M b  over trials (upper plot), together with the probabil-
ity of choosing a (lower plot). 
 It turns out that average change to the diff erence between the 
propensities is: 

   2 η p a  (1    −    p a ) (r a     −    r b )         (7) 

 where  η  is another learning rate. Thus, if r a     >    r b , then  Δ M increases 
without bound, even for natural reinforcers. This is one route to 
the deep embedding of a normal habit, since the greater the dif-
ference, the harder it will be to reverse the propensity. However, 
again, although one could imagine drugs, by boosting the    1    Note that this is equivalent to the fi rst D(S l ) term in Eq. 4 of  [91]  (P1945).   
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dopamine signal as in Eq. 3, could boost the speed of habit for-
mation, there is nothing in this mechanism by itself that implies 
that habits associated with addiction would ultimately be more 
deeply embedded than regular habits. 
 The advantage values (A a  and A b  for the two actions) are also 
learned using the prediction errors from value learning (Eq. 5, 
but by a subtly diff erent rule. In this case, learning proceeds 
according to a new advantage prediction error  δ  A  according to 

    δ  A     =     δ  V     −    A a  if action a is chosen,        (8) 

 changing the advantage according to 

    A a  ← A a     +     η  δ  A          (9) 

 where  η  is a learning rate. In this case, as subjects come to choose 
the better action (say a) more frequently, the critic ’ s prediction 
tends to the value of that action (V → r a ). Thus, the prediction 
error for the critic tends to zero, and so, by Eq. 9, the advantage 
tends to zero too. The advantage of the worse action tends to be 
negative. The advantages and choice probabilities for r a     =    2, r b     =    0 
are shown in the solid lines in the upper and lower plots of 
    ●  ▶     Fig.   1E  . The advantage A a  has not quite converged to 0, since 
the choice probability, which depends on  σ (A a     −    A b ), is not 1. 
 If the eff ect of the drug on dopamine is just to increase  δ V by an 
additive factor d, as in Eq. 3, then this is just the same as a natu-
ral reinforcer with value r a     =    d. However, if  δ  A  is also boosted by 
d, then the advantage value A a  will tend to d rather than 0, as 
shown by the dashed line in the upper plot of     ●  ▶     Fig.   1E  , and this 
could perhaps be the mark of a more deeply embedded drug 
habit than that associated with a natural reinforcer. To put it 
another way, normal reinforcers have a direct eff ect on value 
learning, and, via the spiral, an indirect eff ect on action learning. 
By manipulating the key learning signal further up the spiral, 
drugs that aff ect dopamine can have a direct eff ect on learned 
action selection too, thus leading to diff erent, and putatively 
more deeply-embedded, outcomes than for normal reinforcers.   

 Incentive sensitization and tolerance 
 A diff erent route towards explaining compulsion sees the mal-
adaptivity as arising from the overwhelming malign infl uence of 
Pavlovian responses seen in a variety of circumstances such as 
omission schedules  [27,   126] . Indeed, this is one way to view 
 [99,   100,   101]  ’ s incentive sensitization theory of addiction 
(although it is perhaps not quite consistent with the authors ’  
own view).  [10]  ’ s incentive salience theory suggests that 
dopamine release associated with the aff ective (incentive) value 
of stimuli makes the stimuli particularly salient and motivates 
the pursuit of reward (this is also related to the SEEKING notion 
of  [86] ). Compulsions arise when drugs of addiction sensitize 
this dopamine pathway so that the release of dopamine associ-
ated with drug-related cues leads to their capturing the whole 
focus of attention and forcing drug-seeking (preparatory) and 
drug-taking (consummatory) Pavlovian responses associated 
with the enhanced incentive values of the cues. The enhance-
ment may depend, perhaps via occasion-setting  [3]  on the con-
text in which the cues are presented; eff ects of sensitization on 
non-dopaminergic mechanisms may also be involved. 
 An important alternative to this view is that the sensitization is 
relative rather than absolute (see  [45,   132] ). That is the dopamine 
response to conventional outcomes that are normally rewarding 
(and cues associated with those outcomes), may be blunted or 

reduced over the course of the addiction. Conversely, dopamine 
responses to cues associated with the addictive substance could 
be comparatively spared. The blunting is consistent with sub-
stantial data arguing for decreases over the course of addiction 
in key markers of dopamine function and action (see 
 [53,   54,   121,   122] ), and could clearly inhibit addicted users from 
being tempted away by normally rewarding outcomes, leaving 
the addictive drug as the only target for responses. Reductions in 
the sensitivity of response to the drug itself, a form of systemic 
tolerance, has also been implicated in the apparent desire for 
ever-increasing doses, and this can lead to an obvious vicious 
cycle. 
  [75]  reinterpret incentive salience theory in RL terms, treating 
incentive values of cues as predicted future rewards consequent 
on those cues. They note that the dopamine release associated 
with such cues is exactly consistent with the standard temporal 
diff erence learning model  [78,   117] . However  [75] , did not focus 
on the relationship between Pavlovian responses and instru-
mental choices, and this omission made for interpretative diffi  -
culties, since incentive salience focuses on the former, and 
traditional RL the latter. Newer RL notions recognize the poten-
tial contradictions between these forms of response  [27,   28] , 
along with the issues such as impulsivity and framing that can 
come along with Pavlovian responses. The notion mentioned 
above that dopamine infl uences the appetitive Pavlovian 
responses allows an even closer match between RL and incentive 
salience. 
 Note the very diff erent character of explanation arising from the 
notions of absolute and relative sensitization and tolerance com-
pared with the previous notions. They consider biological neu-
roadaptations induced by the drugs of addiction such that the 
release of dopamine to cues itself changes over the course of the 
addiction. By contrast, the other theories consider this release to 
be essentially constant, and consider the eff ects as arising 
through a learning process. Of course, if the release of dopamine 
is indeed aff ected, then we might expect there not only to be 
Pavlovian eff ects (the focus of incentive sensitization), but also a 
range of instrumental eff ects, in fact on all of Q values, advan-
tages and propensities, all pointing in the same direction of 
more deeply embedded drug-associated choices, which would 
be harder to change.   

 Habits versus actions 
 The last notion about the involvement of dopamine in compul-
sion is a factor that acts synergistically with incentive sensitiza-
tion having to do with the interaction between model-based, 
goal-directed control and model-free, habitual control that we 
discussed above  [20] . It has been suggested  [27]  that anomalous 
Pavlovian responses are more prevalent under model-free hab-
its than model-based actions, for instance because the model-
based system has the wherewithal to predict the eff ect of 
performing a maladaptive response. This, for instance, reinter-
prets  [2]  ’ s notion that  ‘ the will ’  consists in bargaining between 
systems associated with short-term and long-term discounting, 
to one in which the task for willpower is returning control to 
the computationally expensive goal-directed system over the 
habit system, not because the latter is incorrect, or overly short 
term by itself, but rather because it is parasitised by maladap-
tive Pavlovian responses such as those discussed under incen-
tive sensitization. 
 If drugs, by aff ecting dopamine or otherwise, can manipulate the 
balance in favor of habitual control (which is infl uenced directly) 
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over goal-directed control (which is not), then they can have the 
eff ect of weakening the will, and so enhancing the compulsive 
eff ects. Indeed, there is substantial evidence of defi cits in regions 
of prefrontal cortex (which is associated with goal-directed con-
trol) both in animal models of addiction and human addicts 
themselves (see  [34,   122] ). Theories of the balance between the 
systems suggest that it should be regulated in a Bayesian manner 
by the relative certainties of the systems rather than their rela-
tive predictions  [20] . The means by which the certainties are 
calculated and represented is not clear (although other neuro-
modulators such as acetylcholine and norepinephrine, which 
are also infl uenced by various addictive drugs, may play a part; 
 [134] ). However, it could be that the predicted values are also 
involved in this competition, as an approximation, which would 
more directly implicate dopamine in the imbalance. An addi-
tional facet of incentive sensitization, namely the restriction of 
attention to the immediate stimuli directly associated with the 
drugs, could also prevent the goal-directed systems from being 
able to evaluate future consequences correctly, because tree 
search requires turning attention away from immediate stimuli 
to possible future states. This would leave habitual control and 
its Pavlovian parasites to dominate.    

 Discussion 
  ▼  
 We have provided a very brief review of a number of roles that 
the infl uence of drugs of addiction over dopamine might play in 
the initiation of drug taking and the development of compulsive 
behavior. We have related these in the context of a modern mul-
tifactorial theory of reinforcement learning, emphasizing the 
interaction between model-free and model-based systems, and 
between Pavlovian and instrumental conditioning. Crudely, the 
very early stages of drug taking are easy to accommodate, with 
dopamine release occasioned by drugs (or indeed other eff ects 
on specifi c valuation mechanisms) leading to their appearing to 
off er rewards. The development of compulsive behavior is more 
complex, with the possible involvement of various diff erent 
mechanisms, only some of which may involve dopamine in any 
important manner. Although it is natural from the perspective of 
RL to look to learning as being mostly responsible  [59] , neuro-
adaptations such as those considered in incentive sensitization 
may also play critical roles. 
 In keeping with the theme of the special issue, we focused on the 
role of dopamine and reward processing. However, opponency 
between appetitive and aversive systems, which is the central 
idea in  [70]  ’ s hedonic homeostatic or anti-reward account of 
addiction, is a central focus in areas of RL  [19,   25,   49,   110] , and it 
would be interesting to develop this link more completely. In 
this theory, the compulsion is a form of active avoidance behav-
ior (which are generally hard to extinguish), controlled by the 
negative reinforcement associated with withdrawal, with diff er-
ent sorts of neuroadaptations occasioned by the drugs boosting 
the negative eff ects. There is a number of two-factor  [82]  RL 
theories of active avoidance  [63,   80,   106]  that could be adapted. 
It would also be worth further elaborating the theoretical ties 
between the eff ects of drugs of addiction and intra-cranial self-
stimulation, particularly given the latter ’ s also complex relation-
ship to dopamine  [44,   55,   85] . 
 We have not addressed two additional facets of great importance 
in addiction, namely vulnerability and relapse. We can imagine 
various routes to vulnerabilities, notably associated with the 

balance between the infl uence of goal-directed and habitual 
systems (with factors favoring the latter being associated with 
excess vulnerability). The idea that some subjects may suff er 
more than others from maladaptive Pavlovian responses has 
recently arisen in work on sign-tracking and goal-tracking rats 
 [37] . Sign-trackers, whose boosted Pavlovian responses (perhaps 
mediated by the nucleus accumbens) are evident in their excess 
approach to stimuli associated with reward (rather than 
approaching the site of the reward itself) may be more prone to 
the development of addiction. Indeed, in a separate study  [17] , 
showed that outbred rats with low levels of dopamine D 2 / 3  
receptors in the nucleus accumbens were highly impulsive, and 
showed signifi cantly greater escalation of cocaine intake than 
controls. Note also that compulsive behavior typically does not 
arise given only temporally limited access to drugs such as 
cocaine  [1] , perhaps because of the anti-reward eff ects of the 
repeated withdrawal. 
 Addiction is typically characterized by repeated cycles of abuse, 
abstinence and relapse  [66,   113] . It is hard to provide a defi nitive 
RL account of relapse, because of the complexities of the extinc-
tion processes that are presumably happening during abstinence 
 [18,   48,   93] . Relapse occurring as a result of reexposure to drugs 
themselves or cues directly associated with drugs are relatively 
straightforward to accommodate; however, additional infl u-
ences over relapse such as stress, and the eff ect of stress on the 
response of dopamine systems to drugs or cues  [65,   66,   113] , are 
more challenging. In keeping with the discussion about compul-
sion in section 4 about habitual mechanisms involving the dor-
sal striatum versus Pavlovian mechanisms involving the ventral 
tegmental area and the nucleus accumbens, there is evidence for 
both the former (e.g.,  [109] ) and the latter (e.g.,  [43,   76] ) in 
relapse, with a debate concerning details of the relevant animal 
models of the phenomena. 
 In sum, RL off ers a theory of control that links computational 
notions of optimal behavior, through the psychology of Pavlo-
vian and operant conditioning, to the neurobiology of neuro-
modulators, the striatum and beyond. Thus, just as RL therefore 
provides a framework within which to study the impaired 
choices and behavior evident in psychiatric  [26,   72,   81,   127]  and 
neurological  [38,   39,   40,   41]  conditions, it should off er a window 
onto the maladaptive decision-making seen in addiction  [91,   92] . 
Of course, this does not mean that RL can necessarily provide an 
account of the teleological aspects of the development of the 
problems in addiction, since they may well arise through neu-
roadaptations that lie outside its bailiwick. The hope that the 
understanding that RL provides of phasic and tonic aspects of 
dopamine might extend to an understanding of its roles in addic-
tion seems clearly realized for the initiation of drug taking, has 
some prospects for the development of compulsion, but is more 
of a work in progress for the critical issues of vulnerability and 
relapse.   

 Acknowledgements / Disclosure 
  ▼  
 I am very grateful to Felix Tretter for the opportunity to write 
this review and to him and an anonymous reviewer for their 
comments on the manuscript, notably the idea of relative incen-
tive salience. Funding was from the Gatsby Charitable Founda-
tion. I declare that I have no confl ict of interest.         



Original Paper S63

 Dayan P. Dopamine, Reinforcement Learning    …    Pharmacopsychiatry 2009;   42 (Suppl.1): S56 – S65 

   References  
   1     Ahmed     SH   ,    Koob     GF    .   Transition from moderate to excessive drug 

intake: change in hedonic set point  .   Science     1998  ;   282     (5387)  : 
  298   –   300    

   2     Ainslie     G    .   Breakdown of Will  .   Cambridge University Press, 3  ;   2001    
   3     Anagnostaras     SG   ,    Schallert     T   ,    Robinson     TE    .   Memory processes govern-

ing amphetamine-induced psychomotor sensitization  .   Neuropsy-
chopharmacology     2002  ;   26     (6)  :   703   –   715    

  4     Aragona     BJ   ,    Cleaveland     NA   ,    Stuber     GD       et   al  .   Preferential enhancement 
of dopamine transmission within the nucleus accumbens shell by 
cocaine is attributable to a direct increase in phasic dopamine 
release events  .   J Neurosci     2008  ;   28     (35)  :   8821   –   8831    

    5     Baird     L    .   Advantage updating. Technical Report WL-TR-93-1146  . 
  Wright-Patterson Air Force Base, OH  ;   1993    

   6     Balleine     BW    .   Neural bases of food-seeking: aff ect, arousal and 
reward in corticostriatolimbic circuits  .   Physiol Behav     2005  ;   86     (5)  : 
  717   –   730    

  7     Barto     A    .   Adaptive critics and the basal ganglia     In Houk J, Davis J and 
Beiser D eds.     Models of Information Processing in the Basal Ganglia  . 
  Cambridge, MA, MIT Press  ;   1995  ;   215   –   232    

    8     Barto     A   ,    Sutton     R   ,    Anderson     C    .   Neuron-like adaptive elements that 
that can learn diffi  cult control problems. IEEE Trans  .   on Systems Man 
and Cybernetics     1983  ;   13     (5)  :   835   –   846    

  9     Berridge     KC    .   Pleasures of the brain  .   Brain Cogn     2003  ;   52     (1)  :   106   –   128    
    10     Berridge     KC    .   The debate over dopamine’s role in reward: the case 

for incentive salience  .   Psychopharmacology (Berl)     2007  ;   191     (3)  : 
  391   –   431    

  11     Blanchard     DC   ,    Blanchard     RJ    .   Ethoexperimental approaches to the 
biology of emotion  .   Annu Rev Psychol     1988  ;   39  :   43   –   68    

  12     Bolles     RC    .   Species-specifi c defense reactions and avoidance learning  . 
  Psychol Rev     1970  ;   77  :   32   –   48    

  13     Breland     K   ,    Breland     M    .   The misbehavior of organisms  .   American Psy-
chologist     1961  ;   16     (9)  :   681   –   684    

  14     Breland     K   ,    Breland     M    .   Animal behavior  .   Macmillan New York  ;   1966    
   15     Cardinal     RN   ,    Everitt     BJ    .   Neural and psychological mechanisms under-

lying appetitive learning: links to drug addiction  .   Curr Opin Neuro-
biol     2004  ;   14     (2)  :   156   –   162    

  16     Cheer     JF   ,    Wassum     KM   ,    Heien     MLAV       et   al  .   Cannabinoids enhance sub-
second dopamine release in the nucleus accumbens of awake rats  . 
  J Neurosci     2004  ;   24     (18)  :   4393   –   4400    

   17     Dalley     JW   ,    Fryer     TD   ,    Brichard     L       et   al  .   Nucleus accumbens d2/3 recep-
tors predict trait impulsivity and cocaine reinforcement  .   Science   
  2007  ;   315     (5816)  :   1267   –   1270    

  18     Daw     N    .   Reinforcement learning models of the dopamine system and 
their behavioral implications  .   PhD thesis, Computer Science Dept, 
CMU  ;   2003    

  19     Daw     ND   ,    Kakade     S   ,    Dayan     P    .   Opponent interactions between serot-
onin and dopamine  .   Neural Netw     2002  ;   15     (4 – 6)  :   603   –   616    

      20     Daw     ND   ,    Niv     Y   ,    Dayan     P    .   Uncertainty-based competition between 
prefrontal and dorsolateral striatal systems for behavioral control  . 
  Nat Neurosci     2005  ;   8     (12)  :   1704   –   1711    

  21     Daw     ND   ,    O ’ Doherty     JP   ,    Dayan     P       et   al  .   Cortical substrates for explora-
tory decisions in humans  .   Nature     2006  ;   441     (7095)  :   876   –   879    

   22     Day     JJ   ,    Roitman     MF   ,    Wightman     RM       et   al  .   Associative learning medi-
ates dynamic shifts in dopamine signaling in the nucleus accumbens  . 
  Nat Neurosci     2007  ;   10     (8)  :   1020   –   1028    

   23     Dayan     P    .   The role of value systems in decision-making     In Engel C 
and Singer W, eds.     Better than Conscious  .   Ernst Str ü ngmann Forum, 
MIT Press: Cambridge MA  ;   2008  ;   51   –   70    

  24     Dayan     P   ,    Balleine     BW    .   Reward, motivation, and reinforcement learn-
ing  .   Neuron     2002  ;   36     (2)  :   285   –   298    

  25     Dayan     P   ,    Huys     Q    .   Serotonin and aff ective control. Annual Review of 
Neuroscience     2009    

  26     Dayan     P   ,    Huys     QJM    .   Serotonin, inhibition, and negative mood  .   PLoS 
Comput Biol     2008  ;   4     (2)  :   e4    

    27     Dayan     P   ,    Niv     Y   ,    Seymour     B       et   al  .   The misbehavior of value and the 
discipline of the will  .   Neural Netw     2006  ;   19     (8)  :   1153   –   1160    

   28     Dayan     P   ,    Seymour     B    .   Values and actions in aversion     In: Glimcher P, 
Camerer C, Poldrack R and Fehr E, eds.     Neuroeconomics: Decision 
making and the brain  .   New York, NY: Academic Press, New York, NY  ; 
  2008  ;   175   –   191    

  29     Chiara     G Di    .   Nucleus accumbens shell and core dopamine: diff eren-
tial role in behavior and addiction  .   Behav Brain Res     2002  ;   137     (1 – 2)  : 
  75   –   114    

  30     Chiara     G Di   ,    Imperato     A    .   Drugs abused by humans preferentially 
increase synaptic dopamine concentrations in the mesolimbic sys-
tem of freely moving rats  .   Proc Natl Acad Sci USA     1988  ;   85     (14)  : 
  5274   –   5278    

    31     Dickinson     A   ,    Balleine     B    .   The role of learning in motivation     In: Gal-
listel C, ed.     Stevens ’  handbook of experimental psychology, volume  . 
  Wiley, New York, NY  ;   2002  ;   497   –   5    

   32     Dickinson     A   ,    Smith     J   ,    Mirenowicz     J    .   Dissociation of pavlovian and 
instrumental incentive learning under dopamine antagonists  .   Behav 
Neurosci     2000  ;   114     (3)  :   468   –   483    

  33     Everitt     BJ   ,    Belin     D   ,    Economidou     D       et   al  .   Neural mechanisms underly-
ing the vulnerability to develop compulsive drug-seeking habits and 
addiction  .   Philos Trans R Soc Lond B Biol Sci     2008  ;   363     (1507)  : 
  3125   –   3135    

  34     Everitt     BJ   ,    Hutcheson     DM   ,    Ersche     KD       et   al  .   The orbital prefrontal cor-
tex and drug addiction in laboratory animals and humans  .   Ann N Y 
Acad Sci     2007  ;   1121  :   576   –   597    

  35     Everitt     BJ   ,    Robbins     TW    .   Neural systems of reinforcement for drug 
addiction: from actions to habits to compulsion  .   Nat Neurosci     2005  ; 
  8     (11)  :   1481   –   1489    

   36     Fields     HL   ,    Heinricher     MM   ,    Mason     P    .   Neurotransmitters in nociceptive 
modulatory circuits  .   Annu Rev Neurosci     1991  ;   14  :   219   –   245    

   37     Flagel     SB   ,    Akil     H   ,    Robinson     TE    .   Individual diff erences in the attribution 
of incentive salience to reward-related cues: Implications for addic-
tion  .   Neuropharmacology     2008    

  38     Frank     MJ    .   Dynamic dopamine modulation in the basal ganglia: a 
neurocomputational account of cognitive defi cits in medicated and 
nonmedicated parkinsonism  .   J Cogn Neurosci     2005  ;   17     (1)  :   51   –   72    

  39     Frank     MJ    .   Hold your horses: a dynamic computational role for the 
subthalamic nucleus in decision making  .   Neural Netw     2006  ;   19     (8)  : 
  1120   –   1136    

  40     Frank     MJ   ,    Samanta     J   ,    Moustafa     AA       et   al  .   Hold your horses: impulsiv-
ity, deep brain stimulation, and medication in parkinsonism  .   Science   
  2007  ;   318     (5854)  :   1309   –   1312    

  41     Frank     MJ   ,    Seeberger     LC   ,    O ’ reilly     RC    .   By carrot or by stick: cognitive 
reinforcement learning in parkinsonism  .   Science     2004  ;   306     (5703)  : 
  1940   –   1943    

  42     Friston     KJ   ,    Tononi     G   ,    Reeke     GN       et   al  .   Value-dependent selection in the 
brain: simulation in a synthetic neural model  .   Neuroscience     1994  ; 
  59     (2)  :   229   –   243    

  43     Fuchs     RA   ,    Evans     KA   ,    Parker     MC       et   al  .   Diff erential involvement of the 
core and shell subregions of the nucleus accumbens in conditioned 
cue-induced reinstatement of cocaine seeking in rats  .   Psychophar-
macology (Berl)     2004  ;   176     (3 – 4)  :   459   –   465    

  44     Gallistel     CR    .   The role of the dopaminergic projections in MFB self-
stimulation  .   Behav Brain Res     1986  ;   20     (3)  :   313   –   321    

  45     Garavan     H   ,    Pankiewicz     J   ,    Bloom     A       et   al  .   Cue-induced cocaine craving: 
neuroanatomical specifi city for drug users and drug stimuli  .   Am 
J Psychiatry     2000  ;   157     (11)  :   1789   –   1798    

  46     Gittins     JC    .   Multi-Armed Bandit Allocation Indices (Wiley Interscience 
Series in Systems and Optimization)  .   John Wiley  &  Sons Inc.  ;   3 
1989    

    47     Goto     Y   ,    Otani     S   ,    Grace     AA    .   The yin and yang of dopamine release: a 
new perspective  .   Neuropharmacology     2007  ;   53     (5)  :   583   –   587    

  48     Grossberg     S    .   Processing of expected and unexpected events during 
conditioning and attention: a psychophysiological theory  .   Psychol 
Rev     1982  ;   89     (5)  :   529   –   572    

  49     Grossberg     S    .   Some normal and abnormal behavioral syndromes due 
to transmitter gating of opponent processes  .   Biol Psychiatry     1984  ; 
  19     (7)  :   1075   –   1118    

  50     Haber     SN   ,    Fudge     JL   ,    MacFarland     NR    .   Striatonigrostriatal pathways in 
primates form an ascending spiral from the shell to the dorsolateral 
striatum  .   J Neurosci     2000  ;   20     (6)  :   2369   –   2382    

    51     Haruno     M   ,    Kawato     M    .   Heterarchical reinforcement-learning model 
for integration of multiple cortico-striatal loops: fMRI examination 
in stimulus-action-reward association learning  .   Neural Netw     2006  ; 
  19     (8)  :   1242   –   1254    

  52     Heien     MLAV   ,    Khan     AS   ,    Ariansen     JL       et   al  .   Real-time measurement of 
dopamine fl uctuations after cocaine in the brain of behaving rats  . 
  Proc Natl Acad Sci USA     2005  ;   102     (29)  :   10023   –   10028    

  53     Heinz     A   ,    Siessmeier     T   ,    Wrase     J       et   al  .   Correlation of alcohol craving 
with striatal dopamine synthesis capacity and d2/3 receptor avail-
ability: a combined [18f]dopa and [18f]dmfp pet study in detoxifi ed 
alcoholic patients  .   Am J Psychiatry     2005  ;   162     (8)  :   1515   –   1520    

  54     Heinz     A   ,    Siessmeier     T   ,    Wrase     J       et   al  .   Correlation between dopamine 
d(2) receptors in the ventral striatum and central processing of alco-
hol cues and craving  .   Am J Psychiatry     2004  ;   161     (10)  :   1783   –   1789    

  55     Hernandez     G   ,    Hamdani     S   ,    Rajabi     H       et   al  .   Prolonged rewarding stimu-
lation of the rat medial forebrain bundle: neurochemical and behav-
ioral consequences  .   Behav Neurosci     2006  ;   120     (4)  :   888   –   904    

  56     Hershberger     W    .   An approach through the looking-glass  .   Learning  &  
Behavior     1986  ;   14     (4)  :   443   –   451    



Original PaperS64

 Dayan P. Dopamine, Reinforcement Learning    …    Pharmacopsychiatry 2009;   42 (Suppl.1): S56 – S65 

  57     Hnasko     TS   ,    Sotak     BN   ,    Palmiter     RD    .   Morphine reward in dopamine-
defi cient mice  .   Nature     2005  ;   438     (7069)  :   854   –   857    

   58     Horvitz     JC   ,    Stewart     T   ,    Jacobs     BL    .   Burst activity of ventral tegmental 
dopamine neurons is elicited by sensory stimuli in the awake cat  . 
  Brain Res     1997  ;   759     (2)  :   251   –   258    

   59     Hyman     SE    .   Addiction: a disease of learning and memory  .   Am J Psy-
chiatry     2005  ;   162     (8)  :   1414   –   1422    

  60     Hyman     SE   ,    Malenka     RC   ,    Nestler     EJ    .   Neural mechanisms of addiction: 
the role of reward-related learning and memory  .   Annu Rev Neurosci   
  2006  ;   29  :   565   –   598    

  61     Ikemoto     S    .   Dopamine reward circuitry: two projection systems from 
the ventral midbrain to the nucleus accumbens-olfactory tubercle 
complex  .   Brain Res Rev     2007  ;   56     (1)  :   27   –   78    

  62     Joel     D   ,    Weiner     I    .   The connections of the dopaminergic system with 
the striatum in rats and primates: an analysis with respect to the 
functional and compartmental organization of the striatum  .   Neuro-
science     2000  ;   96     (3)  :   451   –   474    

  63     Johnson     J   ,    Li     W   ,    Li     J       et   al  .   A computational model of learned avoidance 
behavior in a one-way avoidance experiment  .   Adaptive Behavior   
  2002  ;   9     (2)  :   91   –   104    

   64     Kakade     S   ,    Dayan     P    .   Dopamine: generalization and bonuses  .   Neural 
Netw     2002  ;   15     (4 – 6)  :   549   –   559    

  65     Kalivas     PW   ,    MacFarland     K    .   Brain circuitry and the reinstatement of 
cocaine-seeking behavior  .   Psychopharmacology (Berl)     2003  ;   168   
  (1 – 2)  :   44   –   56    

  66     Kalivas     PW   ,    O ’ Brien     C    .   Drug addiction as a pathology of staged neu-
roplasticity  .   Neuropsychopharmacology     2008  ;   33     (1)  :   166   –   180    

   67     Kamin     LJ    .   Predictability, surprise, attention and conditioning.     In 
Campbell BA, Church RM, eds.     Punishment and aversive behavior  . 
  Appleton-Century-Crofts, New York  ;   1969    

  68     Kelley     AE   ,    Berridge     KC    .   The neuroscience of natural rewards: rele-
vance to addictive drugs  .   J Neurosci     2002  ;   22     (9)  :   3306   –   3311    

  69     Koob     GF    .   Drugs of abuse: anatomy, pharmacology and function of 
reward pathways  .   Trends Pharmacol Sci     1992  ;   13     (5)  :   177   –   184    

   70     Koob     GF   ,    Moal     ML    .   Addiction and the brain antireward system  .   Annu 
Rev Psychol     2008  ;   59  :   29   –   53    

  71     Koob     GF   ,    Moal     ML    .   Neurobiological mechanisms for opponent moti-
vational processes in addiction  .   Philos Trans R Soc Lond B Biol Sci   
  2008  ;   363     (1507)  :   3113   –   3123    

  72     Kumar     P   ,    Waiter     G   ,    Ahearn     T       et   al  .   Abnormal temporal diff erence 
reward-learning signals in major depression  .   Brain     2008  ;   131     (Pt 8)  : 
  2084   –   2093    

   73     Marr     D    .   Vision: A computational investigation into the human rep-
resentation and processing of visual information  .   Henry Holt and 
Co., Inc. New York, NY, USA  ;   1982    

  74     Mazzoni     P   ,    Hristova     A   ,    Krakauer     JW    .   Why don ’ t we move faster? Par-
kinson’s disease, movement vigor, and implicit motivation  .   J Neuro-
sci     2007  ;   27     (27)  :   7105   –   7116    

     75     MacClure     SM   ,    Daw     ND   ,    Montague     PR    .   A computational substrate for 
incentive salience  .   Trends Neurosci     2003  ;   26     (8)  :   423   –   428    

  76     MacFarland     K   ,    Kalivas     PW    .   The circuitry mediating cocaine-induced 
reinstatement of drug-seeking behavior  .   J Neurosci     2001  ;   21     (21)  : 
  8655   –   8663    

  77     MacNaughton     N   ,    Corr     PJ    .   A two-dimensional neuropsychology of 
defense: fear/anxiety and defensive distance  .   Neurosci Biobehav Rev   
  2004  ;   28     (3)  :   285   –   305    

  78     Montague     PR   ,    Dayan     P   ,    Sejnowski     TJ    .   A framework for mesencephalic 
dopamine systems based on predictive hebbian learning  .   J Neurosci   
  1996  ;   16     (5)  :   1936   –   1947    

  79     Morris     G   ,    Nevet     A   ,    Arkadir     D       et   al  .   Midbrain dopamine neurons 
encode decisions for future action  .   Nat Neurosci     2006  ;   9     (8)  :   1057   –
   1063    

  80     Moutoussis     M   ,    Bentall     RP   ,    Williams     J       et   al  .   A temporal diff erence 
account of avoidance learning  .   Network     2008  ;   19     (2)  :   137   –   160    

  81     Moutoussis     M   ,    Williams     J   ,    Dayan     P       et   al  .   Persecutory delusions and 
the conditioned avoidance paradigm: towards an integration of the 
psychology and biology of paranoia  .   Cognit Neuropsychiatry     2007  ; 
  12     (6)  :   495   –   510    

   82     Mowrer     O    .   On the dual nature of learning: A reinterpretation of con-
ditioning and problem solving  .   Harvard Educational Review     1947  ; 
  17     (2)  :   102   –   150    

  83     Nieoullon     A   ,    Coquerel     A    .   Dopamine: A key regulator to adapt action, 
emotion, motivation and cognition  .   Current Opinion in Neurology   
  2003  ;   16  :   S3    

       84     Niv     Y   ,    Daw     ND   ,    Joel     D       et   al  .   Tonic dopamine: opportunity costs and 
the control of response vigor  .   Psychopharmacology (Berl)     2007  ;   191   
  (3)  :   507   –   520    

  85     Owesson-White     CA   ,    Cheer     JF   ,    Beyene     M       et   al  .   Dynamic changes in 
accumbens dopamine correlate with learning during intracranial 
self-stimulation  .   Proc Natl Acad Sci USA     2008  ;   105     (33)  :   11957   –
   11962    

   86     Panksepp     J    .   Aff ective Neuroscience  .   Oxford University Press, New 
York, NY  ;   1998    

       87     Panlilio     LV   ,    Thorndike     EB   ,    Schindler     CW    .   Blocking of conditioning to 
a cocaine-paired stimulus: testing the hypothesis that cocaine per-
petually produces a signal of larger-than-expected reward  .   Pharma-
col Biochem Behav     2007  ;   86     (4)  :   774   –   777    

  88     Peci ñ a     S   ,    Berridge     KC    .   Central enhancement of taste pleasure by intra-
ventricular morphine  .   Neurobiology (Bp)     1995  ;   3     (3 – 4)  :   269   –   280    

   89     Pessiglione     M   ,    Seymour     B   ,    Flandin     G       et   al  .   Dopamine-dependent pre-
diction errors underpin reward-seeking behaviour in humans  . 
  Nature     2006  ;   442     (7106)  :   1042   –   1045    

  90     Phillips     PEM   ,    Stuber     GD   ,    Heien     MLAV       et   al  .   Subsecond dopa-
mine release promotes cocaine seeking  .   Nature     2003  ;   422     (6932)  : 
  614   –   618    

           91     Redish     AD    .   Addiction as a computational process gone awry  .   Science   
  2004  ;   306     (5703)  :   1944   –   1947    

    92     Redish     AD   ,    Jensen     S   ,    Johnson     A    .   Addiction as vulnerabilities in the 
decision process  .   Behav Brain Sci     2008  ;   31     (4)  :   461   –   487    

   93     Redish     AD   ,    Jensen     S   ,    Johnson     A       et   al  .   Reconciling reinforcement learn-
ing models with behavioral extinction and renewal: implications for 
addiction, relapse, and problem gambling  .   Psychol Rev     2007  ;   114   
  (3)  :   784   –   805    

   94     Rescorla     R   ,    Wagner     A    .   A theory of Pavlovian conditioning: Variations 
in the eff ectiveness of reinforcement and nonreinforcement  .   Classi-
cal conditioning II: Current research and theory     1972  ;   64   –   99    

  95     Reynolds     JN   ,    Hyland     BI   ,    Wickens     JR    .   A cellular mechanism of reward-
related learning  .   Nature     2001  ;   413     (6851)  :   67   –   70    

  96     Reynolds     SM   ,    Berridge     KC    .   Positive and negative motivation in nucleus 
accumbens shell: bivalent rostrocaudal gradients for GABA-elicited 
eating, taste  “ liking/disliking ”  reactions, place preference/avoidance, 
and fear  .   J Neurosci     2002  ;   22     (16)  :   7308   –   7320    

  97     Reynolds     SM   ,    Berridge     KC    .   Glutamate motivational ensembles in 
nucleus accumbens: rostrocaudal shell gradients of fear and feeding  . 
  Eur J Neurosci     2003  ;   17     (10)  :   2187   –   2200    

  98     Reynolds     SM   ,    Berridge     KC    .   Emotional environments retune the 
valence of appetitive versus fearful functions in nucleus accumbens  . 
  Nat Neurosci     2008  ;   11     (4)  :   423   –   425    

  99     Robinson     TE   ,    Berridge     KC    .   Incentive-sensitization and addiction  . 
  Addiction     2001  ;   96     (1)  :   103   –   114    

  100     Robinson     TE   ,    Berridge     KC    .   Addiction  .   Annu Rev Psychol     2003  ;   54  : 
  25   –   53    

  101     Robinson     TE   ,    Berridge     KC    .   The incentive sensitization theory of addic-
tion: some current issues  .   Philos Trans R Soc Lond B Biol Sci     2008  ; 
  363     (1507)  :   3137   –   3146    

  102     Roesch     MR   ,    Calu     DJ   ,    Schoenbaum     G    .   Dopamine neurons encode the 
better option in rats deciding between diff erently delayed or sized 
rewards  .   Nat Neurosci     2007  ;   10     (12)  :   1615   –   1624    

  103     Salamone     JD   ,    Correa     M   ,    Farrar     A       et   al  .   Eff ort-related functions of 
nucleus accumbens dopamine and associated forebrain circuits  .   Psy-
chopharmacology (Berl)     2007  ;   191     (3)  :   461   –   482    

  104     Salamone     JD   ,    Correa     M   ,    Mingote     S       et   al  .   Nucleus accumbens dopamine 
and the regulation of eff ort in food-seeking behavior: implications 
for studies of natural motivation, psychiatry, and drug abuse  .   J Phar-
macol Exp Ther     2003  ;   305     (1)  :   1   –   8    

    105     Satoh     T   ,    Nakai     S   ,    Sato     T       et   al  .   Correlated coding of motivation and 
outcome of decision by dopamine neurons  .   J Neurosci     2003  ;   23     (30)  : 
  9913   –   9923    

  106     Schmajuk     N   ,    Zanutto     B    .   Escape, avoidance, and imitation: A neural 
network approach  .   Adaptive Behavior     1997  ;   6     (1)  :   63    

   107     Schultz     W    .   Getting formal with dopamine and reward  .   Neuron     2002  ; 
  36     (2)  :   241   –   263    

   108     Schultz     W   ,    Dayan     P   ,    Montague     PR    .   A neural substrate of prediction 
and reward  .   Science     1997  ;   275     (5306)  :   1593   –   1599    

   109     See     RE   ,    Elliott     JC   ,    Feltenstein     MW    .   The role of dorsal vs. ventral striatal 
pathways in cocaine-seeking behavior after prolonged abstinence in 
rats  .   Psychopharmacology (Berl)     2007  ;   194     (3)  :   321   –   331    

   110     Solomon     RL   ,    Corbit     JD    .   An opponent-process theory of motivation. i. 
temporal dynamics of aff ect  .   Psychol Rev     1974  ;   81     (2)  :   119   –   145    

   111     Spanagel     R   ,    Herz     A   ,    Shippenberg     TS    .   Opposing tonically active endog-
enous opioid systems modulate the mesolimbic dopaminergic path-
way  .   Proc Natl Acad Sci USA     1992  ;   89     (6)  :   2046   –   2050    

  112     Spanagel     R   ,    Weiss     F    .   The dopamine hypothesis of reward: past and 
current status  .   Trends Neurosci     1999  ;   22     (11)  :   521   –   527    



Original Paper S65

 Dayan P. Dopamine, Reinforcement Learning    …    Pharmacopsychiatry 2009;   42 (Suppl.1): S56 – S65 

  113     Stewart     J    .   Psychological and neural mechanisms of relapse  .   Philos 
Trans R Soc Lond B Biol Sci     2008  ;   363     (1507)  :   3147   –   3158    

  114     Stinus     L   ,    Cador     M   ,    Moal     ML    .   Interaction between endogenous opioids 
and dopamine within the nucleus accumbens  .   Ann N Y Acad Sci   
  1992  ;   654  :   254   –   273    

  115     Stinus     L   ,    Koob     GF   ,    Ling     N       et   al  .   Locomotor activation induced by infu-
sion of endorphins into the ventral tegmental area: evidence for 
opiate-dopamine interactions  .   Proc Natl Acad Sci USA     1980  ;   77     (4)  : 
  2323   –   2327    

  116     Suri     RE   ,    Schultz     W    .   A neural network model with dopamine-like 
reinforcement signal that learns a spatial delayed response task  . 
  Neuroscience     1999  ;   91     (3)  :   871   –   890    

  117     Sutton     R    .   Learning to predict by the methods of temporal diff erences  . 
  Machine Learning     1988  ;   3     (1)  :   9   –   44    

    118     Sutton     RS   ,    Barto     AG    .   Reinforcement Learning: An Introduction (Adap-
tive Computation and Machine Learning)  .   The MIT Press, 3     1998    

   119     Tzschentke     TM    .   Measuring reward with the conditioned place prefer-
ence paradigm: a comprehensive review of drug eff ects, recent 
progress and new issues  .   Prog Neurobiol     1998  ;   56     (6)  :   613   –   672    

   120     Verdejo-Garcia     A   ,    Lawrence     AJ   ,    Clark     L    .   Impulsivity as a vulnerability 
marker for substance-use disorders: review of fi ndings from high-
risk research, problem gamblers and genetic association studies  . 
  Neurosci Biobehav Rev     2008  ;   32     (4)  :   777   –   810    

  121     Volkow     ND   ,    Fowler     JS   ,    Wang     G-J       et   al  .   Dopamine in drug abuse and 
addiction: results from imaging studies and treatment implications  . 
  Mol Psychiatry     2004  ;   9     (6)  :   557   –   569    

  122     Volkow     ND   ,    Fowler     JS   ,    Wang     G-J       et   al  .   Dopamine in drug abuse and 
addiction: results of imaging studies and treatment implications  . 
  Arch Neurol     2007  ;   64     (11)  :   1575   –   1579    

   123     Watkins     C    .   Learning from Delayed Rewards  .   PhD thesis, University 
of Cambridge  ;   1989    

  124     Wickens     J    .   Striatal dopamine in motor activation and reward-medi-
ated learning: steps towards a unifying model  .   J Neural Transm Gen 
Sect     1990  ;   80     (1)  :   9   –   31    

  125     Wickens     JR   ,    Reynolds     JNJ   ,    Hyland     BI    .   Neural mechanisms of reward-
related motor learning  .   Curr Opin Neurobiol     2003  ;   13     (6)  :   685   –   690    

  126     Williams     DR   ,    Williams     H    .   Auto-maintenance in the pigeon: sustained 
pecking despite contingent non-reinforcement  .   J Exp Anal Behav   
  1969  ;   12     (4)  :   511   –   520    

  127     Williams     J   ,    Dayan     P    .   Dopamine, learning, and impulsivity: a biologi-
cal account of attention-defi cit/hyperactivity disorder  .   J Child Ado-
lesc Psychopharmacol     2005  ;   15     (2)  :   160   –   179  ;   discussion 157 – 159    

    128     Williams     R    .   Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning  .   Reinforcement Learning     1992  ;   8  : 
  229   –   256    

  129     Wise     RA    .   Opiate reward: sites and substrates  .   Neurosci Biobehav Rev   
  1989  ;   13     (2 – 3)  :   129   –   133    

  130     Wise     RA    .   Forebrain substrates of reward and motivation  .   J Comp 
Neurol     2005  ;   493     (1)  :   115   –   121    

   131     Wise     RA   ,    Bozarth     MA    .   A psychomotor stimulant theory of addiction  . 
  Psychol Rev     1987  ;   94     (4)  :   469   –   492    

  132     Wrase     J   ,    Schlagenhauf     F   ,    Kienast     T       et   al  .   Dysfunction of reward 
processing correlates with alcohol craving in detoxifi ed alcoholics  . 
  Neuroimage     2007  ;   35     (2)  :   787   –   794    

   133     Wyvell     CL   ,    Berridge     KC    .   Intra-accumbens amphetamine increases the 
conditioned incentive salience of sucrose reward: enhancement of 
reward  “ wanting ”  without enhanced  “ liking ”  or response reinforce-
ment  .   J Neurosci     2000  ;   20     (21)  :   8122   –   8130    

   134     Yu     AJ   ,    Dayan     P    .   Uncertainty, neuromodulation, and attention  .   Neuron   
  2005  ;   46     (4)  :   681   –   692              


