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Statistical Data Analysis in the Computer Age 

BRADLEY EFRON AND ROBERT TIBSHIRANI 

Most of our familiar statistical methods, such as hypoth­
esis testiqg, linear regression, analysis of variance, and 
maximum likelihood estimation, were designed to be 
implemented on mechanical calculators. Modem elec­
tronic computation has encouraged a host of new statis­
tical methods that require fewer distributional assump­
tions than their predecessors and can be applied to more 
complicated statistical estimators. These methods allow 
the scientist to explore and describe data and draw valid 
statistical inferences without the usual concerns for math­
ematical tractability. This is possible because traditional 
methods of mathematical analysis are replaced by special­
ly constructed computer algorithms. Mathematics has not 
disappeared from statistical theory. It is the main method 
for deciding which algorithms are correct and efficient 
tools for automating statistical inference. 

M
OST SCIENTISTS FACE PROBLEMS OF DATA ANALYSIS: What data should I collect? What can I conclude from my data? How far can I trust the conclusions? Statistics is the mathematical science that deals with these questions. Some statisti­cal methods, such as linear regression, hypothesis testing, standard errors, and confidence intervals, have become familiar in the scien­tific literature over time. Most of the "classical" methods were developed between 1920 and 1950, by scientists such as R. A. Fisher, J. Neyman, and H. Hotelling, who were senior colleagues to statisticians still active today. The 1980s produced a rising curve of new statistical theory and methods based on the power of electronic computation. Today's data analyst can afford to expend more computation on a single problem than the world's yearly total of statistical computation in the 1920s. How can such computational wealth be spent wisely, in a way that genuinely adds to the classical methodology without merely elaborating it? Answering this question has become a dominant theme of modern statistical theory. Some promising developments in computer-intensive statistical methodology are described in this article. The examples involve bootstrap methods, nonparametric regression, generalized additive models, and classification and regression trees. The presentation here is mainly descriptive, without much mathematical develop­ment. However, we will try to indicate the crucial role that mathematics plays in tying the new statistical methods to their classical antecedents. 
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The Bootstrap 

In almost every statistical data analysis, on the basis of a data set x we calculate a statistic t(x) for the purpose of estimating some quantity of interest. Box 1 shows the cholesterol reduction scores of 
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Box1 

nine men after taking cholestyramine; the scores are an ordered random sample from the scores of 164 men ( 1). The data set x could be these nine scores, and t(x) could be their,mean value x = 28.58, intended as an estimate of the true mean value of the cholesterol reduction scores. (The true mean value is the mean we would obtain 
if we observed a much larger set of scores.) The following funda­mental question arises: how accurate is t(x)? This question has a simple answer if t(x) is the mean x of numbers x1, x2, • • •  , xn - Then the standard error ofx, its root- mean-square error, is estimated by a formula made famous in elementary statistics courses { }1/2

se(x) = ;i(x; - x)
2/[n(n - l)] (1) 

For the nine numbers in Box 1, Eq. 1 gives 10.13. The estimate of the true cholesterol reduction mean would usually be expressed as 28.58 ± 10.13, or perhaps 28.58 ± 10:13z, where z is some constant, such as 1.645 or 1.960, relating to areas under a bell­shaped curve. With z = 1.645, the interval has approximately 90% chance of containing the true mean value. In other words, it is an approximate 90% confidence interval. The bootstrap (2) was introduced primarily as a device for extending Eq. 1 to estimators other than the mean. For example suppose t(x) is the 25% trimmed mean, x{0.25}, defined as the average of the middle 50% of the data. We order the observatiops 
x 1, x2, . • .  , Xn, discard the lower and upper 25% of them, .and take the mean of the remaining 50%. Interpolation is required for cases where 0.25n is not an integer. For the cholesterol data 
:xco.25) = 

3/4(10.75) + (13.75) + (32.5) + (39.5) + 3/4(41.25) ----------------= 27.81 3/4 + 1 + 1 + 1 + 3/4 
(2) 

There is no neat algebraic formula such as Eq. 1 for the standard error of a trimmed mean or for almost any estimate other than the mean. That is why the mean is so popular in statistics courses. In lieu of a formula, the bootstrap uses computational power to get a numerical estimate of the standard error. The bootstrap algorithm depends on the notion of a bootstrap sample, which is a sample of 
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